research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoJOURNAL OF
APPLIED
CRYSTALLOGRAPHY
ISSN: 1600-5767

Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Georg-August Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
*Correspondence e-mail: [email protected]

(Received 29 July 2014; accepted 19 October 2014)

The quality of diffraction data obtained using silver and molybdenum microsources has been compared for six model compounds with a wide range of absorption factors. The experiments were performed on two 30 W air-cooled Incoatec IµS microfocus sources with multilayer optics mounted on a Bruker D8 goniometer with a SMART APEX II CCD detector. All data were analysed, processed and refined using standard Bruker software. The results show that Ag Kα radiation can be beneficial when heavy elements are involved. A numerical absorption correction based on the positions and indices of the crystal faces is shown to be of limited use for the highly focused microsource beams, presumably because the assumption that the crystal is completely bathed in a (top-hat profile) beam of uniform intensity is no longer valid. Fortunately the empirical corrections implemented in SADABS, although originally intended as a correction for absorption, also correct rather well for the variations in the effective volume of the crystal irradiated. In three of the cases studied (two Ag and one Mo) the final SHELXL R1 against all data after application of empirical corrections implemented in SADABS was below 1%. Since such corrections are designed to optimize the agreement of the intensities of equivalent reflections with different paths through the crystal but the same Bragg 2θ angles, a further correction is required for the 2θ dependence of the absorption. For this, SADABS uses the transmission factor of a spherical crystal with a user-defined value of μr (where μ is the linear absorption coefficient and r is the effective radius of the crystal); the best results are obtained when r is biased towards the smallest crystal dimension. The results presented here suggest that the IUCr publication requirement that a numerical absorption correction must be applied for strongly absorbing crystals is in need of revision.

1. Introduction

Microfocus sealed-tube X-ray sources have become standard in many laboratories because of their very low power consumption and minimal maintenance requirements (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]; Schulz et al., 2009[Schulz, T., Meindl, K., Leusser, D., Stern, D., Graf, J., Michaelsen, C., Ruf, M., Sheldrick, G. M. & Stalke, D. (2009). J. Appl. Cryst. 42, 885-891.]). Cu Kα and Mo Kα microsources are already widely used, but the more recent commercial availability of silver anode microsources raises the question as to when Ag Kα is preferable. The shorter wavelength enables a higher resolution to be achieved and results in a compressed diffraction pattern, which is particularly advantageous when the diffraction geometry is restricted, for example by a high-pressure cell (Saouane et al., 2013[Saouane, S., Norman, S. E., Hardacre, C. & Fabbiani, F. P. A. (2013). Chem. Sci. 4, 1270-1280.]). The strength of the absorption correlates with the wavelength of the incident beam: a short wavelength is generally less prone to absorption unless it is close to an absorption edge (Hamilton, 1965[Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.]; Becker & Coppens, 1974a[Becker, P. J. & Coppens, P. (1974a). Acta Cryst. A30, 129-147.],b[Becker, P. J. & Coppens, P. (1974b). Acta Cryst. A30, 148-153.]). In the case of large, strongly absorbing crystals, it is possible that reduced absorption with the silver anode could more than compensate for the decrease in the absolute scattering power of the crystal (which is proportional to λ3). The question of the optimal crystal size has been investigated for weakly absorbing crystals by Görbitz (1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]), who used a system with a sealed tube source and monochromator.

The curved mirror optics used by both Mo and Ag microsources deliver a narrow beam with a slightly anisotropic profile, making accurate sample alignment essential (Arndt, 1990[Arndt, U. W. (1990). J. Appl. Cryst. 23, 161-168.]; Coles & Hursthouse, 2004[Coles, S. J. & Hursthouse, M. B. (2004). J. Appl. Cryst. 37, 988-992.]; Storm et al., 2004[Storm, A. B., Michaelsen, C., Oehr, A. & Hoffmann, C. (2004). Proc. SPIE, 5557, 177-181.]). The focal spot size of the beam is 110 and 90 µm for Mo Kα and Ag Kα, respectively (Hasse et al., 2010[Hasse, B., Wiesmann, J., Michaelsen, C., Heidorn, U., Kroth, S. & Hertlein, F. (2010). State-of-the-Art Multilayer Optics for X-ray Diffractometry. Geesthacht: Incoatec.]). This highly focused beam makes a uniform homogeneous sample illumination impossible even for small crystals. In this paper, molybdenum and silver microsource data are compared for a variety of crystals with significant absorption in typical data collection situations. Although in these tests independent atom model (IAM) refinements were employed, the conclusions should also apply to data collected for charge density studies.

The SADABS program (Bruker, 2014[Bruker (2014). XPREP (Version 2014/2) and SADABS (Version 2014/4). Bruker AXS Inc., Madison, Wisconsin, USA.]) assumes that the corrected intensity is given by the product of an incident beam scale factor S(n), where n is the frame number, a diffracted beam factor P(u, v, w), where u, v and w are the direction cosines of the diffracted beam relative to crystal-fixed axes, and a spherical crystal factor Q(μr, 2θ), where μ is the linear absorption coefficient and r the effective radius of the crystal:

[I_{{\rm corrected}} = I_{{\rm raw}}\, S(n)\, P(u,v,w)\, Q(\mu r, 2\theta). \eqno(1)]

Similar approximations were used by Kopfmann & Huber (1968[Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.]), North et al. (1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) and Huber & Kopfmann (1969[Huber, R. & Kopfmann, G. (1969). Acta Cryst. A25, 143-152.]) and in many subsequent papers and programs. There is one incident beam scale factor S(n) for each frame n, but in SADABS the values are interpolated according to the calculated rotation angle of the reflection relative to the rotation angles of the beginning and end of the frame. In addition, a restraint is applied that adjacent frames should have similar scale factors; this is essential when there are few (perhaps even zero) reflections that have their centres on a particular frame. The incident beam factor S(n) in SADABS corrects for crystal decomposition, intensity variations of the X-ray source, changes in the effective volume irradiated (possibly caused by the crystal not being accurately centred), beam inhomogeneity, and absorption by the crystal and its support. The plot of S(n) against the frame number n is a useful diagnostic (see below). The diffracted beam factor P(u, v, w) is based on spherical harmonics. Blessing (1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) also used spherical harmonics but applied them to both the incident and diffracted beams.

The empirical or multiscan correction involves refining the incident beam scale factors and spherical harmonic coefficients so that the intensities of equivalent reflections become more equal (Kopfmann & Huber, 1968[Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.]; North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]). This is critically dependent on there being a high multiplicity of observations involving different paths through the crystal, so in general multiple scans about different rotation axes relative to the crystal are required. In SADABS the incident beam scale factors and spherical harmonic coefficients are refined in alternate half-cycles, so that each of these full-matrix refinements is linear. This has the advantage that no starting values are required and that each half-cycle converges in one iteration. After each half-cycle the weighted mean intensity of each reflection is calculated using robust/resilient weights as described by Blessing (1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]), and the resulting weighted mean intensities are used as observations for fitting the least-squares parameters. Several double cycles are required, but the method is robust and fast. The spherical crystal term Q(μr, 2θ) (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) is applied only after the other parameters have been refined to convergence, because it has no effect on the agreement of the equivalent reflections. Since the spherical absorption factor Q(μr, 2θ) is largest at low 2θ and decreases monotonically as 2θ increases, the effect of neglecting this term would be to cause the atomic displacement parameters to become too small or even negative (Katayama, 1986[Katayama, C. (1986). Acta Cryst. A42, 19-23.]). If the crystals faces have been indexed and their distances from a reference point in the crystal determined, a numerical absorption correction based on Gaussian integration (Busing & Levy, 1957[Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.]) may be performed in SADABS before the refinement of the other parameters. In such a case, lower-order spherical harmonics can be used in P(u, v, w). For X-ray beams from a sealed tube source that have been shaped by slits but not focused, this procedure works well because the assumption that the crystal is completely bathed in a uniform (top-hat profile) beam is valid, and it is even possible to use it to refine the linear absorption coefficient μ. As will be shown, this approach fails for the highly focused microsource beams.

After the determination of the scaling parameters, SADABS rejects severe outliers and scales the estimated standard deviations of the intensities so that they correspond statistically to the degree of agreement between the corrected intensities of the equivalent reflections. The equation used to scale the reflection standard deviations involves two parameters, K and g, that are refined so that the weighted mean square deviation χ2 is as close as possible to unity over the full range of intensities. Since there is no resolution-dependent term in this error model, plots of χ2 against resolution are a particularly effective diagnostic test; in an ideal case χ2 should be close to unity over the full ranges of intensity and resolution. In the work reported here, the current standard SADABS option of refining one overall g value and one K for each scan was adopted:

[\sigma^2(I)_{\rm corrected} = [K \sigma(I)_{\rm raw}]^2 + (g I)^2. \eqno(2)]

It should be noted that the current versions of SADABS and the programs XDS (Kabsch, 2010[Kabsch, W. (2010). Acta Cryst. D66, 133-144.]), AIMLESS (Evans & Murshudov, 2013[Evans, P. R. & Murshudov, G. N. (2013). Acta Cryst. D69, 1204-1214.]) and HKL-2000 (Borek et al., 2003[Borek, D., Minor, W. & Otwinowski, Z. (2003). Acta Cryst. D59, 2031-2038.]), which are very widely used for macromolecules, all use the same error model, an example of convergent evolution. This error model is justified by the fact that it results in values of χ2 that are close to unity throughout the full range of intensity and resolution, except sometimes for a small rise at very low resolution that is clearly indicative of a residual systematic error. This can be seen later in Fig. 5 (see §3.1[link]) and for many thousands of data sets processed by SADABS. It is remarkable that this is achieved by the refinement of only two parameters, K and g. However recent versions of SADABS also allow these parameters to be held fixed (e.g. at 1 and 0, respectively), refined as overall values for all scans or refined separately for each scan. Here we have adopted the default SADABS option of refining separate K values for each scan (because they may be influenced by different scan speeds etc.) but only one overall g value. This error model has been criticized by Henn & Meindl (2010[Henn, J. & Meindl, K. (2010). Acta Cryst. A66, 676-684.]) and Jørgensen et al. (2012[Jørgensen, M. R. V., Svendsen, H., Schmøkel, M. S., Overgaard, J. & Iversen, B. B. (2012). Acta Cryst. A68, 301-303.]), who, however, do not explain why they prefer to ignore the standard statistical criterion that χ2 should be close to unity. A direct consequence of this error model is the characteristic shape of the Diederichs plot (Diederichs, 2010[Diederichs, K. (2010). Acta Cryst. D66, 733-740.]), a scatter plot of I/σ against log(I) for the unmerged data to assess the influence of systematic errors, shown later in Fig. 6 (§3.1[link]), which has a limiting maximum value of I/σ given by 1/g.

2. Experimental

2.1. Test crystals

Scandium platinate, 1 (Harmening et al., 2010[Harmening, T., van Wüllen, L., Eckert, H., Rodewald, U. C. & Pöttgen, R. (2010). Z. Anorg. Allg. Chem. 636, 972-976.]), murdochite, 2 (Dubler et al., 1983[Dubler, E., Vedani, A. & Oswald, H. R. (1983). Acta Cryst. C39, 1143-1146.]), sodium tungstate, 3 (Farrugia, 2007[Farrugia, L. J. (2007). Acta Cryst. E63, i142.]), and scandium cobalt carbide, 4 (Rohrmoser et al., 2007[Rohrmoser, B., Eickerling, G., Presnitz, M., Scherer, W., Eyert, V., Hoffmann, R.-D., Rodewald, U. C., Vogt, C. & Pöttgen, R. (2007). J. Am. Chem. Soc. 129, 9356-9365.]; Scherer et al., 2010[Scherer, W., Hauf, C., Presnitz, M., Scheidt, E.-W., Eickerling, G., Eyert, V., Hoffmann, R.-D., Rodewald, U. C., Hammerschmidt, A., Vogt, C. & Pöttgen, R. (2010). Angew. Chem. 122, 1623-1627.]; Eickerling et al., 2013[Eickerling, G., Hauf, C., Scheidt, E.-W., Reichardt, L., Schneider, C., Muñoz, A., Lopez-Moreno, S., Humberto Romero, A., Porcher, F., André, G., Pöttgen, R. & Scherer, W. (2013). Z. Anorg. Allg. Chem. 639, 1985-1995.]), were used to represent inorganic compounds and minerals with medium to high absorption coefficients. Small crystals were chosen for this investigation in order to match the highly focused beams of the two microsources. Less strongly absorbing test crystals included a dibromoacridine derivative, 5 (Visscher, unpublished), and an inorganic cobalt complex, 6 (Azhakar et al., 2013[Azhakar, R., Ghadwal, R. S., Roesky, H. W., Hey, J., Krause, L. & Stalke, D. (2013). Dalton Trans. 42, 10277-10281.]). See Fig. 1[link] and Table 1[link] for detailed information on each sample.

Table 1
Experimental setup and sample characteristics

  Space group Crystal dimensions (mm) r (mm) Source μ (mm−1) μr Spherical harmonics Maximum resolution (Å) Reflections: measured/unique
1 Pbam 0.06/0.04/0.02 0.014 Ag 65.25 0.919 8/7 0.33 88135/6527
Mo 121.02 1.705 0.43 51469/3183
2 F[m\bar 3m] 0.12/0.11/0.09 0.049 Ag 20.50 1.009 8/7 0.31 14474/770
Mo 38.25 1.876 0.43 10420/313
3 Pbca 0.03/0.05/0.11 0.021 Ag 10.16 0.214 8/7 0.40 154303/10927
Mo 18.84 0.397 0.44 84934/8314
4 Immm 0.08/0.05/0.05 0.026 Ag 5.02 0.129 8/7 0.33 25448/1590
Mo 9.78 0.251 0.43 11127/704
5 P21/n 0.20/0.16/0.15 0.078 Ag 3.16 0.246 6/3 0.79 55453/3161
Mo 5.90 0.459 0.79 35888/3130
6 P21/n 0.08/0.06/0.02 0.018 Ag 1.53 0.027 8/5 0.79 62614/8300
Mo 2.87 0.051 0.79 96806/8338
[Figure 1]
Figure 1
Test crystals.

2.2. Diffractometer setup and data acquisition

All experiments were performed on Bruker SMART APEX II systems based on D8 three-circle goniometers with Incoatec microfocus X-ray sources (IµS) and Incoatec QUAZAR mirror optics (Schulz et al., 2009[Schulz, T., Meindl, K., Leusser, D., Stern, D., Graf, J., Michaelsen, C., Ruf, M., Sheldrick, G. M. & Stalke, D. (2009). J. Appl. Cryst. 42, 885-891.]). The data were collected at 100 K crystal temperature (Mo source: Bruker CRYOFLEX; Ag source: Oxford Cryosystems CRYOSTREAM 700), 50 kV and 600 µA for both machines with an appropriate 0.5° ω scan strategy for the wavelength in question. Since no radiation damage to the crystals was expected, the same crystals were used to collect data successively on both diffractometers. Differences in scattering power and resolution for the two wavelengths led to differences in the data collection strategy and in the exposure times. Both diffractometers are equipped with Bruker APEX II area detectors that use Fairchild CCD6161 sensors. The only difference is the thickness of the scintillation phosphor, which results in a characteristic quantum yield of 160 e per X-ray photon for Mo Kα and 204 e per X-ray photon for Ag Kα. The detector on the Ag source uses a slightly thicker scintillation phosphor in order to compensate for the smaller gain caused by the shorter wavelength. A thicker scintillation phosphor increases the sensitivity but also increases the point spread function, which significantly broadens the reflection profiles (Gruner et al., 2002[Gruner, S. M., Tate, M. W. & Eikenberry, E. F. (2002). Rev. Sci. Instrum. 73, 2815-2842.]), as can be seen in Fig. 2[link].

[Figure 2]
Figure 2
Reflection profiles as recorded by the scintillation phosphor for Mo Kα (left) and Ag Kα (right). 4 × 4 binning mode was used for both sources.

2.3. Data processing

Data reduction was performed with SAINT (version 7.68A; Bruker, 2009[Bruker (2009). APEX2 (Version 2.2012.2 0) and SAINT (Version 7.68A). Bruker AXS Inc., Madison, Wisconsin, USA.]) from the program package APEX2 (version 2.2012.2-0; Bruker, 2009[Bruker (2009). APEX2 (Version 2.2012.2 0) and SAINT (Version 7.68A). Bruker AXS Inc., Madison, Wisconsin, USA.]). The SAINT data reduction program uses either a predetermined or an internally derived and refined box size for the integration steps. The dimensions of this box are expected to be primarily determined by the mosaicity of the crystal, the point spread function of the detector and, where applicable, the Kα1/Kα2 splitting. As the same crystals were used with both sources, no changes in mosaicity were expected. However, in order to minimize systematic errors due to imprecise or improperly determined box sizes, the box size was always determined and refined by SAINT using a standard procedure. Data were collected up to a maximum resolution (max.) that was limited either by the scattering power of the sample or by the 2θ limit of the experimental setup. These limits are roughly 0.43 and 0.31 Å for the Mo and Ag sources, respectively, and are solely due to the different wavelengths since both sources were mounted on identical goniometers. The data for each crystal were then integrated to different resolution shells (1.00, 0.83, 0.79, 0.60, 0.43 and max. Å). This was done to facilitate the detection of resolution-dependent differences.

2.4. Scaling and `absorption' corrections

SADABS (version 2014/4) was employed for the incident beam scaling, determination of the spherical harmonic coefficients, outlier rejection and determination of the error model parameters. Additional tests were required to see if the empirical absorption correction method was a suitable treatment for the highly absorbing crystals, since the numerical correction requires well defined crystal faces. It was almost impossible to index the faces of the tiny crystals of 1 and 4 reliably, so the numerical and empirical absorption corrections were compared for the crystals of 2, 3 and 5, since these were larger than the width of the beam and had high linear absorption coefficients μ. It was anticipated that the numerical absorption correction would provide the best correction and that for the empirical correction it might be difficult to estimate the effective radius r for the additional spherical crystal correction. The validation of this correction involved a stepwise increase of the μr value, followed by a comparison of the principal mean square atomic displacements of selected atoms with the values obtained by the numerical method. Satisfactory results were achieved when r was chosen so that it is biased towards the smallest crystal dimension; e.g. for a crystal with dimensions 0.1 × 0.2 × 0.3 mm and μ = 10 mm−1, 0.07 mm would be a good value for r, giving 0.7 for μr.

2.5. Structure refinement

All the structures were solved by either Patterson or direct methods with SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). They were refined by full-matrix least squares against F2 using SHELXL-2014/3 with the help of the SHELXle graphical user interface (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]). All non-H atoms were refined with anisotropic displacement parameters (ADPs). The H atoms were set to idealized positions and refined using a riding model with their isotropic displacement parameters constrained to be 1.5 times the equivalent isotropic displacements of the atoms to which they were attached for methyl H atoms and 1.2 times for all other H atoms. The bromine/chlorine disorder in 2 was treated with EADP/EXYZ constraints in SHELXL-2014/3. In compound 6 the chlorine/bromine disorder and the rotational disorder of the tertiary butyl group attached to N1 were refined using distance and ADP restraints.

3. Results

3.1. Quality of the processed data

Table 2[link] shows the quality indicators after scaling and correction. For this table the data were truncated to the highest common resolution, but if the crystal diffracted further with Ag Kα than could be achieved with Mo Kα and the experimental geometry employed, these Ag Kα data are also reported. The data collection strategies were optimized for the wavelength in question, which resulted in only slightly longer total data collection times for Ag Kα. To some extent, the larger number of reflections recorded per frame for Ag Kα and the corresponding reduction in the number of different detector 2θ settings required compensates for the higher Mo Kα flux. To reduce the influence of the multiplicity on the quality indicators, the multiplicity-independent Rr.i.m. and Rp.i.m. (Weiss, 2001[Weiss, M. S. (2001). J. Appl. Cryst. 34, 130-135.]) are shown. Except for sample 6, which gave the weakest diffraction and would probably have benefited from a longer total data collection time with Ag Kα radiation, these R values and 〈I/σ〉 for the merged data are very comparable for the two sources for data to the same resolution. The broader reflection profile for Ag Kα (Fig. 2[link]) requires the use of slightly larger integration boxes and hence involves a larger contribution from the background noise. However, this appears to have had little influence on the data from these relatively strongly diffracting crystals.

Table 2
Data quality indicators

  Source Resolution (Å) Completeness (%) Multiplicity I/σ Rr.i.m. Rp.i.m. Exposure time Unmerged I/σ limit Reflections per second
1 Ag 0.33 97.6 13.06 27.97 0.0718 0.0181 60–120 16.4 0.18
0.43 99.4 18.93 40.02 0.0619 0.0143 18.1 0.05
0.83 99.8 12.88 45.42 0.0403 0.0113 21.3 0.04
Mo 0.43 100 15.92 39.12 0.0491 0.0120 15–90 17.0 0.02
0.83 100 14.80 40.76 0.0464 0.0125 17.8 0.07
2 Ag 0.31 99.1 18.63 81.63 0.0298 0.0061 5–60 33.6 0.23
0.43 100 25.27 112.20 0.0255 0.0051 40.1 0.17
0.83 100 34.14 196.24 0.0214 0.0045 56.5 0.13
Mo 0.43 100 33.19 125.77 0.0361 0.0071 5–60 29.1 0.09
0.83 100 30.43 127.70 0.0370 0.0084 27.6 0.04
3 Ag 0.40 99.9 14.10 48.46 0.0301 0.0072 20–120 43.9 1.06
0.44 99.9 14.87 58.00 0.0282 0.0066 49.3 0.87
0.83 100 25.96 105.23 0.0247 0.0049 44.8 0.01
Mo 0.44 99.4 10.15 45.04 0.0316 0.0086 10–60 37.1 0.49
0.83 100 15.09 81.89 0.0241 0.0062 48.1 0.02
4 Ag 0.33 83.3 13.34 61.51 0.0274 0.0059 20–60 54.9 0.11
0.43 100 25.58 112.10 0.0247 0.0050 64.7 0.10
0.83 100 21.39 194.77 0.0160 0.0038 82.5 0.16
Mo 0.43 99.7 15.73 122.91 0.0208 0.0040 20–60 66.1 0.04
0.83 100 30.71 215.43 0.0216 0.0037 56.8 0.16
5 Ag 0.79 99.8 17.49 56.22 0.0323 0.0072 10 36.1 1.28
0.83 100 18.35 60.84 0.0312 0.0068 36.4 0.92
Mo 0.79 100 11.45 63.01 0.0242 0.0067 10 44.2 0.75
0.83 100 11.92 67.22 0.0234 0.0064 44.0 0.74
6 Ag 0.79 99.5 7.51 29.94 0.0407 0.0145 30–40 34.4 0.73
0.83 99.5 7.71 33.01 0.0388 0.0136 38.0 0.68
Mo 0.79 99.8 11.56 44.49 0.0290 0.0075 30 33.6 0.80
0.83 99.8 12.43 49.87 0.0279 0.0070 34.4 0.75

Table 2[link] also shows the asymptotic limiting value of I/σ for infinite intensity (calculated by SADABS as 1/g from its error model) and the average number of reflections collected per second. This is calculated by dividing the total time required for the data collection by the number of reflections measured, which in most of the cases is higher for the Ag Kα data.

As shown in Fig. 3[link], the variations in the incident beam correction factor S(n) can be substantial, even for Ag Kα radiation. Despite this, the Rr.i.m. and Rp.i.m. values after correction (red lines in Fig. 4[link]) are low and show little systematic variation with resolution. The corresponding values for Mo Kα (blue lines in Fig. 4[link]) are similar at higher resolution but increase significantly at low resolutions, indicating that the empirical absorption correction is less effective at correcting for the even higher absorption with molybdenum radiation. The χ2 plots for the same experiments in Fig. 5[link] again show a more pronounced rise at low resolutions for the molybdenum data; however, these plots also demonstrate that the corrections have been very effective for both sources, even for this highly absorbing sample. Since the error model has not been fitted as a function of the resolution, a flat curve close to a χ2 of unity for the full resolution range is a particularly good validation of the quality of the corrected data. Convincing χ2 plots were obtained in all the analyses reported here (see supporting information1).

[Figure 3]
Figure 3
Incident beam scale factor S(n) and merging Rint as output by SADABS for the strongly absorbing crystal 2 with Ag Kα radiation. It should be noted that the smoothing algorithm for the Rint plots was changed in SADABS 2014/4 to make these plots more informative.
[Figure 4]
Figure 4
Rr.i.m. (upper curves) and Rp.i.m. (lower) after correction as a function of the resolution in ångström for Ag (red) and Mo (blue) for the strongly absorbing crystal 2. This figure was prepared with the XPREP (Bruker, 2014[Bruker (2014). XPREP (Version 2014/2) and SADABS (Version 2014/4). Bruker AXS Inc., Madison, Wisconsin, USA.]) program.
[Figure 5]
Figure 5
χ2 after applying corrections and deriving the error model for crystal 2. Ag (left) and Mo (right) radiation. χ2 = mean{N∑(I − 〈I〉)2/(N − 1)∑[s.u.2(I)]} (N equivalents).

Fig. 6[link] shows the Diederichs plot prepared using SADABS for the Ag Kα data to 0.43 Å resolution for sample 4. A limiting value greater than 30 for I/σ at infinite intensity is regarded as good for synchrotron data and is taken to indicate that the data are relatively free from systematic errors. With the exception of the highly absorbing sample 1, the values reported here are all higher than 30.

[Figure 6]
Figure 6
Diederichs plot of I/σ against log(I) for sample 4 for Ag Kα data to 0.43 Å.

The limiting I/σ values for the unmerged data are relatively constant for the same sample and do not vary much with the resolution threshold, supporting the idea that this is a robust indication of the extent of systematic error for a given crystal and experimental arrangement. On the other hand, the mean 〈I/σ〉 values for the merged data are clearly correlated with the multiplicity, which tends to decrease at the highest resolution. For the strongly absorbing sample 2, the merging R values are lower for the Ag Kα data, but the opposite is true for the less strongly absorbing sample 6. Overall the precision of the Ag Kα and Mo Kα data is comparable.

3.2. Comparison of model quality

After the full structure refinement, the R1 value calculated using all data, the wR2 value (minimized in the full-matrix least-squares refinement) and the residual electron density Δρ were compared at both the maximum resolution achieved and the standard resolution of 0.83 Å. Δρ was calculated as the difference between the highest and lowest residual density in a weighted difference Fourier map.

For crystals 2, 3 and 5 it proved possible to index the crystal faces and compare the numerical and empirical absorption corrections. However the attempts to refine the absorption coefficient μ, although this works well for conventional sealed tube sources without focusing optics, were not satisfactory. Especially for the Ag Kα data, μ refined to unreasonably small values or even to zero. This problem may be attributed to the use of highly focused beams, the Ag Kα source having the most highly focused beam. When the numerical correction is combined with lower-order spherical harmonics (even/odd orders 4/1), the merging R values and the R1 values for the SHELXL refinement (shown in Table 3[link]) were extremely similar to those obtained using no numerical correction but higher-order spherical harmonics (specified in Table 1[link]) plus a spherical crystal correction Q(μr, 2θ). In both cases the incident beam term S(n) is responsible for about half the correction. It is thus debatable whether the numerical correction is justified. In practice an effective crystal radius r for the spherical correction Q(μr, 2θ) biased towards half the smallest crystal diameter gives an adequate spherical crystal correction.

Table 3
Selected quality criteria after structure refinement

  Resolution (Å) Source R1 (all data) wR2 Δρ (e Å−3) Data/parameter R1
1 0.83 Ag 0.0133 0.0283 2.64 10.64
Mo 0.0216 0.0665 4.43 10.60
0.43 Ag 0.0219 0.0391 7.34 71.93
Mo 0.0262 0.0678 13.15 70.86
2 0.83 Ag 0.0170 0.0566 1.68 5.27 0.0166
Mo 0.0138 0.0360 1.33 5.27 0.0128
0.43 Ag 0.0201 0.0469 9.69 28.55 0.0201
Mo 0.0196 0.0451 7.07 28.45 0.0193
3 0.83 Ag 0.0080 0.0193 0.80 11.87 0.0081
Mo 0.0094 0.0215 0.98 11.91 0.0092
0.44 Ag 0.0151 0.0228 4.01 79.87 0.0151
Mo 0.0172 0.0326 5.34 79.83 0.0165
4 0.83 Ag 0.0129 0.0354 0.77 6.33
Mo 0.0157 0.0408 1.21 6.33
0.43 Ag 0.0099 0.0254 1.25 39.11
Mo 0.0121 0.0327 1.70 39.11
5 0.83 Ag 0.0193 0.0470 1.21 14.62 0.0193
Mo 0.0197 0.0491 1.34 14.52 0.0198
0.79 Ag 0.0206 0.0488 1.47 16.94 0.0205
Mo 0.0211 0.0541 1.37 16.77 0.0211
6 0.83 Ag 0.0237 0.0488 0.54 16.00
Mo 0.0252 0.0572 0.63 16.07
0.79 Ag 0.0260 0.0506 0.66 18.55
Mo 0.0278 0.0593 0.65 18.64
R1 values for the refined structure after application of a numerical absorption correction based on the measured crystal faces and the absorption coefficient μ calculated from the known unit-cell contents. The other R values in this table were obtained using the empirical correction.

For ten of the 12 combinations of crystal and resolution cutoff shown in Table 3[link], both R1 and wR2 were lower for the Ag Kα data. The residual density values show a similar trend but are not quite as decisive. The R1 and wR2 values are significantly lower for Ag (average values R1 0.0178, wR2 0.0398) than for Mo (R1 0.0197, wR2 0.0485). Thus, although the data precision (Table 2[link]) is comparable for the two sources, the Ag data are clearly more accurate (Table 3[link]). These low R factors (three of the R1 values for all data are below 1%) confirm that the empirical corrections have performed remarkably well, despite the unfavourable combination of highly focused beams and relatively high absorption.

For the refinement of structures 2 and 4 against data truncated to the standard (Acta Crystallographica) requirement of 0.83 Å, the data-to-parameter ratios are low (5.27 and 6.33, respectively). Since the scattering is dominated by the Pb and Br atoms in the case of 2, the O atoms cannot reliably be refined. However, with data to 0.43 Å the data-to-parameter ratio is 28.55 and there are no problems refining the O atoms. It should be standard practice to collect data to the highest possible resolution when both heavy and light atoms are present.

4. Conclusions

The empirical correction employed in SADABS performed remarkably well for strongly absorbing crystals despite the highly focused microsource beams, leading to very low R factors for the refined structures. While the precision of the corrected intensities was comparable for both Ag Kα and Mo Kα microsources, their accuracy was higher for the silver source because of the reduced absorption. For strongly absorbing crystals the Ag Kα microsource data were in general less affected by systematic errors than the Mo Kα data. The application of a numerical absorption correction did not improve the results. Clearly, the assumption that the crystal is completely bathed in a uniform X-ray beam is not valid for highly focused X-ray optics. However, when the empirical approach is used it is important to obtain a good estimate of the effective crystal radius for the correction term Q(μr, 2θ). An estimate of r biased towards half the smallest crystal diameter is an adequate approximation.

Supporting information


Computing details top

For all compounds, data collection: APEX2 v2012.2. Cell refinement: SAINT V7.68A for 1-(Ag), 1-(Mo), 2-(Ag), 2-(Mo), 4-(Ag), 4-(Mo), 5-(Ag), 5-(Mo), 6-(Ag), 6-(Mo); SAINT V8.30C for 3-(Ag), 3-(Mo). Data reduction: SAINT V7.68A for 1-(Ag), 1-(Mo), 2-(Ag), 2-(Mo), 4-(Ag), 4-(Mo), 5-(Ag), 5-(Mo), 6-(Ag), 6-(Mo); SAINT V8.30C for 3-(Ag), 3-(Mo). For all compounds, program(s) used to solve structure: SHELXS2012 (Sheldrick, 2012). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2014) for 1-(Ag), 1-(Mo), 3-(Ag), 3-(Mo), 4-(Ag), 4-(Mo), 5-(Ag), 5-(Mo), 6-(Ag), 6-(Mo); SHELXL2014/7 (Sheldrick, 2014) for 2-(Ag), 2-(Mo). Molecular graphics: Mercury CSD 3.3 (Build RC5) for 2-(Ag), 2-(Mo). Software used to prepare material for publication: Mercury CSD 3.3 (Build RC5) for 2-(Ag), 2-(Mo).

1-(Ag) top
Crystal data top
Pt7Sc4Si2F(000) = 1316
Mr = 1601.65Dx = 12.783 Mg m3
Orthorhombic, PbamAg Kα radiation, λ = 0.56086 Å
a = 6.462 (2) ÅCell parameters from 9935 reflections
b = 16.147 (3) Åθ = 2.7–57.2°
c = 3.988 (2) ŵ = 65.26 mm1
V = 416.1 (3) Å3T = 100 K
Z = 20.06 × 0.04 × 0.02 mm
Data collection top
Bruker Smart APEX II Quazar
diffractometer
5353 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.072
ω scansθmax = 57.8°, θmin = 2.0°
Absorption correction: multi-scan
SADABS-2014/4
h = 1819
Tmin = 0.146, Tmax = 0.331k = 4847
84931 measured reflectionsl = 1111
6207 independent reflections
Refinement top
Refinement on F241 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0096P)2 + 0.9879P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.003
S = 1.24Δρmax = 4.55 e Å3
6207 reflectionsΔρmin = 10.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt010.50000.50000.00000.00274 (1)
Pt020.09659 (2)0.42139 (2)1.00000.00290 (1)
Pt030.59273 (2)0.38255 (2)0.50000.00266 (1)
Pt040.28692 (2)0.33330 (2)1.00000.00293 (1)
Sc010.21412 (6)0.46091 (2)0.50000.00351 (4)
Sc020.97516 (6)0.29091 (2)0.50000.00361 (4)
Si10.66076 (12)0.30680 (5)1.00000.00353 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt010.00268 (2)0.00287 (2)0.00266 (3)0.00033 (2)0.0000.000
Pt020.00243 (2)0.00299 (2)0.00330 (2)0.00010 (1)0.0000.000
Pt030.00256 (2)0.00294 (2)0.00246 (2)0.00014 (1)0.0000.000
Pt040.00238 (2)0.00307 (2)0.00332 (2)0.00001 (1)0.0000.000
Sc010.00302 (9)0.00355 (9)0.00395 (10)0.00011 (7)0.0000.000
Sc020.00364 (9)0.00333 (9)0.00385 (10)0.00027 (7)0.0000.000
Si10.00361 (18)0.00386 (18)0.00313 (19)0.00025 (14)0.0000.000
Geometric parameters (Å, º) top
Pt01—Sc012.7906 (9)Pt04—Si1xi2.4046 (9)
Pt01—Sc01i2.7906 (9)Pt04—Si12.4533 (11)
Pt01—Sc01ii2.7906 (9)Pt04—Sc01ix2.9057 (8)
Pt01—Sc01iii2.7906 (9)Pt04—Sc012.9057 (8)
Pt01—Pt032.8164 (7)Pt04—Sc02viii2.9160 (9)
Pt01—Pt03i2.8164 (7)Pt04—Sc02vi2.9160 (9)
Pt01—Pt03iii2.8164 (7)Pt04—Pt03ix2.9178 (8)
Pt01—Pt03ii2.8164 (7)Pt04—Pt01ix3.0234 (5)
Pt01—Pt02iv2.8994 (7)Pt04—Sc02xii3.0786 (8)
Pt01—Pt02v2.8994 (7)Pt04—Sc02xi3.0786 (8)
Pt01—Pt04iii3.0235 (5)Sc01—Pt01ix2.7906 (9)
Pt01—Pt04ii3.0235 (5)Sc01—Pt03ii2.8191 (6)
Pt02—Si1vi2.4253 (9)Sc01—Pt02v2.8574 (8)
Pt02—Pt02vii2.8289 (5)Sc01—Pt02vii2.8574 (8)
Pt02—Sc01v2.8574 (8)Sc01—Pt02iii2.9008 (9)
Pt02—Sc01vii2.8574 (8)Sc01—Pt04iii2.9057 (8)
Pt02—Pt042.8575 (7)Sc01—Sc01v3.0416 (11)
Pt02—Pt03viii2.8983 (8)Sc01—Sc02vi3.1495 (7)
Pt02—Pt03vi2.8983 (8)Sc02—Si1xiii2.8113 (10)
Pt02—Pt01viii2.8994 (7)Sc02—Si1xiv2.8113 (10)
Pt02—Sc01ix2.9007 (9)Sc02—Si12.8582 (10)
Pt02—Sc012.9008 (9)Sc02—Si1iii2.8582 (10)
Pt02—Sc02viii2.9377 (8)Sc02—Pt03xiii2.9020 (6)
Pt02—Sc02vi2.9377 (8)Sc02—Pt04iv2.9160 (9)
Pt03—Si1iii2.3802 (9)Sc02—Pt04x2.9160 (9)
Pt03—Si12.3802 (9)Sc02—Pt02iv2.9377 (8)
Pt03—Sc012.7544 (8)Sc02—Pt02x2.9377 (8)
Pt03—Pt01ix2.8164 (8)Sc02—Pt04xiii3.0786 (8)
Pt03—Sc01ii2.8192 (6)Sc02—Pt04xiv3.0786 (8)
Pt03—Sc022.8804 (8)Si1—Pt03ix2.3802 (9)
Pt03—Pt02iv2.8983 (8)Si1—Pt04xiii2.4046 (9)
Pt03—Pt02x2.8983 (8)Si1—Pt02x2.4254 (9)
Pt03—Sc02xi2.9020 (6)Si1—Sc02xii2.8113 (10)
Pt03—Pt042.9178 (8)Si1—Sc02xi2.8113 (10)
Pt03—Pt04iii2.9178 (8)Si1—Sc02ix2.8582 (10)
Sc01—Pt01—Sc01i180.0Sc01ix—Pt04—Sc02vi121.59 (2)
Sc01—Pt01—Sc01ii88.79 (3)Sc01—Pt04—Sc02vi65.50 (2)
Sc01i—Pt01—Sc01ii91.21 (4)Sc02viii—Pt04—Sc02vi86.28 (3)
Sc01—Pt01—Sc01iii91.21 (3)Si1xi—Pt04—Pt03119.079 (15)
Sc01i—Pt01—Sc01iii88.79 (4)Si1—Pt04—Pt0351.731 (17)
Sc01ii—Pt01—Sc01iii180.000 (15)Pt02—Pt04—Pt03116.855 (15)
Sc01—Pt01—Pt0358.84 (2)Sc01ix—Pt04—Pt03112.67 (2)
Sc01i—Pt01—Pt03121.16 (2)Sc01—Pt04—Pt0356.456 (19)
Sc01ii—Pt01—Pt0360.368 (19)Sc02viii—Pt04—Pt03177.698 (8)
Sc01iii—Pt01—Pt03119.632 (19)Sc02vi—Pt04—Pt0393.70 (3)
Sc01—Pt01—Pt03i121.16 (2)Si1xi—Pt04—Pt03ix119.079 (14)
Sc01i—Pt01—Pt03i58.84 (2)Si1—Pt04—Pt03ix51.731 (17)
Sc01ii—Pt01—Pt03i119.632 (19)Pt02—Pt04—Pt03ix116.855 (15)
Sc01iii—Pt01—Pt03i60.368 (19)Sc01ix—Pt04—Pt03ix56.46 (2)
Pt03—Pt01—Pt03i180.0Sc01—Pt04—Pt03ix112.67 (2)
Sc01—Pt01—Pt03iii119.632 (19)Sc02viii—Pt04—Pt03ix93.70 (3)
Sc01i—Pt01—Pt03iii60.37 (2)Sc02vi—Pt04—Pt03ix177.698 (8)
Sc01ii—Pt01—Pt03iii121.16 (2)Pt03—Pt04—Pt03ix86.22 (3)
Sc01iii—Pt01—Pt03iii58.84 (2)Si1xi—Pt04—Pt01ix172.727 (19)
Pt03—Pt01—Pt03iii90.15 (3)Si1—Pt04—Pt01ix72.95 (2)
Pt03i—Pt01—Pt03iii89.85 (3)Pt02—Pt04—Pt01ix87.237 (18)
Sc01—Pt01—Pt03ii60.37 (2)Sc01ix—Pt04—Pt01ix56.112 (14)
Sc01i—Pt01—Pt03ii119.632 (19)Sc01—Pt04—Pt01ix56.111 (15)
Sc01ii—Pt01—Pt03ii58.84 (2)Sc02viii—Pt04—Pt01ix121.575 (12)
Sc01iii—Pt01—Pt03ii121.16 (2)Sc02vi—Pt04—Pt01ix121.575 (13)
Pt03—Pt01—Pt03ii89.85 (3)Pt03—Pt04—Pt01ix56.560 (10)
Pt03i—Pt01—Pt03ii90.15 (3)Pt03ix—Pt04—Pt01ix56.560 (10)
Pt03iii—Pt01—Pt03ii180.0Si1xi—Pt04—Sc02xii61.386 (19)
Sc01—Pt01—Pt02iv119.748 (17)Si1—Pt04—Sc02xii59.823 (16)
Sc01i—Pt01—Pt02iv60.252 (17)Pt02—Pt04—Sc02xii131.833 (14)
Sc01ii—Pt01—Pt02iv60.252 (17)Sc01ix—Pt04—Sc02xii94.67 (3)
Sc01iii—Pt01—Pt02iv119.748 (17)Sc01—Pt04—Sc02xii166.026 (12)
Pt03—Pt01—Pt02iv60.917 (9)Sc02viii—Pt04—Sc02xii71.16 (2)
Pt03i—Pt01—Pt02iv119.083 (9)Sc02vi—Pt04—Sc02xii124.259 (17)
Pt03iii—Pt01—Pt02iv60.917 (9)Pt03—Pt04—Sc02xii110.65 (2)
Pt03ii—Pt01—Pt02iv119.083 (9)Pt03ix—Pt04—Sc02xii57.813 (18)
Sc01—Pt01—Pt02v60.252 (17)Pt01ix—Pt04—Sc02xii113.581 (16)
Sc01i—Pt01—Pt02v119.748 (17)Si1xi—Pt04—Sc02xi61.386 (19)
Sc01ii—Pt01—Pt02v119.748 (17)Si1—Pt04—Sc02xi59.823 (16)
Sc01iii—Pt01—Pt02v60.252 (17)Pt02—Pt04—Sc02xi131.833 (14)
Pt03—Pt01—Pt02v119.083 (9)Sc01ix—Pt04—Sc02xi166.027 (12)
Pt03i—Pt01—Pt02v60.917 (9)Sc01—Pt04—Sc02xi94.67 (3)
Pt03iii—Pt01—Pt02v119.083 (9)Sc02viii—Pt04—Sc02xi124.260 (16)
Pt03ii—Pt01—Pt02v60.917 (9)Sc02vi—Pt04—Sc02xi71.16 (2)
Pt02iv—Pt01—Pt02v180.0Pt03—Pt04—Sc02xi57.813 (19)
Sc01—Pt01—Pt04iii59.811 (12)Pt03ix—Pt04—Sc02xi110.65 (2)
Sc01i—Pt01—Pt04iii120.190 (13)Pt01ix—Pt04—Sc02xi113.581 (16)
Sc01ii—Pt01—Pt04iii120.190 (13)Sc02xii—Pt04—Sc02xi80.74 (3)
Sc01iii—Pt01—Pt04iii59.810 (13)Pt03—Sc01—Pt0161.045 (16)
Pt03—Pt01—Pt04iii59.826 (13)Pt03—Sc01—Pt01ix61.045 (16)
Pt03i—Pt01—Pt04iii120.174 (13)Pt01—Sc01—Pt01ix91.21 (3)
Pt03iii—Pt01—Pt04iii59.826 (13)Pt03—Sc01—Pt03ii91.07 (2)
Pt03ii—Pt01—Pt04iii120.174 (13)Pt01—Sc01—Pt03ii60.269 (12)
Pt02iv—Pt01—Pt04iii91.129 (17)Pt01ix—Sc01—Pt03ii60.269 (12)
Pt02v—Pt01—Pt04iii88.871 (17)Pt03—Sc01—Pt02v122.793 (14)
Sc01—Pt01—Pt04ii120.189 (12)Pt01—Sc01—Pt02v61.76 (2)
Sc01i—Pt01—Pt04ii59.810 (13)Pt01ix—Sc01—Pt02v121.61 (2)
Sc01ii—Pt01—Pt04ii59.810 (13)Pt03ii—Sc01—Pt02v61.400 (15)
Sc01iii—Pt01—Pt04ii120.190 (13)Pt03—Sc01—Pt02vii122.793 (14)
Pt03—Pt01—Pt04ii120.174 (13)Pt01—Sc01—Pt02vii121.61 (2)
Pt03i—Pt01—Pt04ii59.826 (13)Pt01ix—Sc01—Pt02vii61.76 (2)
Pt03iii—Pt01—Pt04ii120.174 (13)Pt03ii—Sc01—Pt02vii61.400 (15)
Pt03ii—Pt01—Pt04ii59.826 (13)Pt02v—Sc01—Pt02vii88.51 (3)
Pt02iv—Pt01—Pt04ii88.871 (17)Pt03—Sc01—Pt02120.915 (17)
Pt02v—Pt01—Pt04ii91.129 (17)Pt01—Sc01—Pt02177.648 (12)
Pt04iii—Pt01—Pt04ii180.0Pt01ix—Sc01—Pt0290.96 (3)
Si1vi—Pt02—Pt02vii165.908 (19)Pt03ii—Sc01—Pt02120.244 (13)
Si1vi—Pt02—Sc01v109.610 (19)Pt02v—Sc01—Pt02116.23 (2)
Pt02vii—Pt02—Sc01v61.343 (15)Pt02vii—Sc01—Pt0258.845 (18)
Si1vi—Pt02—Sc01vii109.61 (2)Pt03—Sc01—Pt02iii120.916 (17)
Pt02vii—Pt02—Sc01vii61.343 (15)Pt01—Sc01—Pt02iii90.96 (3)
Sc01v—Pt02—Sc01vii88.51 (3)Pt01ix—Sc01—Pt02iii177.648 (12)
Si1vi—Pt02—Pt04100.42 (3)Pt03ii—Sc01—Pt02iii120.244 (13)
Pt02vii—Pt02—Pt0493.667 (17)Pt02v—Sc01—Pt02iii58.844 (18)
Sc01v—Pt02—Pt04124.166 (13)Pt02vii—Sc01—Pt02iii116.23 (2)
Sc01vii—Pt02—Pt04124.166 (13)Pt02—Sc01—Pt02iii86.85 (3)
Si1vi—Pt02—Pt03viii52.198 (16)Pt03—Sc01—Pt0461.993 (11)
Pt02vii—Pt02—Pt03viii119.993 (10)Pt01—Sc01—Pt04122.93 (2)
Sc01v—Pt02—Pt03viii116.10 (2)Pt01ix—Sc01—Pt0464.078 (19)
Sc01vii—Pt02—Pt03viii58.650 (19)Pt03ii—Sc01—Pt04124.343 (16)
Pt04—Pt02—Pt03viii119.540 (15)Pt02v—Sc01—Pt04173.500 (16)
Si1vi—Pt02—Pt03vi52.198 (16)Pt02vii—Sc01—Pt0492.05 (3)
Pt02vii—Pt02—Pt03vi119.993 (10)Pt02—Sc01—Pt0458.960 (19)
Sc01v—Pt02—Pt03vi58.650 (19)Pt02iii—Sc01—Pt04115.33 (2)
Sc01vii—Pt02—Pt03vi116.10 (2)Pt03—Sc01—Pt04iii61.993 (11)
Pt04—Pt02—Pt03vi119.540 (15)Pt01—Sc01—Pt04iii64.078 (19)
Pt03viii—Pt02—Pt03vi86.94 (3)Pt01ix—Sc01—Pt04iii122.93 (2)
Si1vi—Pt02—Pt01viii75.68 (3)Pt03ii—Sc01—Pt04iii124.343 (16)
Pt02vii—Pt02—Pt01viii90.225 (17)Pt02v—Sc01—Pt04iii92.05 (3)
Sc01v—Pt02—Pt01viii57.986 (12)Pt02vii—Sc01—Pt04iii173.500 (16)
Sc01vii—Pt02—Pt01viii57.986 (12)Pt02—Sc01—Pt04iii115.33 (2)
Pt04—Pt02—Pt01viii176.108 (4)Pt02iii—Sc01—Pt04iii58.961 (19)
Pt03viii—Pt02—Pt01viii58.127 (15)Pt04—Sc01—Pt04iii86.67 (3)
Pt03vi—Pt02—Pt01viii58.127 (15)Pt03—Sc01—Sc01v177.18 (2)
Si1vi—Pt02—Sc01ix127.973 (17)Pt01—Sc01—Sc01v120.558 (19)
Pt02vii—Pt02—Sc01ix59.812 (12)Pt01ix—Sc01—Sc01v120.558 (19)
Sc01v—Pt02—Sc01ix121.155 (18)Pt03ii—Sc01—Sc01v91.76 (2)
Sc01vii—Pt02—Sc01ix63.77 (2)Pt02v—Sc01—Sc01v58.811 (13)
Pt04—Pt02—Sc01ix60.606 (17)Pt02vii—Sc01—Sc01v58.811 (13)
Pt03viii—Pt02—Sc01ix93.10 (3)Pt02—Sc01—Sc01v57.424 (18)
Pt03vi—Pt02—Sc01ix179.792 (8)Pt02iii—Sc01—Sc01v57.423 (18)
Pt01viii—Pt02—Sc01ix121.737 (17)Pt04—Sc01—Sc01v116.209 (15)
Si1vi—Pt02—Sc01127.974 (17)Pt04iii—Sc01—Sc01v116.209 (16)
Pt02vii—Pt02—Sc0159.812 (12)Pt03—Sc01—Sc02vi92.01 (2)
Sc01v—Pt02—Sc0163.77 (2)Pt01—Sc01—Sc02vi121.447 (14)
Sc01vii—Pt02—Sc01121.155 (18)Pt01ix—Sc01—Sc02vi121.447 (14)
Pt04—Pt02—Sc0160.606 (17)Pt03ii—Sc01—Sc02vi176.921 (17)
Pt03viii—Pt02—Sc01179.792 (8)Pt02v—Sc01—Sc02vi116.704 (17)
Pt03vi—Pt02—Sc0193.10 (3)Pt02vii—Sc01—Sc02vi116.704 (17)
Pt01viii—Pt02—Sc01121.737 (17)Pt02—Sc01—Sc02vi57.922 (14)
Sc01ix—Pt02—Sc0186.85 (3)Pt02iii—Sc01—Sc02vi57.923 (13)
Si1vi—Pt02—Sc02viii63.569 (19)Pt04—Sc01—Sc02vi57.408 (15)
Pt02vii—Pt02—Sc02viii125.025 (15)Pt04iii—Sc01—Sc02vi57.407 (15)
Sc01v—Pt02—Sc02viii173.043 (12)Sc01v—Sc01—Sc02vi85.16 (2)
Sc01vii—Pt02—Sc02viii92.60 (3)Si1xiii—Sc02—Si1xiv90.35 (4)
Pt04—Pt02—Sc02viii60.403 (12)Si1xiii—Sc02—Si181.88 (3)
Pt03viii—Pt02—Sc02viii59.14 (2)Si1xiv—Sc02—Si1148.04 (2)
Pt03vi—Pt02—Sc02viii114.90 (2)Si1xiii—Sc02—Si1iii148.04 (2)
Pt01viii—Pt02—Sc02viii117.121 (11)Si1xiv—Sc02—Si1iii81.88 (3)
Sc01ix—Pt02—Sc02viii65.29 (2)Si1—Sc02—Si1iii88.48 (4)
Sc01—Pt02—Sc02viii121.00 (2)Si1xiii—Sc02—Pt03130.87 (2)
Si1vi—Pt02—Sc02vi63.569 (19)Si1xiv—Sc02—Pt03130.87 (2)
Pt02vii—Pt02—Sc02vi125.025 (15)Si1—Sc02—Pt0349.01 (2)
Sc01v—Pt02—Sc02vi92.60 (3)Si1iii—Sc02—Pt0349.01 (2)
Sc01vii—Pt02—Sc02vi173.043 (12)Si1xiii—Sc02—Pt03xiii49.209 (19)
Pt04—Pt02—Sc02vi60.403 (12)Si1xiv—Sc02—Pt03xiii49.209 (18)
Pt03viii—Pt02—Sc02vi114.90 (2)Si1—Sc02—Pt03xiii105.827 (19)
Pt03vi—Pt02—Sc02vi59.14 (2)Si1iii—Sc02—Pt03xiii105.828 (19)
Pt01viii—Pt02—Sc02vi117.121 (11)Pt03—Sc02—Pt03xiii136.088 (15)
Sc01ix—Pt02—Sc02vi121.00 (2)Si1xiii—Sc02—Pt04iv108.78 (3)
Sc01—Pt02—Sc02vi65.29 (2)Si1xiv—Sc02—Pt04iv49.61 (2)
Sc02viii—Pt02—Sc02vi85.49 (3)Si1—Sc02—Pt04iv161.27 (2)
Si1iii—Pt03—Si1113.81 (4)Si1iii—Sc02—Pt04iv89.60 (3)
Si1iii—Pt03—Sc01113.59 (2)Pt03—Sc02—Pt04iv118.175 (18)
Si1—Pt03—Sc01113.59 (2)Pt03xiii—Sc02—Pt04iv92.617 (13)
Si1iii—Pt03—Pt0178.01 (3)Si1xiii—Sc02—Pt04x49.61 (2)
Si1—Pt03—Pt01168.088 (16)Si1xiv—Sc02—Pt04x108.78 (3)
Sc01—Pt03—Pt0160.111 (10)Si1—Sc02—Pt04x89.60 (3)
Si1iii—Pt03—Pt01ix168.087 (16)Si1iii—Sc02—Pt04x161.27 (2)
Si1—Pt03—Pt01ix78.01 (3)Pt03—Sc02—Pt04x118.175 (18)
Sc01—Pt03—Pt01ix60.111 (10)Pt03xiii—Sc02—Pt04x92.617 (13)
Pt01—Pt03—Pt01ix90.15 (3)Pt04iv—Sc02—Pt04x86.28 (3)
Si1iii—Pt03—Sc01ii112.27 (2)Si1xiii—Sc02—Pt02iv162.03 (2)
Si1—Pt03—Sc01ii112.27 (2)Si1xiv—Sc02—Pt02iv89.34 (3)
Sc01—Pt03—Sc01ii88.93 (2)Si1—Sc02—Pt02iv107.27 (3)
Pt01—Pt03—Sc01ii59.363 (14)Si1iii—Sc02—Pt02iv49.45 (2)
Pt01ix—Pt03—Sc01ii59.363 (13)Pt03—Sc02—Pt02iv59.745 (12)
Si1iii—Pt03—Sc0265.01 (2)Pt03xiii—Sc02—Pt02iv137.182 (16)
Si1—Pt03—Sc0265.01 (2)Pt04iv—Sc02—Pt02iv58.437 (18)
Sc01—Pt03—Sc02176.435 (11)Pt04x—Sc02—Pt02iv113.88 (2)
Pt01—Pt03—Sc02121.902 (11)Si1xiii—Sc02—Pt02x89.34 (3)
Pt01ix—Pt03—Sc02121.902 (11)Si1xiv—Sc02—Pt02x162.03 (2)
Sc01ii—Pt03—Sc0294.63 (2)Si1—Sc02—Pt02x49.45 (2)
Si1iii—Pt03—Pt02iv53.62 (2)Si1iii—Sc02—Pt02x107.27 (3)
Si1—Pt03—Pt02iv124.03 (3)Pt03—Sc02—Pt02x59.745 (11)
Sc01—Pt03—Pt02iv121.054 (16)Pt03xiii—Sc02—Pt02x137.182 (16)
Pt01—Pt03—Pt02iv60.96 (2)Pt04iv—Sc02—Pt02x113.88 (2)
Pt01ix—Pt03—Pt02iv119.257 (18)Pt04x—Sc02—Pt02x58.437 (19)
Sc01ii—Pt03—Pt02iv59.950 (11)Pt02iv—Sc02—Pt02x85.49 (3)
Sc02—Pt03—Pt02iv61.111 (16)Si1xiii—Sc02—Pt04xiii48.97 (2)
Si1iii—Pt03—Pt02x124.03 (3)Si1xiv—Sc02—Pt04xiii105.21 (3)
Si1—Pt03—Pt02x53.62 (2)Si1—Sc02—Pt04xiii47.61 (2)
Sc01—Pt03—Pt02x121.054 (16)Si1iii—Sc02—Pt04xiii103.27 (3)
Pt01—Pt03—Pt02x119.257 (18)Pt03—Sc02—Pt04xiii89.752 (17)
Pt01ix—Pt03—Pt02x60.96 (2)Pt03xiii—Sc02—Pt04xiii58.312 (14)
Sc01ii—Pt03—Pt02x59.950 (11)Pt04iv—Sc02—Pt04xiii150.317 (16)
Sc02—Pt03—Pt02x61.111 (16)Pt04x—Sc02—Pt04xiii89.02 (3)
Pt02iv—Pt03—Pt02x86.94 (3)Pt02iv—Sc02—Pt04xiii147.617 (19)
Si1iii—Pt03—Sc02xi63.41 (2)Pt02x—Sc02—Pt04xiii88.01 (3)
Si1—Pt03—Sc02xi63.41 (2)Si1xiii—Sc02—Pt04xiv105.21 (3)
Sc01—Pt03—Sc02xi102.170 (18)Si1xiv—Sc02—Pt04xiv48.97 (2)
Pt01—Pt03—Sc02xi126.456 (13)Si1—Sc02—Pt04xiv103.27 (3)
Pt01ix—Pt03—Sc02xi126.456 (13)Si1iii—Sc02—Pt04xiv47.61 (2)
Sc01ii—Pt03—Sc02xi168.896 (12)Pt03—Sc02—Pt04xiv89.752 (17)
Sc02—Pt03—Sc02xi74.265 (16)Pt03xiii—Sc02—Pt04xiv58.312 (14)
Pt02iv—Pt03—Sc02xi112.969 (9)Pt04iv—Sc02—Pt04xiv89.02 (3)
Pt02x—Pt03—Sc02xi112.969 (9)Pt04x—Sc02—Pt04xiv150.317 (16)
Si1iii—Pt03—Pt04123.89 (3)Pt02iv—Sc02—Pt04xiv88.01 (3)
Si1—Pt03—Pt0454.02 (3)Pt02x—Sc02—Pt04xiv147.617 (19)
Sc01—Pt03—Pt0461.551 (16)Pt04xiii—Sc02—Pt04xiv80.74 (3)
Pt01—Pt03—Pt04121.55 (2)Pt03ix—Si1—Pt03113.81 (4)
Pt01ix—Pt03—Pt0463.614 (18)Pt03ix—Si1—Pt04xiii123.10 (2)
Sc01ii—Pt03—Pt04122.972 (11)Pt03—Si1—Pt04xiii123.10 (2)
Sc02—Pt03—Pt04116.172 (16)Pt03ix—Si1—Pt02x74.18 (2)
Pt02iv—Pt03—Pt04176.656 (4)Pt03—Si1—Pt02x74.18 (2)
Pt02x—Pt03—Pt0493.32 (3)Pt04xiii—Si1—Pt02x119.90 (4)
Sc02xi—Pt03—Pt0463.875 (9)Pt03ix—Si1—Pt0474.25 (2)
Si1iii—Pt03—Pt04iii54.02 (3)Pt03—Si1—Pt0474.25 (2)
Si1—Pt03—Pt04iii123.89 (3)Pt04xiii—Si1—Pt04119.86 (3)
Sc01—Pt03—Pt04iii61.551 (17)Pt02x—Si1—Pt04120.23 (3)
Pt01—Pt03—Pt04iii63.614 (19)Pt03ix—Si1—Sc02xii67.38 (3)
Pt01ix—Pt03—Pt04iii121.55 (2)Pt03—Si1—Sc02xii143.49 (4)
Sc01ii—Pt03—Pt04iii122.973 (11)Pt04xiii—Si1—Sc02xii67.46 (2)
Sc02—Pt03—Pt04iii116.171 (16)Pt02x—Si1—Sc02xii134.74 (2)
Pt02iv—Pt03—Pt04iii93.32 (3)Pt04—Si1—Sc02xii71.20 (2)
Pt02x—Pt03—Pt04iii176.655 (4)Pt03ix—Si1—Sc02xi143.49 (4)
Sc02xi—Pt03—Pt04iii63.874 (9)Pt03—Si1—Sc02xi67.38 (3)
Pt04—Pt03—Pt04iii86.22 (3)Pt04xiii—Si1—Sc02xi67.46 (2)
Si1xi—Pt04—Si199.77 (2)Pt02x—Si1—Sc02xi134.74 (2)
Si1xi—Pt04—Pt02100.04 (2)Pt04—Si1—Sc02xi71.20 (2)
Si1—Pt04—Pt02160.191 (19)Sc02xii—Si1—Sc02xi90.35 (4)
Si1xi—Pt04—Sc01ix127.750 (17)Pt03ix—Si1—Sc02ix65.98 (3)
Si1—Pt04—Sc01ix106.447 (15)Pt03—Si1—Sc02ix139.63 (3)
Pt02—Pt04—Sc01ix60.433 (12)Pt04xiii—Si1—Sc02ix71.01 (2)
Si1xi—Pt04—Sc01127.750 (17)Pt02x—Si1—Sc02ix66.98 (2)
Si1—Pt04—Sc01106.447 (15)Pt04—Si1—Sc02ix135.69 (2)
Pt02—Pt04—Sc0160.434 (11)Sc02xii—Si1—Sc02ix76.00 (3)
Sc01ix—Pt04—Sc0186.67 (3)Sc02xi—Si1—Sc02ix138.39 (3)
Si1xi—Pt04—Sc02viii62.931 (16)Pt03ix—Si1—Sc02139.63 (3)
Si1—Pt04—Sc02viii129.743 (18)Pt03—Si1—Sc0265.98 (3)
Pt02—Pt04—Sc02viii61.161 (17)Pt04xiii—Si1—Sc0271.01 (2)
Sc01ix—Pt04—Sc02viii65.50 (2)Pt02x—Si1—Sc0266.98 (2)
Sc01—Pt04—Sc02viii121.59 (2)Pt04—Si1—Sc02135.69 (2)
Si1xi—Pt04—Sc02vi62.931 (16)Sc02xii—Si1—Sc02138.39 (3)
Si1—Pt04—Sc02vi129.743 (18)Sc02xi—Si1—Sc0276.00 (3)
Pt02—Pt04—Sc02vi61.161 (17)Sc02ix—Si1—Sc0288.48 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z1; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x, y+1, z1; (vi) x1, y, z; (vii) x, y+1, z2; (viii) x1, y, z1; (ix) x, y, z1; (x) x+1, y, z; (xi) x1/2, y+1/2, z; (xii) x1/2, y+1/2, z1; (xiii) x+1/2, y+1/2, z; (xiv) x+1/2, y+1/2, z+1.
1-(Mo) top
Crystal data top
Pt7Sc4Si2F(000) = 1316
Mr = 1601.65Dx = 12.853 Mg m3
Orthorhombic, PbamMo Kα radiation, λ = 0.71073 Å
a = 6.447 (2) ÅCell parameters from 9937 reflections
b = 16.121 (3) Åθ = 2.5–55.8°
c = 3.982 (2) ŵ = 121.04 mm1
V = 413.9 (3) Å3T = 100 K
Z = 20.06 × 0.04 × 0.02 mm
Data collection top
Bruker Smart APEX II Quazar
diffractometer
2933 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.047
ω scansθmax = 56.1°, θmin = 2.5°
Absorption correction: multi-scan
SADABS-2014/4
h = 1315
Tmin = 0.040, Tmax = 0.176k = 3737
48679 measured reflectionsl = 98
2976 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0265P)2 + 6.503P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.026(Δ/σ)max = 0.001
wR(F2) = 0.068Δρmax = 8.77 e Å3
S = 1.29Δρmin = 4.38 e Å3
2976 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
42 parametersExtinction coefficient: 0.00051 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt40.59272 (2)0.38257 (2)0.50000.00442 (3)
Pt30.28687 (2)0.33332 (2)0.00000.00475 (3)
Pt10.09655 (2)0.42142 (2)0.00000.00467 (3)
Pt20.50000.50001.00000.00450 (3)
Sc20.97528 (12)0.29097 (5)0.50000.00528 (8)
Sc10.21425 (12)0.46092 (5)0.50000.00532 (9)
Si10.6605 (2)0.30686 (9)0.00000.00506 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt40.00328 (4)0.00504 (5)0.00492 (4)0.00017 (3)0.0000.000
Pt30.00314 (4)0.00531 (5)0.00580 (5)0.00005 (3)0.0000.000
Pt10.00313 (4)0.00510 (5)0.00578 (5)0.00012 (3)0.0000.000
Pt20.00332 (5)0.00505 (6)0.00514 (6)0.00038 (4)0.0000.000
Sc20.0048 (2)0.00506 (19)0.0060 (2)0.00031 (16)0.0000.000
Sc10.00358 (18)0.0064 (2)0.0060 (2)0.00005 (16)0.0000.000
Si10.0040 (4)0.0059 (4)0.0053 (4)0.0008 (3)0.0000.000
Geometric parameters (Å, º) top
Pt4—Si1i2.3759 (12)Pt2—Sc1iii2.7847 (10)
Pt4—Si12.3759 (12)Pt2—Sc1i2.7847 (10)
Pt4—Sc12.7475 (10)Pt2—Sc12.7847 (10)
Pt4—Pt22.8117 (8)Pt2—Pt4xii2.8116 (8)
Pt4—Pt2ii2.8117 (8)Pt2—Pt4iii2.8116 (8)
Pt4—Sc1iii2.8133 (9)Pt2—Pt4i2.8116 (8)
Pt4—Sc22.8746 (10)Pt2—Pt1iv2.8931 (7)
Pt4—Pt1iv2.8930 (8)Pt2—Pt1xi2.8931 (7)
Pt4—Pt1v2.8930 (8)Pt2—Pt3iii3.0181 (5)
Pt4—Sc2vi2.8982 (10)Pt2—Pt3i3.0181 (5)
Pt4—Pt32.9125 (8)Sc2—Si1xiii2.8068 (14)
Pt4—Pt3i2.9125 (8)Sc2—Si1xiv2.8068 (14)
Pt3—Si1vi2.4021 (15)Sc2—Si1i2.8543 (14)
Pt3—Si12.4465 (16)Sc2—Si12.8543 (14)
Pt3—Pt12.8509 (7)Sc2—Pt4xiii2.8983 (10)
Pt3—Sc12.9008 (9)Sc2—Pt3iv2.9096 (10)
Pt3—Sc1ii2.9009 (9)Sc2—Pt3v2.9096 (10)
Pt3—Sc2vii2.9096 (10)Sc2—Pt1iv2.9327 (9)
Pt3—Sc2viii2.9096 (10)Sc2—Pt1v2.9327 (9)
Pt3—Pt4ii2.9125 (8)Sc2—Pt3xiii3.0747 (9)
Pt3—Pt2ii3.0180 (5)Sc2—Pt3xiv3.0747 (9)
Pt3—Sc2ix3.0747 (9)Sc1—Pt2ii2.7847 (10)
Pt3—Sc2vi3.0747 (9)Sc1—Pt4iii2.8133 (9)
Pt1—Si1viii2.4213 (15)Sc1—Pt1xi2.8527 (9)
Pt1—Pt1x2.8230 (6)Sc1—Pt1x2.8527 (9)
Pt1—Sc1xi2.8527 (9)Sc1—Pt1i2.8956 (10)
Pt1—Sc1x2.8527 (9)Sc1—Pt3i2.9009 (9)
Pt1—Pt4vii2.8930 (8)Sc1—Sc1xi3.0364 (17)
Pt1—Pt4viii2.8930 (8)Sc1—Sc2viii3.1432 (12)
Pt1—Pt2vii2.8931 (8)Si1—Pt4ii2.3759 (12)
Pt1—Sc12.8956 (10)Si1—Pt3xiii2.4020 (15)
Pt1—Sc1ii2.8956 (10)Si1—Pt1v2.4214 (15)
Pt1—Sc2vii2.9327 (9)Si1—Sc2ix2.8068 (14)
Pt1—Sc2viii2.9327 (9)Si1—Sc2vi2.8068 (14)
Pt2—Sc1xii2.7847 (10)Si1—Sc2ii2.8543 (14)
Si1i—Pt4—Si1113.86 (7)Sc1—Pt2—Pt4i119.64 (2)
Si1i—Pt4—Sc1113.55 (3)Pt4xii—Pt2—Pt4i89.83 (3)
Si1—Pt4—Sc1113.55 (3)Pt4iii—Pt2—Pt4i180.0
Si1i—Pt4—Pt277.97 (4)Sc1xii—Pt2—Pt4121.20 (2)
Si1—Pt4—Pt2168.07 (3)Sc1iii—Pt2—Pt460.36 (2)
Sc1—Pt4—Pt260.109 (13)Sc1i—Pt2—Pt4119.64 (2)
Si1i—Pt4—Pt2ii168.07 (3)Sc1—Pt2—Pt458.80 (2)
Si1—Pt4—Pt2ii77.97 (4)Pt4xii—Pt2—Pt4180.0
Sc1—Pt4—Pt2ii60.109 (13)Pt4iii—Pt2—Pt489.83 (3)
Pt2—Pt4—Pt2ii90.16 (3)Pt4i—Pt2—Pt490.17 (3)
Si1i—Pt4—Sc1iii112.29 (3)Sc1xii—Pt2—Pt1iv60.28 (2)
Si1—Pt4—Sc1iii112.29 (3)Sc1iii—Pt2—Pt1iv60.28 (2)
Sc1—Pt4—Sc1iii88.88 (3)Sc1i—Pt2—Pt1iv119.72 (2)
Pt2—Pt4—Sc1iii59.348 (16)Sc1—Pt2—Pt1iv119.71 (2)
Pt2ii—Pt4—Sc1iii59.348 (16)Pt4xii—Pt2—Pt1iv119.076 (9)
Si1i—Pt4—Sc265.05 (3)Pt4iii—Pt2—Pt1iv119.076 (9)
Si1—Pt4—Sc265.05 (3)Pt4i—Pt2—Pt1iv60.924 (9)
Sc1—Pt4—Sc2176.46 (2)Pt4—Pt2—Pt1iv60.924 (10)
Pt2—Pt4—Sc2121.889 (14)Sc1xii—Pt2—Pt1xi119.72 (2)
Pt2ii—Pt4—Sc2121.889 (14)Sc1iii—Pt2—Pt1xi119.72 (2)
Sc1iii—Pt4—Sc294.66 (3)Sc1i—Pt2—Pt1xi60.28 (2)
Si1i—Pt4—Pt1iv53.63 (4)Sc1—Pt2—Pt1xi60.29 (2)
Si1—Pt4—Pt1iv124.09 (4)Pt4xii—Pt2—Pt1xi60.924 (10)
Sc1—Pt4—Pt1iv121.025 (19)Pt4iii—Pt2—Pt1xi60.924 (10)
Pt2—Pt4—Pt1iv60.93 (2)Pt4i—Pt2—Pt1xi119.076 (9)
Pt2ii—Pt4—Pt1iv119.261 (19)Pt4—Pt2—Pt1xi119.076 (9)
Sc1iii—Pt4—Pt1iv59.970 (14)Pt1iv—Pt2—Pt1xi180.0
Sc2—Pt4—Pt1iv61.124 (18)Sc1xii—Pt2—Pt3iii59.828 (18)
Si1i—Pt4—Pt1v124.09 (4)Sc1iii—Pt2—Pt3iii59.828 (18)
Si1—Pt4—Pt1v53.63 (4)Sc1i—Pt2—Pt3iii120.172 (18)
Sc1—Pt4—Pt1v121.025 (19)Sc1—Pt2—Pt3iii120.173 (18)
Pt2—Pt4—Pt1v119.261 (19)Pt4xii—Pt2—Pt3iii59.821 (12)
Pt2ii—Pt4—Pt1v60.93 (2)Pt4iii—Pt2—Pt3iii59.821 (13)
Sc1iii—Pt4—Pt1v59.970 (14)Pt4i—Pt2—Pt3iii120.179 (13)
Sc2—Pt4—Pt1v61.124 (18)Pt4—Pt2—Pt3iii120.179 (13)
Pt1iv—Pt4—Pt1v86.98 (3)Pt1iv—Pt2—Pt3iii88.886 (18)
Si1i—Pt4—Sc2vi63.40 (3)Pt1xi—Pt2—Pt3iii91.114 (17)
Si1—Pt4—Sc2vi63.40 (3)Sc1xii—Pt2—Pt3i120.172 (18)
Sc1—Pt4—Sc2vi102.23 (3)Sc1iii—Pt2—Pt3i120.172 (18)
Pt2—Pt4—Sc2vi126.470 (15)Sc1i—Pt2—Pt3i59.828 (18)
Pt2ii—Pt4—Sc2vi126.470 (15)Sc1—Pt2—Pt3i59.827 (18)
Sc1iii—Pt4—Sc2vi168.89 (2)Pt4xii—Pt2—Pt3i120.179 (13)
Sc2—Pt4—Sc2vi74.234 (19)Pt4iii—Pt2—Pt3i120.179 (13)
Pt1iv—Pt4—Sc2vi112.946 (13)Pt4i—Pt2—Pt3i59.821 (12)
Pt1v—Pt4—Sc2vi112.946 (13)Pt4—Pt2—Pt3i59.821 (13)
Si1i—Pt4—Pt3123.88 (4)Pt1iv—Pt2—Pt3i91.114 (17)
Si1—Pt4—Pt353.96 (4)Pt1xi—Pt2—Pt3i88.886 (17)
Sc1—Pt4—Pt361.582 (19)Pt3iii—Pt2—Pt3i180.0
Pt2—Pt4—Pt3121.58 (2)Si1xiii—Sc2—Si1xiv90.36 (6)
Pt2ii—Pt4—Pt363.611 (19)Si1xiii—Sc2—Si1i147.97 (4)
Sc1iii—Pt4—Pt3122.953 (14)Si1xiv—Sc2—Si1i81.84 (4)
Sc2—Pt4—Pt3116.157 (19)Si1xiii—Sc2—Si181.84 (4)
Pt1iv—Pt4—Pt3176.655 (7)Si1xiv—Sc2—Si1147.97 (4)
Pt1v—Pt4—Pt393.29 (3)Si1i—Sc2—Si188.46 (6)
Sc2vi—Pt4—Pt363.896 (13)Si1xiii—Sc2—Pt4130.82 (3)
Si1i—Pt4—Pt3i53.96 (4)Si1xiv—Sc2—Pt4130.82 (3)
Si1—Pt4—Pt3i123.88 (4)Si1i—Sc2—Pt449.00 (3)
Sc1—Pt4—Pt3i61.583 (19)Si1—Sc2—Pt449.00 (3)
Pt2—Pt4—Pt3i63.612 (19)Si1xiii—Sc2—Pt4xiii49.19 (3)
Pt2ii—Pt4—Pt3i121.58 (2)Si1xiv—Sc2—Pt4xiii49.19 (3)
Sc1iii—Pt4—Pt3i122.954 (14)Si1i—Sc2—Pt4xiii105.80 (4)
Sc2—Pt4—Pt3i116.157 (19)Si1—Sc2—Pt4xiii105.80 (4)
Pt1iv—Pt4—Pt3i93.29 (3)Pt4—Sc2—Pt4xiii136.05 (3)
Pt1v—Pt4—Pt3i176.653 (7)Si1xiii—Sc2—Pt3iv108.87 (4)
Sc2vi—Pt4—Pt3i63.895 (13)Si1xiv—Sc2—Pt3iv49.66 (3)
Pt3—Pt4—Pt3i86.25 (3)Si1i—Sc2—Pt3iv89.57 (4)
Si1vi—Pt3—Si199.78 (4)Si1—Sc2—Pt3iv161.28 (4)
Si1vi—Pt3—Pt1100.06 (4)Pt4—Sc2—Pt3iv118.16 (3)
Si1—Pt3—Pt1160.16 (4)Pt4xiii—Sc2—Pt3iv92.64 (2)
Si1vi—Pt3—Sc1127.76 (3)Si1xiii—Sc2—Pt3v49.66 (3)
Si1—Pt3—Sc1106.41 (3)Si1xiv—Sc2—Pt3v108.87 (4)
Pt1—Pt3—Sc160.448 (17)Si1i—Sc2—Pt3v161.28 (4)
Si1vi—Pt3—Sc1ii127.76 (3)Si1—Sc2—Pt3v89.57 (4)
Si1—Pt3—Sc1ii106.41 (3)Pt4—Sc2—Pt3v118.16 (3)
Pt1—Pt3—Sc1ii60.448 (17)Pt4xiii—Sc2—Pt3v92.64 (2)
Sc1—Pt3—Sc1ii86.68 (4)Pt3iv—Sc2—Pt3v86.36 (4)
Si1vi—Pt3—Sc2vii62.95 (3)Si1xiii—Sc2—Pt1iv162.12 (4)
Si1—Pt3—Sc2vii129.71 (3)Si1xiv—Sc2—Pt1iv89.34 (4)
Pt1—Pt3—Sc2vii61.20 (2)Si1i—Sc2—Pt1iv49.45 (3)
Sc1—Pt3—Sc2vii121.64 (3)Si1—Sc2—Pt1iv107.28 (4)
Sc1ii—Pt3—Sc2vii65.50 (3)Pt4—Sc2—Pt1iv59.747 (17)
Si1vi—Pt3—Sc2viii62.95 (3)Pt4xiii—Sc2—Pt1iv137.173 (18)
Si1—Pt3—Sc2viii129.71 (3)Pt3iv—Sc2—Pt1iv58.41 (2)
Pt1—Pt3—Sc2viii61.20 (2)Pt3v—Sc2—Pt1iv113.91 (3)
Sc1—Pt3—Sc2viii65.50 (3)Si1xiii—Sc2—Pt1v89.34 (4)
Sc1ii—Pt3—Sc2viii121.64 (3)Si1xiv—Sc2—Pt1v162.12 (4)
Sc2vii—Pt3—Sc2viii86.36 (4)Si1i—Sc2—Pt1v107.27 (4)
Si1vi—Pt3—Pt4119.08 (2)Si1—Sc2—Pt1v49.45 (3)
Si1—Pt3—Pt451.75 (2)Pt4—Sc2—Pt1v59.747 (17)
Pt1—Pt3—Pt4116.822 (16)Pt4xiii—Sc2—Pt1v137.173 (18)
Sc1—Pt3—Pt456.41 (2)Pt3iv—Sc2—Pt1v113.91 (3)
Sc1ii—Pt3—Pt4112.65 (2)Pt3v—Sc2—Pt1v58.41 (2)
Sc2vii—Pt3—Pt4177.692 (17)Pt1iv—Sc2—Pt1v85.51 (4)
Sc2viii—Pt3—Pt493.65 (3)Si1xiii—Sc2—Pt3xiii48.90 (3)
Si1vi—Pt3—Pt4ii119.08 (2)Si1xiv—Sc2—Pt3xiii105.15 (4)
Si1—Pt3—Pt4ii51.75 (2)Si1i—Sc2—Pt3xiii103.26 (4)
Pt1—Pt3—Pt4ii116.821 (16)Si1—Sc2—Pt3xiii47.62 (3)
Sc1—Pt3—Pt4ii112.65 (2)Pt4—Sc2—Pt3xiii89.76 (2)
Sc1ii—Pt3—Pt4ii56.41 (2)Pt4xiii—Sc2—Pt3xiii58.278 (18)
Sc2vii—Pt3—Pt4ii93.65 (3)Pt3iv—Sc2—Pt3xiii150.31 (3)
Sc2viii—Pt3—Pt4ii177.691 (17)Pt3v—Sc2—Pt3xiii89.00 (3)
Pt4—Pt3—Pt4ii86.25 (3)Pt1iv—Sc2—Pt3xiii147.62 (3)
Si1vi—Pt3—Pt2ii172.74 (3)Pt1v—Sc2—Pt3xiii88.01 (3)
Si1—Pt3—Pt2ii72.96 (4)Si1xiii—Sc2—Pt3xiv105.15 (4)
Pt1—Pt3—Pt2ii87.203 (18)Si1xiv—Sc2—Pt3xiv48.90 (3)
Sc1—Pt3—Pt2ii56.089 (19)Si1i—Sc2—Pt3xiv47.62 (3)
Sc1ii—Pt3—Pt2ii56.088 (19)Si1—Sc2—Pt3xiv103.26 (4)
Sc2vii—Pt3—Pt2ii121.550 (17)Pt4—Sc2—Pt3xiv89.76 (2)
Sc2viii—Pt3—Pt2ii121.550 (18)Pt4xiii—Sc2—Pt3xiv58.278 (18)
Pt4—Pt3—Pt2ii56.568 (11)Pt3iv—Sc2—Pt3xiv89.00 (3)
Pt4ii—Pt3—Pt2ii56.568 (11)Pt3v—Sc2—Pt3xiv150.31 (3)
Si1vi—Pt3—Sc2ix61.37 (3)Pt1iv—Sc2—Pt3xiv88.01 (3)
Si1—Pt3—Sc2ix59.83 (3)Pt1v—Sc2—Pt3xiv147.62 (3)
Pt1—Pt3—Sc2ix131.849 (17)Pt3xiii—Sc2—Pt3xiv80.71 (4)
Sc1—Pt3—Sc2ix166.00 (2)Pt4—Sc1—Pt261.09 (2)
Sc1ii—Pt3—Sc2ix94.67 (3)Pt4—Sc1—Pt2ii61.09 (2)
Sc2vii—Pt3—Sc2ix71.14 (3)Pt2—Sc1—Pt2ii91.28 (4)
Sc2viii—Pt3—Sc2ix124.261 (19)Pt4—Sc1—Pt4iii91.12 (3)
Pt4—Pt3—Sc2ix110.66 (3)Pt2—Sc1—Pt4iii60.296 (18)
Pt4ii—Pt3—Sc2ix57.83 (2)Pt2ii—Sc1—Pt4iii60.296 (18)
Pt2ii—Pt3—Sc2ix113.60 (2)Pt4—Sc1—Pt1xi122.81 (2)
Si1vi—Pt3—Sc2vi61.37 (3)Pt2—Sc1—Pt1xi61.74 (2)
Si1—Pt3—Sc2vi59.83 (3)Pt2ii—Sc1—Pt1xi121.64 (3)
Pt1—Pt3—Sc2vi131.849 (17)Pt4iii—Sc1—Pt1xi61.40 (2)
Sc1—Pt3—Sc2vi94.67 (3)Pt4—Sc1—Pt1x122.81 (2)
Sc1ii—Pt3—Sc2vi166.00 (2)Pt2—Sc1—Pt1x121.64 (3)
Sc2vii—Pt3—Sc2vi124.261 (19)Pt2ii—Sc1—Pt1x61.74 (2)
Sc2viii—Pt3—Sc2vi71.14 (3)Pt4iii—Sc1—Pt1x61.40 (2)
Pt4—Pt3—Sc2vi57.83 (2)Pt1xi—Sc1—Pt1x88.52 (4)
Pt4ii—Pt3—Sc2vi110.66 (3)Pt4—Sc1—Pt1120.89 (2)
Pt2ii—Pt3—Sc2vi113.60 (2)Pt2—Sc1—Pt1177.63 (2)
Sc2ix—Pt3—Sc2vi80.71 (4)Pt2ii—Sc1—Pt190.91 (3)
Si1viii—Pt1—Pt1x165.87 (4)Pt4iii—Sc1—Pt1120.22 (2)
Si1viii—Pt1—Pt3100.42 (4)Pt1xi—Sc1—Pt1116.23 (3)
Pt1x—Pt1—Pt393.713 (19)Pt1x—Sc1—Pt158.82 (2)
Si1viii—Pt1—Sc1xi109.58 (3)Pt4—Sc1—Pt1i120.89 (3)
Pt1x—Pt1—Sc1xi61.35 (2)Pt2—Sc1—Pt1i90.91 (3)
Pt3—Pt1—Sc1xi124.188 (18)Pt2ii—Sc1—Pt1i177.63 (2)
Si1viii—Pt1—Sc1x109.58 (3)Pt4iii—Sc1—Pt1i120.22 (2)
Pt1x—Pt1—Sc1x61.35 (2)Pt1xi—Sc1—Pt1i58.82 (2)
Pt3—Pt1—Sc1x124.188 (18)Pt1x—Sc1—Pt1i116.23 (3)
Sc1xi—Pt1—Sc1x88.52 (4)Pt1—Sc1—Pt1i86.88 (4)
Si1viii—Pt1—Pt4vii52.20 (2)Pt4—Sc1—Pt362.009 (17)
Pt1x—Pt1—Pt4vii119.978 (11)Pt2—Sc1—Pt3122.98 (3)
Pt3—Pt1—Pt4vii119.509 (16)Pt2ii—Sc1—Pt364.08 (2)
Sc1xi—Pt1—Pt4vii116.11 (3)Pt4iii—Sc1—Pt3124.37 (2)
Sc1x—Pt1—Pt4vii58.63 (2)Pt1xi—Sc1—Pt3173.46 (3)
Si1viii—Pt1—Pt4viii52.20 (2)Pt1x—Sc1—Pt392.03 (3)
Pt1x—Pt1—Pt4viii119.978 (11)Pt1—Sc1—Pt358.92 (2)
Pt3—Pt1—Pt4viii119.509 (16)Pt1i—Sc1—Pt3115.32 (3)
Sc1xi—Pt1—Pt4viii58.63 (2)Pt4—Sc1—Pt3i62.008 (17)
Sc1x—Pt1—Pt4viii116.11 (3)Pt2—Sc1—Pt3i64.08 (2)
Pt4vii—Pt1—Pt4viii86.98 (3)Pt2ii—Sc1—Pt3i122.98 (3)
Si1viii—Pt1—Pt2vii75.67 (4)Pt4iii—Sc1—Pt3i124.38 (2)
Pt1x—Pt1—Pt2vii90.199 (18)Pt1xi—Sc1—Pt3i92.03 (3)
Pt3—Pt1—Pt2vii176.088 (7)Pt1x—Sc1—Pt3i173.46 (3)
Sc1xi—Pt1—Pt2vii57.974 (17)Pt1—Sc1—Pt3i115.32 (3)
Sc1x—Pt1—Pt2vii57.974 (17)Pt1i—Sc1—Pt3i58.92 (2)
Pt4vii—Pt1—Pt2vii58.146 (16)Pt3—Sc1—Pt3i86.68 (4)
Pt4viii—Pt1—Pt2vii58.146 (16)Pt4—Sc1—Sc1xi177.15 (5)
Si1viii—Pt1—Sc1127.97 (3)Pt2—Sc1—Sc1xi120.53 (3)
Pt1x—Pt1—Sc159.831 (18)Pt2ii—Sc1—Sc1xi120.53 (3)
Pt3—Pt1—Sc160.63 (2)Pt4iii—Sc1—Sc1xi91.74 (4)
Sc1xi—Pt1—Sc163.77 (3)Pt1xi—Sc1—Sc1xi58.81 (2)
Sc1x—Pt1—Sc1121.181 (19)Pt1x—Sc1—Sc1xi58.81 (2)
Pt4vii—Pt1—Sc1179.798 (17)Pt1—Sc1—Sc1xi57.43 (2)
Pt4viii—Pt1—Sc193.07 (3)Pt1i—Sc1—Sc1xi57.43 (2)
Pt2vii—Pt1—Sc1121.72 (2)Pt3—Sc1—Sc1xi116.17 (3)
Si1viii—Pt1—Sc1ii127.97 (2)Pt3i—Sc1—Sc1xi116.17 (3)
Pt1x—Pt1—Sc1ii59.830 (18)Pt4—Sc1—Sc2viii91.98 (3)
Pt3—Pt1—Sc1ii60.63 (2)Pt2—Sc1—Sc2viii121.43 (2)
Sc1xi—Pt1—Sc1ii121.18 (2)Pt2ii—Sc1—Sc2viii121.43 (2)
Sc1x—Pt1—Sc1ii63.76 (3)Pt4iii—Sc1—Sc2viii176.90 (3)
Pt4vii—Pt1—Sc1ii93.07 (3)Pt1xi—Sc1—Sc2viii116.69 (3)
Pt4viii—Pt1—Sc1ii179.797 (17)Pt1x—Sc1—Sc2viii116.69 (3)
Pt2vii—Pt1—Sc1ii121.72 (2)Pt1—Sc1—Sc2viii57.94 (2)
Sc1—Pt1—Sc1ii86.88 (4)Pt1i—Sc1—Sc2viii57.94 (2)
Si1viii—Pt1—Sc2vii63.59 (3)Pt3—Sc1—Sc2viii57.38 (2)
Pt1x—Pt1—Sc2vii125.02 (2)Pt3i—Sc1—Sc2viii57.38 (2)
Pt3—Pt1—Sc2vii60.387 (17)Sc1xi—Sc1—Sc2viii85.17 (4)
Sc1xi—Pt1—Sc2vii173.03 (2)Pt4—Si1—Pt4ii113.86 (7)
Sc1x—Pt1—Sc2vii92.58 (3)Pt4—Si1—Pt3xiii123.07 (3)
Pt4vii—Pt1—Sc2vii59.13 (2)Pt4ii—Si1—Pt3xiii123.07 (3)
Pt4viii—Pt1—Sc2vii114.92 (2)Pt4—Si1—Pt1v74.17 (4)
Pt2vii—Pt1—Sc2vii117.126 (17)Pt4ii—Si1—Pt1v74.17 (4)
Sc1—Pt1—Sc2vii121.01 (3)Pt3xiii—Si1—Pt1v119.88 (6)
Sc1ii—Pt1—Sc2vii65.27 (3)Pt4—Si1—Pt374.29 (4)
Si1viii—Pt1—Sc2viii63.59 (3)Pt4ii—Si1—Pt374.29 (4)
Pt1x—Pt1—Sc2viii125.02 (2)Pt3xiii—Si1—Pt3119.86 (6)
Pt3—Pt1—Sc2viii60.387 (17)Pt1v—Si1—Pt3120.26 (6)
Sc1xi—Pt1—Sc2viii92.58 (3)Pt4—Si1—Sc2ix143.59 (6)
Sc1x—Pt1—Sc2viii173.03 (2)Pt4ii—Si1—Sc2ix67.41 (3)
Pt4vii—Pt1—Sc2viii114.92 (2)Pt3xiii—Si1—Sc2ix67.40 (4)
Pt4viii—Pt1—Sc2viii59.13 (2)Pt1v—Si1—Sc2ix134.73 (3)
Pt2vii—Pt1—Sc2viii117.126 (17)Pt3—Si1—Sc2ix71.27 (4)
Sc1—Pt1—Sc2viii65.27 (3)Pt4—Si1—Sc2vi67.41 (3)
Sc1ii—Pt1—Sc2viii121.01 (3)Pt4ii—Si1—Sc2vi143.59 (6)
Sc2vii—Pt1—Sc2viii85.51 (4)Pt3xiii—Si1—Sc2vi67.40 (4)
Sc1xii—Pt2—Sc1iii91.28 (4)Pt1v—Si1—Sc2vi134.73 (3)
Sc1xii—Pt2—Sc1i88.72 (4)Pt3—Si1—Sc2vi71.27 (4)
Sc1iii—Pt2—Sc1i180.00 (3)Sc2ix—Si1—Sc2vi90.37 (6)
Sc1xii—Pt2—Sc1180.0Pt4—Si1—Sc265.94 (3)
Sc1iii—Pt2—Sc188.72 (4)Pt4ii—Si1—Sc2139.59 (6)
Sc1i—Pt2—Sc191.28 (4)Pt3xiii—Si1—Sc271.01 (4)
Sc1xii—Pt2—Pt4xii58.80 (2)Pt1v—Si1—Sc266.96 (4)
Sc1iii—Pt2—Pt4xii119.64 (2)Pt3—Si1—Sc2135.70 (3)
Sc1i—Pt2—Pt4xii60.36 (2)Sc2ix—Si1—Sc2138.32 (6)
Sc1—Pt2—Pt4xii121.20 (2)Sc2vi—Si1—Sc275.95 (3)
Sc1xii—Pt2—Pt4iii119.64 (2)Pt4—Si1—Sc2ii139.59 (6)
Sc1iii—Pt2—Pt4iii58.80 (2)Pt4ii—Si1—Sc2ii65.95 (3)
Sc1i—Pt2—Pt4iii121.20 (2)Pt3xiii—Si1—Sc2ii71.01 (4)
Sc1—Pt2—Pt4iii60.36 (2)Pt1v—Si1—Sc2ii66.96 (4)
Pt4xii—Pt2—Pt4iii90.17 (3)Pt3—Si1—Sc2ii135.70 (3)
Sc1xii—Pt2—Pt4i60.36 (2)Sc2ix—Si1—Sc2ii75.95 (3)
Sc1iii—Pt2—Pt4i121.20 (3)Sc2vi—Si1—Sc2ii138.32 (6)
Sc1i—Pt2—Pt4i58.80 (2)Sc2—Si1—Sc2ii88.46 (6)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x1/2, y+1/2, z; (vii) x1, y, z1; (viii) x1, y, z; (ix) x1/2, y+1/2, z1; (x) x, y+1, z; (xi) x, y+1, z+1; (xii) x+1, y+1, z+2; (xiii) x+1/2, y+1/2, z; (xiv) x+1/2, y+1/2, z+1.
2-(Ag) top
Crystal data top
Br0.09Cl0.91Cu6O8PbAg Kα radiation, λ = 0.56086 Å
Mr = 755.76Cell parameters from 9932 reflections
Cubic, Fm3mθ = 3.0–65.3°
a = 9.216 (2) ŵ = 20.48 mm1
V = 782.8 (5) Å3T = 100 K
Z = 4Block, black
F(000) = 13540.12 × 0.11 × 0.09 mm
Dx = 6.413 Mg m3
Data collection top
Bruker Smart APEX II Quazar
diffractometer
770 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.029
ω scansθmax = 65.9°, θmin = 3.0°
Absorption correction: multi-scan
SADABS-2014/4
h = 2918
Tmin = 0.194, Tmax = 0.315k = 1827
14473 measured reflectionsl = 2929
770 independent reflections
Refinement top
Refinement on F210 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0381P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max < 0.001
S = 1.20Δρmax = 14.02 e Å3
770 reflectionsΔρmin = 7.01 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.00000.00000.00000.00270 (2)
Cu10.25000.25000.00000.00337 (2)
O10.14257 (5)0.14257 (5)0.14257 (5)0.00422 (6)
Cl10.00000.50000.00000.0142 (3)0.911 (12)
Br10.00000.50000.00000.0142 (3)0.089 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.00270 (2)0.00270 (2)0.00270 (2)0.0000.0000.000
Cu10.00351 (3)0.00351 (3)0.00308 (3)0.00080 (2)0.0000.000
O10.00422 (6)0.00422 (6)0.00422 (6)0.00014 (6)0.00014 (6)0.00014 (6)
Cl10.0142 (3)0.0142 (3)0.0142 (3)0.0000.0000.000
Br10.0142 (3)0.0142 (3)0.0142 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Pb1—O12.2758 (9)Pb1—Cu1x3.2583 (7)
Pb1—O1i2.2758 (9)Pb1—Cu1xi3.2583 (7)
Pb1—O1ii2.2758 (9)Cu1—O1vi1.9201 (4)
Pb1—O1iii2.2758 (9)Cu1—O1xii1.9201 (4)
Pb1—O1iv2.2758 (9)Cu1—O1xiii1.9201 (4)
Pb1—O1v2.2758 (9)Cu1—O11.9201 (4)
Pb1—O1vi2.2758 (9)Cu1—Pb1xiv3.2583 (7)
Pb1—O1vii2.2758 (9)O1—Cu1x1.9201 (4)
Pb1—Cu1viii3.2583 (7)O1—Cu1ix1.9201 (4)
Pb1—Cu1ix3.2583 (7)
O1—Pb1—O1i180.00 (4)Cu1viii—Pb1—Cu1ix120.0
O1—Pb1—O1ii70.5O1—Pb1—Cu1x35.3
O1i—Pb1—O1ii109.5O1i—Pb1—Cu1x144.7
O1—Pb1—O1iii109.5O1ii—Pb1—Cu1x90.0
O1i—Pb1—O1iii70.5O1iii—Pb1—Cu1x90.0
O1ii—Pb1—O1iii180.000 (18)O1iv—Pb1—Cu1x35.3
O1—Pb1—O1iv70.5O1v—Pb1—Cu1x144.7
O1i—Pb1—O1iv109.5O1vi—Pb1—Cu1x90.0
O1ii—Pb1—O1iv109.5O1vii—Pb1—Cu1x90.0
O1iii—Pb1—O1iv70.5Cu1viii—Pb1—Cu1x120.0
O1—Pb1—O1v109.5Cu1ix—Pb1—Cu1x60.0
O1i—Pb1—O1v70.5O1—Pb1—Cu1xi144.7
O1ii—Pb1—O1v70.5O1i—Pb1—Cu1xi35.3
O1iii—Pb1—O1v109.5O1ii—Pb1—Cu1xi90.0
O1iv—Pb1—O1v180.000 (18)O1iii—Pb1—Cu1xi90.0
O1—Pb1—O1vi70.5O1iv—Pb1—Cu1xi144.7
O1i—Pb1—O1vi109.5O1v—Pb1—Cu1xi35.3
O1ii—Pb1—O1vi109.5O1vi—Pb1—Cu1xi90.0
O1iii—Pb1—O1vi70.5O1vii—Pb1—Cu1xi90.0
O1iv—Pb1—O1vi109.5Cu1viii—Pb1—Cu1xi60.0
O1v—Pb1—O1vi70.5Cu1ix—Pb1—Cu1xi120.0
O1—Pb1—O1vii109.5Cu1x—Pb1—Cu1xi180.0
O1i—Pb1—O1vii70.529 (1)O1vi—Cu1—O1xii180.0
O1ii—Pb1—O1vii70.5O1vi—Cu1—O1xiii93.64 (4)
O1iii—Pb1—O1vii109.5O1xii—Cu1—O1xiii86.36 (4)
O1iv—Pb1—O1vii70.5O1vi—Cu1—O186.36 (4)
O1v—Pb1—O1vii109.5O1xii—Cu1—O193.64 (4)
O1vi—Pb1—O1vii180.00 (4)O1xiii—Cu1—O1180.0
O1—Pb1—Cu1viii144.7O1vi—Cu1—Pb143.18 (2)
O1i—Pb1—Cu1viii35.3O1xii—Cu1—Pb1136.82 (2)
O1ii—Pb1—Cu1viii90.0O1xiii—Cu1—Pb1136.82 (2)
O1iii—Pb1—Cu1viii90.0O1—Cu1—Pb143.18 (2)
O1iv—Pb1—Cu1viii90.0O1vi—Cu1—Pb1xiv136.82 (2)
O1v—Pb1—Cu1viii90.0O1xii—Cu1—Pb1xiv43.18 (2)
O1vi—Pb1—Cu1viii144.7O1xiii—Cu1—Pb1xiv43.18 (2)
O1vii—Pb1—Cu1viii35.3O1—Cu1—Pb1xiv136.82 (2)
O1—Pb1—Cu1ix35.3Pb1—Cu1—Pb1xiv180.0
O1i—Pb1—Cu1ix144.7Cu1x—O1—Cu1116.091 (14)
O1ii—Pb1—Cu1ix35.3Cu1x—O1—Cu1ix116.091 (14)
O1iii—Pb1—Cu1ix144.7Cu1—O1—Cu1ix116.091 (14)
O1iv—Pb1—Cu1ix90.0Cu1x—O1—Pb1101.56 (2)
O1v—Pb1—Cu1ix90.0Cu1—O1—Pb1101.56 (2)
O1vi—Pb1—Cu1ix90.0Cu1ix—O1—Pb1101.56 (2)
O1vii—Pb1—Cu1ix90.0
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z; (iv) x, y, z; (v) x, y, z; (vi) x, y, z; (vii) x, y, z; (viii) x1/2, y1/2, z; (ix) z, x, y; (x) y, z, x; (xi) y1/2, z, x1/2; (xii) x+1/2, y+1/2, z; (xiii) x+1/2, y+1/2, z; (xiv) x+1/2, y+1/2, z.
2-(Mo) top
Crystal data top
Br0.10Cl0.90Cu6O8PbMo Kα radiation, λ = 0.71073 Å
Mr = 756.41Cell parameters from 9919 reflections
Cubic, Fm3mθ = 3.8–55.7°
a = 9.2164 (2) ŵ = 38.25 mm1
V = 782.86 (5) Å3T = 100 K
Z = 4Block, black
F(000) = 13550.12 × 0.11 × 0.09 mm
Dx = 6.418 Mg m3
Data collection top
Bruker Smart APEX II Quazar
diffractometer
313 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.035
ω scansθmax = 55.7°, θmin = 3.8°
Absorption correction: multi-scan
SADABS-2014/4
h = 2020
Tmin = 0.062, Tmax = 0.158k = 2119
10388 measured reflectionsl = 2020
313 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0319P)2 + 1.8322P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max < 0.001
wR(F2) = 0.045Δρmax = 4.40 e Å3
S = 1.22Δρmin = 2.67 e Å3
313 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
11 parametersExtinction coefficient: 0.00051 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.50000.00000.50000.00397 (5)
Cu10.50000.25000.25000.00419 (7)
O10.35715 (9)0.14285 (9)0.35715 (9)0.00493 (14)
Cl10.50000.50000.50000.0151 (4)0.897 (12)
Br10.50000.50000.50000.0151 (4)0.103 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.00397 (5)0.00397 (5)0.00397 (5)0.0000.0000.000
Cu10.00387 (8)0.00436 (7)0.00436 (7)0.0000.0000.00092 (5)
O10.00493 (14)0.00493 (14)0.00493 (14)0.00010 (18)0.00010 (18)0.00010 (18)
Cl10.0151 (4)0.0151 (4)0.0151 (4)0.0000.0000.000
Br10.0151 (4)0.0151 (4)0.0151 (4)0.0000.0000.000
Geometric parameters (Å, º) top
Pb1—O1i2.2804 (15)Pb1—Cu1ix3.2585 (1)
Pb1—O1ii2.2804 (15)Pb1—Cu1x3.2585 (1)
Pb1—O1iii2.2804 (15)Cu1—O11.9193 (3)
Pb1—O1iv2.2804 (15)Cu1—O1iii1.9193 (3)
Pb1—O1v2.2804 (15)Cu1—O1xi1.9193 (3)
Pb1—O1vi2.2804 (15)Cu1—O1xii1.9193 (3)
Pb1—O1vii2.2804 (15)Cu1—Pb1xiii3.2585 (1)
Pb1—O12.2804 (15)O1—Cu1ix1.9193 (3)
Pb1—Cu1vi3.2585 (1)O1—Cu1xiv1.9193 (3)
Pb1—Cu1viii3.2585 (1)
O1i—Pb1—O1ii180.00 (3)Cu1vi—Pb1—Cu1viii120.0
O1i—Pb1—O1iii109.5O1i—Pb1—Cu1ix35.3
O1ii—Pb1—O1iii70.5O1ii—Pb1—Cu1ix144.7
O1i—Pb1—O1iv70.5O1iii—Pb1—Cu1ix90.0
O1ii—Pb1—O1iv109.5O1iv—Pb1—Cu1ix90.0
O1iii—Pb1—O1iv180.0O1v—Pb1—Cu1ix90.0
O1i—Pb1—O1v109.5O1vi—Pb1—Cu1ix90.0
O1ii—Pb1—O1v70.5O1vii—Pb1—Cu1ix144.7
O1iii—Pb1—O1v109.5O1—Pb1—Cu1ix35.3
O1iv—Pb1—O1v70.5Cu1vi—Pb1—Cu1ix60.0
O1i—Pb1—O1vi70.5Cu1viii—Pb1—Cu1ix180.0
O1ii—Pb1—O1vi109.5O1i—Pb1—Cu1x144.7
O1iii—Pb1—O1vi70.5O1ii—Pb1—Cu1x35.3
O1iv—Pb1—O1vi109.5O1iii—Pb1—Cu1x90.0
O1v—Pb1—O1vi180.0O1iv—Pb1—Cu1x90.0
O1i—Pb1—O1vii109.5O1v—Pb1—Cu1x35.3
O1ii—Pb1—O1vii70.5O1vi—Pb1—Cu1x144.7
O1iii—Pb1—O1vii109.471 (1)O1vii—Pb1—Cu1x90.0
O1iv—Pb1—O1vii70.5O1—Pb1—Cu1x90.0
O1v—Pb1—O1vii109.471 (1)Cu1vi—Pb1—Cu1x180.0
O1vi—Pb1—O1vii70.5Cu1viii—Pb1—Cu1x60.0
O1i—Pb1—O170.5Cu1ix—Pb1—Cu1x120.0
O1ii—Pb1—O1109.471 (1)O1—Cu1—O1iii86.62 (9)
O1iii—Pb1—O170.5O1—Cu1—O1xi93.38 (9)
O1iv—Pb1—O1109.5O1iii—Cu1—O1xi180.0
O1v—Pb1—O170.5O1—Cu1—O1xii180.0
O1vi—Pb1—O1109.5O1iii—Cu1—O1xii93.38 (9)
O1vii—Pb1—O1180.0O1xi—Cu1—O1xii86.62 (9)
O1i—Pb1—Cu1vi35.3O1—Cu1—Pb143.31 (4)
O1ii—Pb1—Cu1vi144.7O1iii—Cu1—Pb143.31 (4)
O1iii—Pb1—Cu1vi90.0O1xi—Cu1—Pb1136.69 (4)
O1iv—Pb1—Cu1vi90.0O1xii—Cu1—Pb1136.69 (4)
O1v—Pb1—Cu1vi144.7O1—Cu1—Pb1xiii136.69 (4)
O1vi—Pb1—Cu1vi35.3O1iii—Cu1—Pb1xiii136.69 (4)
O1vii—Pb1—Cu1vi90.0O1xi—Cu1—Pb1xiii43.31 (4)
O1—Pb1—Cu1vi90.0O1xii—Cu1—Pb1xiii43.31 (4)
O1i—Pb1—Cu1viii144.7Pb1—Cu1—Pb1xiii180.0
O1ii—Pb1—Cu1viii35.3Cu1ix—O1—Cu1xiv116.18 (3)
O1iii—Pb1—Cu1viii90.0Cu1ix—O1—Cu1116.18 (3)
O1iv—Pb1—Cu1viii90.0Cu1xiv—O1—Cu1116.18 (3)
O1v—Pb1—Cu1viii90.0Cu1ix—O1—Pb1101.42 (4)
O1vi—Pb1—Cu1viii90.0Cu1xiv—O1—Pb1101.42 (4)
O1vii—Pb1—Cu1viii35.3Cu1—O1—Pb1101.42 (4)
O1—Pb1—Cu1viii144.7
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x, y, z+1; (v) x, y, z+1; (vi) x+1, y, z; (vii) x+1, y, z+1; (viii) z+1/2, x+1/2, y+1; (ix) z, x+1/2, y+1/2; (x) x+1, y+1/2, z+1/2; (xi) x, y+1/2, z+1/2; (xii) x+1, y+1/2, z+1/2; (xiii) x, y+1/2, z1/2; (xiv) y, z, x.
3-(Ag) top
Crystal data top
O4W·2(H2O)·2(Na)F(000) = 1184
Mr = 329.86Dx = 3.562 Mg m3
Orthorhombic, PbcaAg Kα radiation, λ = 0.56086 Å
a = 8.439 (2) ÅCell parameters from 9695 reflections
b = 10.559 (2) Åθ = 2.3–44.4°
c = 13.807 (3) ŵ = 10.16 mm1
V = 1230.3 (5) Å3T = 100 K
Z = 80.10 × 0.06 × 0.03 mm
Data collection top
Bruker Smart APEX II Quazar
diffractometer
8783 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.029
ω scansθmax = 44.5°, θmin = 2.3°
Absorption correction: multi-scan
SADABS-2014/4
h = 2121
Tmin = 0.567, Tmax = 0.734k = 2626
146508 measured reflectionsl = 3434
10047 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.014 w = 1/[σ2(Fo2) + (0.0046P)2 + 0.8512P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.025(Δ/σ)max = 0.006
S = 1.16Δρmax = 1.81 e Å3
10047 reflectionsΔρmin = 3.04 e Å3
95 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
84 restraintsExtinction coefficient: 0.00107 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.48649 (2)0.30163 (2)0.47725 (2)0.00383 (1)
Na10.75923 (4)0.45111 (3)0.64771 (2)0.00736 (4)
Na20.84444 (4)0.49551 (3)0.41430 (2)0.00734 (4)
O10.55242 (6)0.32269 (5)0.59925 (4)0.00723 (6)
O20.63150 (6)0.35114 (5)0.39028 (4)0.00762 (6)
O30.31247 (6)0.39264 (5)0.46244 (4)0.00817 (6)
O40.44310 (6)0.13853 (5)0.45833 (4)0.00671 (6)
O50.77221 (7)0.35953 (6)0.79899 (4)0.00911 (7)
H510.863 (2)0.3544 (16)0.8221 (13)0.014*
H520.728 (2)0.2944 (16)0.8201 (13)0.014*
O60.96253 (7)0.59201 (6)0.69974 (4)0.00978 (7)
H610.945 (2)0.6616 (17)0.6718 (13)0.015*
H620.942 (2)0.6028 (16)0.7555 (13)0.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.00425 (1)0.00337 (1)0.00388 (1)0.00000 (1)0.00015 (1)0.00008 (1)
Na10.00747 (10)0.00789 (11)0.00671 (10)0.00050 (8)0.00054 (8)0.00051 (9)
Na20.00754 (10)0.00692 (11)0.00757 (10)0.00073 (8)0.00024 (8)0.00028 (9)
O10.00758 (14)0.00816 (16)0.00596 (14)0.00064 (12)0.00099 (11)0.00058 (12)
O20.00810 (14)0.00793 (16)0.00684 (14)0.00197 (12)0.00159 (11)0.00022 (13)
O30.00798 (14)0.00774 (16)0.00880 (15)0.00276 (12)0.00055 (11)0.00060 (13)
O40.00741 (14)0.00465 (14)0.00808 (14)0.00081 (11)0.00005 (11)0.00037 (11)
O50.00954 (16)0.00957 (18)0.00820 (16)0.00075 (13)0.00137 (12)0.00183 (14)
O60.01269 (18)0.00836 (17)0.00830 (16)0.00015 (14)0.00120 (13)0.00029 (14)
Geometric parameters (Å, º) top
W1—O31.7669 (6)Na2—O4iv2.4061 (7)
W1—O41.7800 (6)Na2—O5vii2.4179 (8)
W1—O11.7879 (6)Na2—O4viii2.4217 (7)
W1—O21.7924 (6)Na2—O6v2.4468 (7)
W1—Na2i3.6385 (7)Na2—O3iii2.4586 (7)
W1—Na13.6508 (6)Na2—Na1v3.4982 (9)
W1—Na2ii3.6774 (6)Na2—Na2v3.5360 (9)
W1—Na1ii3.7116 (6)Na2—W1viii3.6385 (7)
Na1—O52.3042 (8)Na2—W1iv3.6774 (6)
Na1—O12.3091 (7)Na2—Na1vii3.8250 (9)
Na1—O3iii2.3241 (7)O3—Na1iii2.3241 (7)
Na1—O4iv2.3339 (7)O3—Na2iii2.4586 (7)
Na1—O62.3818 (8)O4—Na1ii2.3339 (7)
Na1—Na23.3352 (8)O4—Na2ii2.4061 (7)
Na1—Na2v3.4982 (9)O4—Na2i2.4217 (7)
Na1—W1iv3.7117 (6)O5—Na2vi2.4180 (8)
Na1—Na2vi3.8250 (9)O6—Na2v2.4467 (8)
Na2—O22.3797 (7)
O3—W1—O4109.77 (3)O2—Na2—O4viii173.47 (2)
O3—W1—O1107.46 (3)O4iv—Na2—O4viii85.82 (2)
O4—W1—O1108.82 (2)O5vii—Na2—O4viii94.13 (3)
O3—W1—O2109.35 (3)O2—Na2—O6v99.85 (3)
O4—W1—O2108.92 (2)O4iv—Na2—O6v91.02 (3)
O1—W1—O2112.48 (3)O5vii—Na2—O6v94.96 (3)
O3—W1—Na2i141.39 (2)O4viii—Na2—O6v84.50 (3)
O4—W1—Na2i35.52 (2)O2—Na2—O3iii89.86 (3)
O1—W1—Na2i102.330 (19)O4iv—Na2—O3iii87.88 (3)
O2—W1—Na2i80.29 (2)O5vii—Na2—O3iii86.13 (3)
O3—W1—Na1111.31 (2)O4viii—Na2—O3iii85.72 (3)
O4—W1—Na1129.986 (18)O6v—Na2—O3iii170.21 (2)
O1—W1—Na130.977 (18)O2—Na2—Na183.209 (18)
O2—W1—Na182.84 (2)O4iv—Na2—Na144.407 (17)
Na2i—W1—Na1106.908 (13)O5vii—Na2—Na1129.60 (2)
O3—W1—Na2ii103.90 (2)O4viii—Na2—Na190.270 (19)
O4—W1—Na2ii33.614 (19)O6v—Na2—Na1135.42 (2)
O1—W1—Na2ii79.86 (2)O3iii—Na2—Na144.152 (17)
O2—W1—Na2ii138.089 (19)O2—Na2—Na1v142.29 (2)
Na2i—W1—Na2ii57.803 (15)O4iv—Na2—Na1v86.721 (19)
Na1—W1—Na2ii108.171 (13)O5vii—Na2—Na1v97.24 (2)
O3—W1—Na1ii84.71 (2)O4viii—Na2—Na1v41.676 (16)
O4—W1—Na1ii29.523 (18)O6v—Na2—Na1v42.846 (18)
O1—W1—Na1ii133.487 (18)O3iii—Na2—Na1v127.37 (2)
O2—W1—Na1ii104.54 (2)Na1—Na2—Na1v117.729 (11)
Na2i—W1—Na1ii56.830 (15)O2—Na2—Na2v132.15 (2)
Na1—W1—Na1ii159.435 (4)O4iv—Na2—Na2v43.082 (16)
Na2ii—W1—Na1ii53.659 (14)O5vii—Na2—Na2v136.55 (2)
O5—Na1—O192.99 (2)O4viii—Na2—Na2v42.737 (16)
O5—Na1—O3iii154.62 (3)O6v—Na2—Na2v86.93 (3)
O1—Na1—O3iii91.75 (3)O3iii—Na2—Na2v85.63 (2)
O5—Na1—O4iv111.52 (3)Na1—Na2—Na2v61.127 (17)
O1—Na1—O4iv94.74 (3)Na1v—Na2—Na2v56.602 (17)
O3iii—Na1—O4iv92.89 (3)O2—Na2—W1viii153.959 (19)
O5—Na1—O687.39 (2)O4iv—Na2—W1viii102.25 (2)
O1—Na1—O6176.97 (3)O5vii—Na2—W1viii75.79 (2)
O3iii—Na1—O686.64 (3)O4viii—Na2—W1viii25.279 (13)
O4iv—Na1—O687.91 (3)O6v—Na2—W1viii103.19 (2)
O5—Na1—Na2157.61 (2)O3iii—Na2—W1viii67.611 (19)
O1—Na1—Na288.024 (19)Na1—Na2—W1viii88.774 (12)
O3iii—Na1—Na247.466 (17)Na1v—Na2—W1viii62.638 (9)
O4iv—Na1—Na246.170 (16)Na2v—Na2—W1viii61.649 (11)
O6—Na1—Na292.77 (2)O2—Na2—W1iv75.90 (2)
O5—Na1—Na2v104.123 (19)O4iv—Na2—W1iv24.175 (13)
O1—Na1—Na2v138.27 (2)O5vii—Na2—W1iv160.206 (19)
O3iii—Na1—Na2v88.531 (19)O4viii—Na2—W1iv100.86 (2)
O4iv—Na1—Na2v43.625 (17)O6v—Na2—W1iv73.90 (2)
O6—Na1—Na2v44.312 (18)O3iii—Na2—W1iv107.67 (2)
Na2—Na1—Na2v62.271 (11)Na1—Na2—W1iv63.695 (10)
O5—Na1—W1115.65 (2)Na1v—Na2—W1iv85.725 (12)
O1—Na1—W123.486 (14)Na2v—Na2—W1iv60.546 (12)
O3iii—Na1—W173.79 (2)W1viii—Na2—W1iv122.196 (15)
O4iv—Na1—W180.76 (2)O2—Na2—Na1vii77.739 (17)
O6—Na1—W1156.722 (19)O4iv—Na2—Na1vii150.364 (19)
Na2—Na1—W164.769 (14)O5vii—Na2—Na1vii34.916 (16)
Na2v—Na1—W1120.974 (16)O4viii—Na2—Na1vii108.603 (18)
O5—Na1—W1iv95.46 (2)O6v—Na2—Na1vii65.71 (2)
O1—Na1—W1iv80.43 (2)O3iii—Na2—Na1vii118.17 (2)
O3iii—Na1—W1iv109.92 (2)Na1—Na2—Na1vii154.324 (13)
O4iv—Na1—W1iv22.074 (13)Na1v—Na2—Na1vii87.674 (12)
O6—Na1—W1iv102.54 (2)Na2v—Na2—Na1vii144.087 (16)
Na2—Na1—W1iv62.645 (11)W1viii—Na2—Na1vii100.874 (11)
Na2v—Na1—W1iv60.531 (12)W1iv—Na2—Na1vii126.308 (11)
W1—Na1—W1iv73.456 (15)W1—O1—Na1125.54 (3)
O5—Na1—Na2vi36.915 (19)W1—O2—Na2127.52 (3)
O1—Na1—Na2vi101.098 (19)W1—O3—Na1iii132.71 (3)
O3iii—Na1—Na2vi117.75 (2)W1—O3—Na2iii128.96 (3)
O4iv—Na1—Na2vi144.634 (19)Na1iii—O3—Na2iii88.38 (3)
O6—Na1—Na2vi77.439 (19)W1—O4—Na1ii128.40 (3)
Na2—Na1—Na2vi163.426 (12)W1—O4—Na2ii122.21 (3)
Na2v—Na1—Na2vi115.496 (12)Na1ii—O4—Na2ii89.42 (2)
W1—Na1—Na2vi122.676 (16)W1—O4—Na2i119.20 (3)
W1iv—Na1—Na2vi132.178 (11)Na1ii—O4—Na2i94.70 (3)
O2—Na2—O4iv89.22 (2)Na2ii—O4—Na2i94.18 (2)
O2—Na2—O5vii90.37 (3)Na1—O5—Na2vi108.17 (3)
O4iv—Na2—O5vii173.99 (2)Na1—O6—Na2v92.84 (3)
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x1/2, y+1/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1; (v) x+2, y+1, z+1; (vi) x+3/2, y+1, z+1/2; (vii) x+3/2, y+1, z1/2; (viii) x+3/2, y+1/2, z.
3-(Mo) top
Crystal data top
O4W·2(H2O)·2(Na)F(000) = 1184
Mr = 329.86Dx = 3.555 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 8.442 (2) ÅCell parameters from 9598 reflections
b = 10.569 (2) Åθ = 3.4–54.1°
c = 13.816 (3) ŵ = 18.84 mm1
V = 1232.7 (5) Å3T = 100 K
Z = 80.11 × 0.05 × 0.03 mm
Data collection top
Bruker Smart APEX II Quazar
diffractometer
7024 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.030
ω scansθmax = 54.1°, θmin = 3.0°
Absorption correction: multi-scan
SADABS-2014/4
h = 1918
Tmin = 0.416, Tmax = 0.580k = 2323
80496 measured reflectionsl = 2930
7584 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2) + (0.0103P)2 + 1.1388P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max = 0.011
S = 1.18Δρmax = 2.64 e Å3
7584 reflectionsΔρmin = 2.70 e Å3
95 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
84 restraintsExtinction coefficient: 0.00164 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.51352 (2)0.30163 (2)0.52276 (2)0.00396 (1)
Na20.15563 (5)0.49545 (4)0.58567 (3)0.00754 (6)
Na10.24079 (5)0.45107 (4)0.35226 (3)0.00759 (6)
O10.44747 (9)0.32286 (7)0.40073 (5)0.00745 (8)
O20.36862 (9)0.35113 (7)0.60982 (5)0.00779 (9)
O30.68756 (9)0.39260 (7)0.53761 (5)0.00844 (9)
O40.55707 (9)0.13864 (6)0.54168 (5)0.00685 (8)
O50.22785 (9)0.35952 (7)0.20105 (6)0.00921 (9)
H510.141 (3)0.356 (2)0.1785 (17)0.014*
H520.268 (3)0.294 (2)0.1780 (17)0.014*
O60.03752 (10)0.59210 (7)0.30019 (6)0.01004 (10)
H610.061 (3)0.656 (2)0.3270 (18)0.015*
H620.063 (3)0.603 (2)0.2419 (18)0.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.00433 (1)0.00344 (1)0.00410 (1)0.00001 (1)0.00014 (1)0.00008 (1)
Na20.00776 (15)0.00714 (14)0.00773 (14)0.00070 (11)0.00028 (11)0.00044 (11)
Na10.00765 (15)0.00804 (14)0.00709 (14)0.00043 (11)0.00063 (11)0.00056 (11)
O10.0078 (2)0.0083 (2)0.0062 (2)0.00078 (16)0.00116 (16)0.00078 (15)
O20.0081 (2)0.0082 (2)0.0070 (2)0.00181 (16)0.00158 (16)0.00012 (16)
O30.0085 (2)0.0078 (2)0.0090 (2)0.00282 (17)0.00058 (17)0.00065 (17)
O40.0076 (2)0.00462 (18)0.0083 (2)0.00078 (15)0.00003 (16)0.00059 (15)
O50.0091 (2)0.0101 (2)0.0085 (2)0.00075 (18)0.00142 (18)0.00177 (18)
O60.0130 (3)0.0087 (2)0.0084 (2)0.0003 (2)0.00140 (19)0.00022 (18)
Geometric parameters (Å, º) top
W1—O31.7678 (8)Na2—W1iii3.6799 (7)
W1—O41.7807 (7)Na2—Na1iv3.8275 (10)
W1—O11.7900 (8)Na1—O52.3049 (10)
W1—O21.7936 (7)Na1—O12.3085 (9)
W1—Na2i3.6423 (7)Na1—O3vii2.3261 (9)
W1—Na13.6531 (7)Na1—O4iii2.3349 (9)
W1—Na2ii3.6799 (7)Na1—O62.3841 (10)
W1—Na1ii3.7143 (7)Na1—Na2vi3.5006 (10)
Na2—O22.3814 (9)Na1—W1iii3.7143 (7)
Na2—O4iii2.4076 (9)Na1—Na2viii3.8275 (10)
Na2—O5iv2.4204 (10)O3—Na1vii2.3262 (9)
Na2—O4v2.4257 (9)O3—Na2vii2.4604 (9)
Na2—O6vi2.4498 (10)O4—Na1ii2.3349 (9)
Na2—O3vii2.4605 (9)O4—Na2ii2.4075 (9)
Na2—Na13.3372 (9)O4—Na2i2.4257 (9)
Na2—Na1vi3.5006 (10)O5—Na2viii2.4205 (10)
Na2—Na2vi3.5380 (11)O6—Na2vi2.4498 (10)
Na2—W1v3.6423 (7)
O3—W1—O4109.73 (4)O4v—Na2—W1iii100.89 (2)
O3—W1—O1107.46 (3)O6vi—Na2—W1iii73.91 (2)
O4—W1—O1108.90 (3)O3vii—Na2—W1iii107.69 (3)
O3—W1—O2109.29 (4)Na1—Na2—W1iii63.700 (12)
O4—W1—O2108.94 (3)Na1vi—Na2—W1iii85.747 (15)
O1—W1—O2112.50 (4)Na2vi—Na2—W1iii60.574 (14)
O3—W1—Na2i141.38 (3)W1v—Na2—W1iii122.214 (17)
O4—W1—Na2i35.55 (3)O2—Na2—Na1iv77.72 (2)
O1—W1—Na2i102.36 (2)O4iii—Na2—Na1iv150.36 (2)
O2—W1—Na2i80.32 (3)O5iv—Na2—Na1iv34.90 (2)
O3—W1—Na1111.31 (3)O4v—Na2—Na1iv108.55 (2)
O4—W1—Na1130.02 (2)O6vi—Na2—Na1iv65.70 (3)
O1—W1—Na130.91 (2)O3vii—Na2—Na1iv118.18 (3)
O2—W1—Na182.90 (3)Na1—Na2—Na1iv154.348 (16)
Na2i—W1—Na1106.915 (15)Na1vi—Na2—Na1iv87.641 (15)
O3—W1—Na2ii103.91 (3)Na2vi—Na2—Na1iv144.05 (2)
O4—W1—Na2ii33.60 (3)W1v—Na2—Na1iv100.837 (14)
O1—W1—Na2ii79.92 (3)W1iii—Na2—Na1iv126.316 (15)
O2—W1—Na2ii138.10 (2)O5—Na1—O193.00 (3)
Na2i—W1—Na2ii57.785 (17)O5—Na1—O3vii154.61 (3)
Na1—W1—Na2ii108.172 (15)O1—Na1—O3vii91.76 (3)
O3—W1—Na1ii84.71 (3)O5—Na1—O4iii111.52 (3)
O4—W1—Na1ii29.48 (2)O1—Na1—O4iii94.68 (3)
O1—W1—Na1ii133.55 (2)O3vii—Na1—O4iii92.90 (3)
O2—W1—Na1ii104.49 (3)O5—Na1—O687.41 (3)
Na2i—W1—Na1ii56.819 (16)O1—Na1—O6176.92 (4)
Na1—W1—Na1ii159.432 (5)O3vii—Na1—O686.59 (3)
Na2ii—W1—Na1ii53.655 (16)O4iii—Na1—O688.00 (3)
O2—Na2—O4iii89.22 (3)O5—Na1—Na2157.62 (3)
O2—Na2—O5iv90.37 (3)O1—Na1—Na288.00 (2)
O4iii—Na2—O5iv174.01 (3)O3vii—Na1—Na247.48 (2)
O2—Na2—O4v173.54 (3)O4iii—Na1—Na246.17 (2)
O4iii—Na2—O4v85.89 (3)O6—Na1—Na292.79 (3)
O5iv—Na2—O4v94.06 (3)O5—Na1—Na2vi104.15 (3)
O2—Na2—O6vi99.81 (3)O1—Na1—Na2vi138.27 (3)
O4iii—Na2—O6vi91.04 (3)O3vii—Na1—Na2vi88.49 (3)
O5iv—Na2—O6vi94.92 (3)O4iii—Na1—Na2vi43.68 (2)
O4v—Na2—O6vi84.51 (3)O6—Na1—Na2vi44.35 (2)
O2—Na2—O3vii89.93 (3)Na2—Na1—Na2vi62.265 (15)
O4iii—Na2—O3vii87.88 (3)O5—Na1—W1115.65 (3)
O5iv—Na2—O3vii86.14 (3)O1—Na1—W123.476 (19)
O4v—Na2—O3vii85.68 (3)O3vii—Na1—W173.82 (3)
O6vi—Na2—O3vii170.18 (3)O4iii—Na1—W180.70 (3)
O2—Na2—Na183.26 (2)O6—Na1—W1156.71 (3)
O4iii—Na2—Na144.40 (2)Na2—Na1—W164.748 (16)
O5iv—Na2—Na1129.63 (3)Na2vi—Na1—W1120.955 (19)
O4v—Na2—Na190.29 (2)O5—Na1—W1iii95.45 (3)
O6vi—Na2—Na1135.43 (3)O1—Na1—W1iii80.41 (3)
O3vii—Na2—Na144.17 (2)O3vii—Na1—W1iii109.94 (3)
O2—Na2—Na1vi142.27 (3)O4iii—Na1—W1iii22.046 (17)
O4iii—Na2—Na1vi86.77 (2)O6—Na1—W1iii102.59 (3)
O5iv—Na2—Na1vi97.18 (3)Na2—Na1—W1iii62.646 (14)
O4v—Na2—Na1vi41.67 (2)Na2vi—Na1—W1iii60.554 (14)
O6vi—Na2—Na1vi42.86 (2)W1—Na1—W1iii73.433 (17)
O3vii—Na2—Na1vi127.32 (3)O5—Na1—Na2viii36.93 (2)
Na1—Na2—Na1vi117.734 (15)O1—Na1—Na2viii101.14 (3)
O2—Na2—Na2vi132.22 (3)O3vii—Na1—Na2viii117.72 (3)
O4iii—Na2—Na2vi43.14 (2)O4iii—Na1—Na2viii144.65 (3)
O5iv—Na2—Na2vi136.49 (3)O6—Na1—Na2viii77.39 (2)
O4v—Na2—Na2vi42.74 (2)Na2—Na1—Na2viii163.411 (15)
O6vi—Na2—Na2vi86.94 (3)Na2vi—Na1—Na2viii115.487 (16)
O3vii—Na2—Na2vi85.60 (3)W1—Na1—Na2viii122.709 (18)
Na1—Na2—Na2vi61.13 (2)W1iii—Na1—Na2viii132.188 (15)
Na1vi—Na2—Na2vi56.60 (2)W1—O1—Na1125.61 (4)
O2—Na2—W1v153.96 (3)W1—O2—Na2127.43 (4)
O4iii—Na2—W1v102.30 (2)W1—O3—Na1vii132.71 (4)
O5iv—Na2—W1v75.75 (2)W1—O3—Na2vii128.93 (4)
O4v—Na2—W1v25.268 (17)Na1vii—O3—Na2vii88.36 (3)
O6vi—Na2—W1v103.19 (3)W1—O4—Na1ii128.47 (4)
O3vii—Na2—W1v67.57 (2)W1—O4—Na2ii122.24 (4)
Na1—Na2—W1v88.779 (15)Na1ii—O4—Na2ii89.43 (3)
Na1vi—Na2—W1v62.627 (11)W1—O4—Na2i119.18 (4)
Na2vi—Na2—W1v61.640 (14)Na1ii—O4—Na2i94.65 (3)
O2—Na2—W1iii75.92 (2)Na2ii—O4—Na2i94.11 (3)
O4iii—Na2—W1iii24.160 (17)Na1—O5—Na2viii108.17 (4)
O5iv—Na2—W1iii160.21 (2)Na1—O6—Na2vi92.79 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y+1, z+1/2; (v) x+1/2, y+1/2, z; (vi) x, y+1, z+1; (vii) x+1, y+1, z+1; (viii) x+1/2, y+1, z1/2.
4-(Ag) top
Crystal data top
C4CoSc3F(000) = 228
Mr = 241.85Dx = 4.511 Mg m3
Orthorhombic, ImmmAg Kα radiation, λ = 0.56086 Å
a = 3.394 (2) ÅCell parameters from 9877 reflections
b = 4.374 (2) Åθ = 2.7–66.4°
c = 11.995 (3) ŵ = 5.02 mm1
V = 178.07 (14) Å3T = 100 K
Z = 20.08 × 0.05 × 0.05 mm
Data collection top
Bruker Smart APEX II Quazar
diffractometer
1463 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.027
ω scansθmax = 67.6°, θmin = 2.7°
Absorption correction: multi-scan
SADABS-2014/4
h = 109
Tmin = 0.738, Tmax = 0.830k = 1212
25448 measured reflectionsl = 3933
1590 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0156P)2 + 0.0264P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max = 0.002
wR(F2) = 0.032Δρmax = 1.18 e Å3
S = 1.10Δρmin = 1.05 e Å3
1590 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 parametersExtinction coefficient: 0.067 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.50000.00000.00000.00452 (1)
Sc10.00000.50000.00000.00408 (1)
Sc20.50000.50000.31199 (2)0.00376 (1)
C0.50000.33380 (7)0.12484 (2)0.00485 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.00678 (2)0.00344 (2)0.00332 (2)0.0000.0000.000
Sc10.00390 (2)0.00428 (3)0.00408 (2)0.0000.0000.000
Sc20.00400 (2)0.00364 (2)0.00366 (2)0.0000.0000.000
C0.00560 (6)0.00438 (7)0.00456 (6)0.0000.0000.00033 (5)
Geometric parameters (Å, º) top
Co—C2.0914 (6)Sc1—Coxv2.7682 (10)
Co—Ci2.0914 (6)Sc1—Coxvii2.7682 (10)
Co—Cii2.0914 (6)Sc1—Coxviii2.7682 (10)
Co—Ciii2.0914 (6)Sc2—Cxii2.3596 (6)
Co—Sc1iv2.7682 (10)Sc2—C2.3596 (6)
Co—Sc1v2.7682 (10)Sc2—Cxix2.3634 (9)
Co—Sc1vi2.7682 (10)Sc2—Cix2.3634 (9)
Co—Sc12.7682 (10)Sc2—Cviii2.3634 (9)
Co—Sc2vii2.8224 (8)Sc2—Cxx2.3634 (9)
Co—Sc2viii2.8224 (8)Sc2—Coxxi2.8224 (8)
Co—Sc2ix2.8224 (8)Sc2—Coxxii2.8224 (8)
Co—Sc2x2.8224 (8)Sc2—Sc1xxi3.1415 (8)
Sc1—C2.3771 (8)Sc2—Sc1xxiii3.1415 (8)
Sc1—Cxi2.3771 (8)Sc2—Sc2ix3.1423 (9)
Sc1—Cxii2.3771 (8)Sc2—Sc2xxiv3.1423 (9)
Sc1—Cxiii2.3771 (8)C—Cxii1.4540 (9)
Sc1—Cxiv2.3771 (8)C—Sc2ix2.3634 (9)
Sc1—Cxv2.3771 (8)C—Sc2viii2.3634 (9)
Sc1—Cii2.3771 (8)C—Sc1v2.3771 (8)
Sc1—Cxvi2.3771 (8)
C—Co—Ci180.0Coxv—Sc1—Coxvii180.0
C—Co—Cii91.45 (3)C—Sc1—Co47.214 (15)
Ci—Co—Cii88.55 (3)Cxi—Sc1—Co101.30 (3)
C—Co—Ciii88.55 (3)Cxii—Sc1—Co78.70 (3)
Ci—Co—Ciii91.45 (3)Cxiii—Sc1—Co132.786 (15)
Cii—Co—Ciii180.000 (16)Cxiv—Sc1—Co78.70 (3)
C—Co—Sc1iv123.473 (19)Cxv—Sc1—Co101.30 (3)
Ci—Co—Sc1iv56.528 (19)Cii—Sc1—Co47.214 (15)
Cii—Co—Sc1iv123.472 (19)Cxvi—Sc1—Co132.786 (15)
Ciii—Co—Sc1iv56.528 (19)Coxv—Sc1—Co75.62 (4)
C—Co—Sc1v56.527 (19)Coxvii—Sc1—Co104.38 (4)
Ci—Co—Sc1v123.472 (19)C—Sc1—Coxviii132.786 (16)
Cii—Co—Sc1v56.528 (19)Cxi—Sc1—Coxviii78.70 (3)
Ciii—Co—Sc1v123.472 (19)Cxii—Sc1—Coxviii101.30 (3)
Sc1iv—Co—Sc1v180.0Cxiii—Sc1—Coxviii47.214 (15)
C—Co—Sc1vi123.473 (19)Cxiv—Sc1—Coxviii101.30 (3)
Ci—Co—Sc1vi56.528 (19)Cxv—Sc1—Coxviii78.70 (3)
Cii—Co—Sc1vi123.472 (19)Cii—Sc1—Coxviii132.786 (15)
Ciii—Co—Sc1vi56.528 (19)Cxvi—Sc1—Coxviii47.214 (15)
Sc1iv—Co—Sc1vi75.62 (4)Coxv—Sc1—Coxviii104.38 (4)
Sc1v—Co—Sc1vi104.38 (4)Coxvii—Sc1—Coxviii75.62 (4)
C—Co—Sc156.527 (19)Co—Sc1—Coxviii180.0
Ci—Co—Sc1123.472 (19)Cxii—Sc2—C35.89 (2)
Cii—Co—Sc156.528 (19)Cxii—Sc2—Cxix96.586 (16)
Ciii—Co—Sc1123.472 (19)C—Sc2—Cxix119.693 (13)
Sc1iv—Co—Sc1104.38 (4)Cxii—Sc2—Cix119.694 (13)
Sc1v—Co—Sc175.62 (4)C—Sc2—Cix96.587 (16)
Sc1vi—Co—Sc1180.0Cxix—Sc2—Cix142.60 (2)
C—Co—Sc2vii124.898 (16)Cxii—Sc2—Cviii119.694 (13)
Ci—Co—Sc2vii55.102 (16)C—Sc2—Cviii96.587 (16)
Cii—Co—Sc2vii55.102 (16)Cxix—Sc2—Cviii76.31 (4)
Ciii—Co—Sc2vii124.898 (16)Cix—Sc2—Cviii91.78 (4)
Sc1iv—Co—Sc2vii68.371 (19)Cxii—Sc2—Cxx96.586 (16)
Sc1v—Co—Sc2vii111.629 (19)C—Sc2—Cxx119.693 (13)
Sc1vi—Co—Sc2vii111.629 (18)Cxix—Sc2—Cxx91.78 (4)
Sc1—Co—Sc2vii68.371 (18)Cix—Sc2—Cxx76.31 (4)
C—Co—Sc2viii55.102 (16)Cviii—Sc2—Cxx142.60 (2)
Ci—Co—Sc2viii124.898 (16)Cxii—Sc2—Coxxi139.480 (16)
Cii—Co—Sc2viii124.898 (16)C—Sc2—Coxxi139.480 (16)
Ciii—Co—Sc2viii55.102 (16)Cxix—Sc2—Coxxi46.534 (17)
Sc1iv—Co—Sc2viii111.629 (19)Cix—Sc2—Coxxi100.11 (3)
Sc1v—Co—Sc2viii68.371 (19)Cviii—Sc2—Coxxi46.534 (17)
Sc1vi—Co—Sc2viii68.371 (18)Cxx—Sc2—Coxxi100.11 (3)
Sc1—Co—Sc2viii111.629 (18)Cxii—Sc2—Coxxii139.480 (16)
Sc2vii—Co—Sc2viii180.0C—Sc2—Coxxii139.480 (17)
C—Co—Sc2ix55.102 (16)Cxix—Sc2—Coxxii100.11 (3)
Ci—Co—Sc2ix124.898 (16)Cix—Sc2—Coxxii46.534 (17)
Cii—Co—Sc2ix124.898 (16)Cviii—Sc2—Coxxii100.11 (3)
Ciii—Co—Sc2ix55.102 (16)Cxx—Sc2—Coxxii46.534 (17)
Sc1iv—Co—Sc2ix68.371 (18)Coxxi—Sc2—Coxxii73.92 (4)
Sc1v—Co—Sc2ix111.629 (18)Cxii—Sc2—Sc1xxi117.94 (2)
Sc1vi—Co—Sc2ix111.629 (18)C—Sc2—Sc1xxi153.824 (10)
Sc1—Co—Sc2ix68.371 (18)Cxix—Sc2—Sc1xxi48.682 (19)
Sc2vii—Co—Sc2ix106.08 (4)Cix—Sc2—Sc1xxi101.53 (2)
Sc2viii—Co—Sc2ix73.92 (4)Cviii—Sc2—Sc1xxi101.53 (2)
C—Co—Sc2x124.898 (16)Cxx—Sc2—Sc1xxi48.682 (19)
Ci—Co—Sc2x55.102 (16)Coxxi—Sc2—Sc1xxi54.997 (15)
Cii—Co—Sc2x55.102 (16)Coxxii—Sc2—Sc1xxi54.997 (15)
Ciii—Co—Sc2x124.898 (16)Cxii—Sc2—Sc1xxiii153.825 (10)
Sc1iv—Co—Sc2x111.629 (18)C—Sc2—Sc1xxiii117.94 (2)
Sc1v—Co—Sc2x68.371 (18)Cxix—Sc2—Sc1xxiii101.53 (2)
Sc1vi—Co—Sc2x68.371 (18)Cix—Sc2—Sc1xxiii48.682 (18)
Sc1—Co—Sc2x111.629 (18)Cviii—Sc2—Sc1xxiii48.682 (19)
Sc2vii—Co—Sc2x73.92 (4)Cxx—Sc2—Sc1xxiii101.53 (2)
Sc2viii—Co—Sc2x106.08 (4)Coxxi—Sc2—Sc1xxiii54.997 (15)
Sc2ix—Co—Sc2x180.0Coxxii—Sc2—Sc1xxiii54.997 (15)
C—Sc1—Cxi144.38 (2)Sc1xxi—Sc2—Sc1xxiii88.24 (3)
C—Sc1—Cxii35.62 (2)Cxii—Sc2—Sc2ix76.362 (19)
Cxi—Sc1—Cxii180.000 (10)C—Sc2—Sc2ix48.345 (11)
C—Sc1—Cxiii180.0Cxix—Sc2—Sc2ix165.802 (7)
Cxi—Sc1—Cxiii35.62 (2)Cix—Sc2—Sc2ix48.242 (19)
Cxii—Sc1—Cxiii144.38 (2)Cviii—Sc2—Sc2ix96.29 (4)
C—Sc1—Cxiv88.90 (4)Cxx—Sc2—Sc2ix101.18 (4)
Cxi—Sc1—Cxiv101.91 (3)Coxxi—Sc2—Sc2ix134.656 (16)
Cxii—Sc1—Cxiv78.09 (3)Coxxii—Sc2—Sc2ix93.06 (3)
Cxiii—Sc1—Cxiv91.10 (4)Sc1xxi—Sc2—Sc2ix145.513 (17)
C—Sc1—Cxv91.10 (4)Sc1xxiii—Sc2—Sc2ix81.68 (2)
Cxi—Sc1—Cxv78.09 (3)Cxii—Sc2—Sc2xxiv48.344 (11)
Cxii—Sc1—Cxv101.91 (3)C—Sc2—Sc2xxiv76.362 (19)
Cxiii—Sc1—Cxv88.90 (4)Cxix—Sc2—Sc2xxiv48.242 (19)
Cxiv—Sc1—Cxv180.0Cix—Sc2—Sc2xxiv165.802 (6)
C—Sc1—Cii78.09 (3)Cviii—Sc2—Sc2xxiv101.18 (4)
Cxi—Sc1—Cii91.10 (4)Cxx—Sc2—Sc2xxiv96.29 (3)
Cxii—Sc1—Cii88.90 (4)Coxxi—Sc2—Sc2xxiv93.06 (3)
Cxiii—Sc1—Cii101.91 (3)Coxxii—Sc2—Sc2xxiv134.656 (16)
Cxiv—Sc1—Cii35.62 (2)Sc1xxi—Sc2—Sc2xxiv81.68 (3)
Cxv—Sc1—Cii144.38 (2)Sc1xxiii—Sc2—Sc2xxiv145.513 (17)
C—Sc1—Cxvi101.91 (3)Sc2ix—Sc2—Sc2xxiv123.51 (2)
Cxi—Sc1—Cxvi88.90 (4)Cxii—C—Co134.276 (17)
Cxii—Sc1—Cxvi91.10 (4)Cxii—C—Sc272.055 (11)
Cxiii—Sc1—Cxvi78.09 (3)Co—C—Sc2153.669 (16)
Cxiv—Sc1—Cxvi144.38 (2)Cxii—C—Sc2ix128.15 (2)
Cxv—Sc1—Cxvi35.62 (2)Co—C—Sc2ix78.36 (2)
Cii—Sc1—Cxvi180.000 (14)Sc2—C—Sc2ix83.414 (16)
C—Sc1—Coxv101.30 (3)Cxii—C—Sc2viii128.15 (2)
Cxi—Sc1—Coxv47.214 (15)Co—C—Sc2viii78.36 (2)
Cxii—Sc1—Coxv132.786 (15)Sc2—C—Sc2viii83.414 (16)
Cxiii—Sc1—Coxv78.70 (3)Sc2ix—C—Sc2viii91.78 (4)
Cxiv—Sc1—Coxv132.786 (15)Cxii—C—Sc172.193 (12)
Cxv—Sc1—Coxv47.214 (15)Co—C—Sc176.26 (2)
Cii—Sc1—Coxv101.30 (3)Sc2—C—Sc1120.336 (18)
Cxvi—Sc1—Coxv78.70 (3)Sc2ix—C—Sc183.01 (3)
C—Sc1—Coxvii78.70 (3)Sc2viii—C—Sc1154.622 (16)
Cxi—Sc1—Coxvii132.786 (15)Cxii—C—Sc1v72.193 (12)
Cxii—Sc1—Coxvii47.214 (15)Co—C—Sc1v76.26 (2)
Cxiii—Sc1—Coxvii101.30 (3)Sc2—C—Sc1v120.336 (18)
Cxiv—Sc1—Coxvii47.214 (15)Sc2ix—C—Sc1v154.622 (16)
Cxv—Sc1—Coxvii132.786 (15)Sc2viii—C—Sc1v83.01 (3)
Cii—Sc1—Coxvii78.70 (3)Sc1—C—Sc1v91.11 (4)
Cxvi—Sc1—Coxvii101.30 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y1, z; (vii) x1/2, y1/2, z1/2; (viii) x+3/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+1/2, y1/2, z1/2; (xi) x1, y, z; (xii) x+1, y+1, z; (xiii) x, y+1, z; (xiv) x+1, y+1, z; (xv) x1, y, z; (xvi) x, y+1, z; (xvii) x, y+1, z; (xviii) x1, y+1, z; (xix) x+1/2, y+1/2, z+1/2; (xx) x1/2, y+1/2, z+1/2; (xxi) x+1/2, y+1/2, z+1/2; (xxii) x1/2, y+1/2, z+1/2; (xxiii) x+1/2, y1/2, z+1/2; (xxiv) x+3/2, y+3/2, z+1/2.
4-(Mo) top
Crystal data top
C4CoSc3F(000) = 228
Mr = 241.85Dx = 4.499 Mg m3
Orthorhombic, ImmmMo Kα radiation, λ = 0.71073 Å
a = 3.398 (2) ÅCell parameters from 9548 reflections
b = 4.377 (2) Åθ = 3.4–55.8°
c = 12.003 (3) ŵ = 9.79 mm1
V = 178.52 (14) Å3T = 100 K
Z = 20.08 × 0.05 × 0.05 mm
Data collection top
Bruker Smart APEX II Quazar
diffractometer
699 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.020
ω scansθmax = 55.8°, θmin = 3.4°
Absorption correction: multi-scan
SADABS-2014/4
h = 77
Tmin = 0.576, Tmax = 0.701k = 109
11104 measured reflectionsl = 2727
704 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0174P)2 + 0.0528P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.012(Δ/σ)max = 0.002
wR(F2) = 0.033Δρmax = 0.96 e Å3
S = 1.28Δρmin = 0.74 e Å3
704 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
18 parametersExtinction coefficient: 0.046 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.50000.00000.00000.00478 (3)
Sc10.00000.50000.00000.00436 (3)
Sc20.50000.50000.31198 (2)0.00404 (3)
C0.50000.33377 (11)0.12480 (4)0.00511 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.00724 (5)0.00349 (4)0.00362 (4)0.0000.0000.000
Sc10.00431 (5)0.00439 (5)0.00439 (5)0.0000.0000.000
Sc20.00444 (4)0.00370 (4)0.00399 (4)0.0000.0000.000
C0.00601 (12)0.00438 (12)0.00494 (12)0.0000.0000.00030 (9)
Geometric parameters (Å, º) top
Co—Ci2.0924 (7)Sc1—Coxv2.7706 (10)
Co—Cii2.0924 (7)Sc1—Coxvii2.7706 (10)
Co—Ciii2.0924 (7)Sc1—Coxviii2.7706 (10)
Co—C2.0924 (7)Sc2—C2.3616 (7)
Co—Sc1iv2.7706 (10)Sc2—Cxii2.3616 (7)
Co—Sc1v2.7706 (10)Sc2—Cxix2.3657 (9)
Co—Sc1vi2.7706 (10)Sc2—Cx2.3657 (9)
Co—Sc12.7706 (10)Sc2—Cxx2.3657 (9)
Co—Sc2vii2.8248 (8)Sc2—Cviii2.3657 (9)
Co—Sc2viii2.8248 (8)Sc2—Coxxi2.8249 (8)
Co—Sc2ix2.8248 (8)Sc2—Coxxii2.8249 (8)
Co—Sc2x2.8248 (8)Sc2—Sc1xxi3.1437 (8)
Sc1—Cxi2.3791 (8)Sc2—Sc1xxiii3.1437 (8)
Sc1—Cxii2.3791 (8)Sc2—Sc2x3.1448 (9)
Sc1—Cxiii2.3791 (8)Sc2—Sc2xxiv3.1448 (9)
Sc1—Cxiv2.3791 (8)C—Cxii1.4552 (11)
Sc1—Cxv2.3791 (8)C—Sc2x2.3657 (9)
Sc1—Cii2.3791 (8)C—Sc2viii2.3657 (9)
Sc1—Cxvi2.3791 (8)C—Sc1v2.3791 (8)
Sc1—C2.3791 (8)
Ci—Co—Cii88.56 (4)Coxv—Sc1—Coxvii180.0
Ci—Co—Ciii91.44 (4)Cxi—Sc1—Co101.32 (3)
Cii—Co—Ciii180.00 (2)Cxii—Sc1—Co78.68 (3)
Ci—Co—C180.000 (17)Cxiii—Sc1—Co132.806 (17)
Cii—Co—C91.44 (4)Cxiv—Sc1—Co78.68 (3)
Ciii—Co—C88.56 (4)Cxv—Sc1—Co101.32 (3)
Ci—Co—Sc1iv56.53 (2)Cii—Sc1—Co47.194 (18)
Cii—Co—Sc1iv123.47 (2)Cxvi—Sc1—Co132.806 (17)
Ciii—Co—Sc1iv56.53 (2)C—Sc1—Co47.194 (18)
C—Co—Sc1iv123.47 (2)Coxv—Sc1—Co75.65 (4)
Ci—Co—Sc1v123.47 (2)Coxvii—Sc1—Co104.35 (4)
Cii—Co—Sc1v56.53 (2)Cxi—Sc1—Coxviii78.68 (3)
Ciii—Co—Sc1v123.47 (2)Cxii—Sc1—Coxviii101.32 (3)
C—Co—Sc1v56.53 (2)Cxiii—Sc1—Coxviii47.194 (17)
Sc1iv—Co—Sc1v180.0Cxiv—Sc1—Coxviii101.32 (3)
Ci—Co—Sc1vi56.53 (2)Cxv—Sc1—Coxviii78.68 (3)
Cii—Co—Sc1vi123.47 (2)Cii—Sc1—Coxviii132.806 (17)
Ciii—Co—Sc1vi56.53 (2)Cxvi—Sc1—Coxviii47.194 (18)
C—Co—Sc1vi123.47 (2)C—Sc1—Coxviii132.806 (17)
Sc1iv—Co—Sc1vi75.65 (4)Coxv—Sc1—Coxviii104.35 (4)
Sc1v—Co—Sc1vi104.35 (4)Coxvii—Sc1—Coxviii75.65 (4)
Ci—Co—Sc1123.47 (2)Co—Sc1—Coxviii180.0
Cii—Co—Sc156.53 (2)C—Sc2—Cxii35.89 (3)
Ciii—Co—Sc1123.47 (2)C—Sc2—Cxix119.697 (15)
C—Co—Sc156.53 (2)Cxii—Sc2—Cxix96.597 (18)
Sc1iv—Co—Sc1104.35 (4)C—Sc2—Cx96.597 (18)
Sc1v—Co—Sc175.65 (4)Cxii—Sc2—Cx119.697 (15)
Sc1vi—Co—Sc1180.0Cxix—Sc2—Cx142.58 (3)
Ci—Co—Sc2vii55.113 (17)C—Sc2—Cxx119.697 (16)
Cii—Co—Sc2vii55.113 (17)Cxii—Sc2—Cxx96.597 (19)
Ciii—Co—Sc2vii124.887 (17)Cxix—Sc2—Cxx91.81 (4)
C—Co—Sc2vii124.887 (17)Cx—Sc2—Cxx76.27 (4)
Sc1iv—Co—Sc2vii68.357 (18)C—Sc2—Cviii96.597 (19)
Sc1v—Co—Sc2vii111.643 (19)Cxii—Sc2—Cviii119.697 (15)
Sc1vi—Co—Sc2vii111.643 (18)Cxix—Sc2—Cviii76.27 (4)
Sc1—Co—Sc2vii68.357 (18)Cx—Sc2—Cviii91.81 (4)
Ci—Co—Sc2viii124.887 (17)Cxx—Sc2—Cviii142.58 (3)
Cii—Co—Sc2viii124.887 (17)C—Sc2—Coxxi139.468 (16)
Ciii—Co—Sc2viii55.113 (17)Cxii—Sc2—Coxxi139.468 (17)
C—Co—Sc2viii55.113 (17)Cxix—Sc2—Coxxi46.512 (19)
Sc1iv—Co—Sc2viii111.643 (19)Cx—Sc2—Coxxi100.12 (3)
Sc1v—Co—Sc2viii68.357 (18)Cxx—Sc2—Coxxi100.12 (3)
Sc1vi—Co—Sc2viii68.357 (18)Cviii—Sc2—Coxxi46.512 (19)
Sc1—Co—Sc2viii111.643 (18)C—Sc2—Coxxii139.468 (17)
Sc2vii—Co—Sc2viii180.0Cxii—Sc2—Coxxii139.468 (17)
Ci—Co—Sc2ix55.113 (17)Cxix—Sc2—Coxxii100.12 (3)
Cii—Co—Sc2ix55.113 (17)Cx—Sc2—Coxxii46.512 (19)
Ciii—Co—Sc2ix124.887 (17)Cxx—Sc2—Coxxii46.512 (19)
C—Co—Sc2ix124.887 (17)Cviii—Sc2—Coxxii100.12 (3)
Sc1iv—Co—Sc2ix111.643 (18)Coxxi—Sc2—Coxxii73.95 (4)
Sc1v—Co—Sc2ix68.357 (18)C—Sc2—Sc1xxi153.825 (13)
Sc1vi—Co—Sc2ix68.357 (18)Cxii—Sc2—Sc1xxi117.94 (3)
Sc1—Co—Sc2ix111.643 (18)Cxix—Sc2—Sc1xxi48.69 (2)
Sc2vii—Co—Sc2ix73.95 (4)Cx—Sc2—Sc1xxi101.52 (2)
Sc2viii—Co—Sc2ix106.05 (4)Cxx—Sc2—Sc1xxi48.69 (2)
Ci—Co—Sc2x124.887 (17)Cviii—Sc2—Sc1xxi101.52 (2)
Cii—Co—Sc2x124.887 (17)Coxxi—Sc2—Sc1xxi55.003 (15)
Ciii—Co—Sc2x55.113 (17)Coxxii—Sc2—Sc1xxi55.003 (15)
C—Co—Sc2x55.113 (17)C—Sc2—Sc1xxiii117.94 (3)
Sc1iv—Co—Sc2x68.357 (18)Cxii—Sc2—Sc1xxiii153.826 (13)
Sc1v—Co—Sc2x111.643 (18)Cxix—Sc2—Sc1xxiii101.52 (2)
Sc1vi—Co—Sc2x111.643 (18)Cx—Sc2—Sc1xxiii48.69 (2)
Sc1—Co—Sc2x68.357 (18)Cxx—Sc2—Sc1xxiii101.52 (2)
Sc2vii—Co—Sc2x106.05 (4)Cviii—Sc2—Sc1xxiii48.69 (2)
Sc2viii—Co—Sc2x73.95 (4)Coxxi—Sc2—Sc1xxiii55.003 (15)
Sc2ix—Co—Sc2x180.0Coxxii—Sc2—Sc1xxiii55.003 (15)
Cxi—Sc1—Cxii180.000 (16)Sc1xxi—Sc2—Sc1xxiii88.24 (3)
Cxi—Sc1—Cxiii35.62 (3)C—Sc2—Sc2x48.354 (12)
Cxii—Sc1—Cxiii144.38 (3)Cxii—Sc2—Sc2x76.37 (2)
Cxi—Sc1—Cxiv101.95 (4)Cxix—Sc2—Sc2x165.811 (10)
Cxii—Sc1—Cxiv78.05 (4)Cx—Sc2—Sc2x48.24 (2)
Cxiii—Sc1—Cxiv91.15 (4)Cxx—Sc2—Sc2x101.16 (4)
Cxi—Sc1—Cxv78.05 (4)Cviii—Sc2—Sc2x96.32 (4)
Cxii—Sc1—Cxv101.95 (4)Coxxi—Sc2—Sc2x134.662 (16)
Cxiii—Sc1—Cxv88.85 (4)Coxxii—Sc2—Sc2x93.04 (3)
Cxiv—Sc1—Cxv180.0Sc1xxi—Sc2—Sc2x145.498 (16)
Cxi—Sc1—Cii91.15 (4)Sc1xxiii—Sc2—Sc2x81.67 (2)
Cxii—Sc1—Cii88.85 (4)C—Sc2—Sc2xxiv76.37 (2)
Cxiii—Sc1—Cii101.95 (4)Cxii—Sc2—Sc2xxiv48.354 (13)
Cxiv—Sc1—Cii35.62 (3)Cxix—Sc2—Sc2xxiv48.24 (2)
Cxv—Sc1—Cii144.38 (3)Cx—Sc2—Sc2xxiv165.811 (10)
Cxi—Sc1—Cxvi88.85 (4)Cxx—Sc2—Sc2xxiv96.32 (4)
Cxii—Sc1—Cxvi91.15 (4)Cviii—Sc2—Sc2xxiv101.16 (4)
Cxiii—Sc1—Cxvi78.05 (4)Coxxi—Sc2—Sc2xxiv93.04 (3)
Cxiv—Sc1—Cxvi144.38 (3)Coxxii—Sc2—Sc2xxiv134.662 (16)
Cxv—Sc1—Cxvi35.62 (3)Sc1xxi—Sc2—Sc2xxiv81.67 (2)
Cii—Sc1—Cxvi180.00 (2)Sc1xxiii—Sc2—Sc2xxiv145.498 (17)
Cxi—Sc1—C144.38 (3)Sc2x—Sc2—Sc2xxiv123.53 (2)
Cxii—Sc1—C35.62 (3)Cxii—C—Co134.281 (19)
Cxiii—Sc1—C180.0Cxii—C—Sc272.055 (14)
Cxiv—Sc1—C88.85 (4)Co—C—Sc2153.66 (2)
Cxv—Sc1—C91.15 (4)Cxii—C—Sc2x128.14 (2)
Cii—Sc1—C78.05 (4)Co—C—Sc2x78.37 (2)
Cxvi—Sc1—C101.95 (4)Sc2—C—Sc2x83.404 (19)
Cxi—Sc1—Coxv47.194 (17)Cxii—C—Sc2viii128.14 (2)
Cxii—Sc1—Coxv132.806 (18)Co—C—Sc2viii78.37 (2)
Cxiii—Sc1—Coxv78.68 (3)Sc2—C—Sc2viii83.404 (19)
Cxiv—Sc1—Coxv132.806 (17)Sc2x—C—Sc2viii91.81 (4)
Cxv—Sc1—Coxv47.194 (18)Cxii—C—Sc172.191 (14)
Cii—Sc1—Coxv101.32 (3)Co—C—Sc176.28 (2)
Cxvi—Sc1—Coxv78.68 (3)Sc2—C—Sc1120.32 (2)
C—Sc1—Coxv101.32 (3)Sc2x—C—Sc182.99 (3)
Cxi—Sc1—Coxvii132.806 (18)Sc2viii—C—Sc1154.65 (2)
Cxii—Sc1—Coxvii47.194 (18)Cxii—C—Sc1v72.191 (15)
Cxiii—Sc1—Coxvii101.32 (3)Co—C—Sc1v76.28 (2)
Cxiv—Sc1—Coxvii47.194 (18)Sc2—C—Sc1v120.32 (2)
Cxv—Sc1—Coxvii132.806 (17)Sc2x—C—Sc1v154.65 (2)
Cii—Sc1—Coxvii78.68 (3)Sc2viii—C—Sc1v82.99 (3)
Cxvi—Sc1—Coxvii101.32 (3)Sc1—C—Sc1v91.15 (4)
C—Sc1—Coxvii78.68 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) x+1, y, z; (iv) x, y1, z; (v) x+1, y, z; (vi) x+1, y1, z; (vii) x1/2, y1/2, z1/2; (viii) x+3/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z1/2; (x) x+1/2, y+1/2, z+1/2; (xi) x1, y, z; (xii) x+1, y+1, z; (xiii) x, y+1, z; (xiv) x+1, y+1, z; (xv) x1, y, z; (xvi) x, y+1, z; (xvii) x, y+1, z; (xviii) x1, y+1, z; (xix) x+1/2, y+1/2, z+1/2; (xx) x1/2, y+1/2, z+1/2; (xxi) x+1/2, y+1/2, z+1/2; (xxii) x1/2, y+1/2, z+1/2; (xxiii) x+1/2, y1/2, z+1/2; (xxiv) x+3/2, y+3/2, z+1/2.
5-(Ag) top
Crystal data top
C16H13Br2NF(000) = 744
Mr = 379.09Dx = 1.835 Mg m3
Monoclinic, P21/nAg Kα radiation, λ = 0.56086 Å
a = 9.601 (2) ÅCell parameters from 9896 reflections
b = 8.377 (2) Åθ = 2.6–20.9°
c = 17.201 (3) ŵ = 3.16 mm1
β = 97.35 (2)°T = 100 K
V = 1372.1 (5) Å30.20 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker Smart APEX II Quazar
diffractometer
2736 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.032
ω scansθmax = 20.9°, θmin = 1.8°
Absorption correction: multi-scan
SADABS-2014/4
h = 1212
Tmin = 0.648, Tmax = 0.697k = 1010
53103 measured reflectionsl = 2121
2948 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0233P)2 + 1.4071P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
2948 reflectionsΔρmax = 0.85 e Å3
173 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.49008 (2)0.01220 (2)0.69965 (2)0.02045 (6)
Br20.42857 (2)0.29652 (3)0.48081 (2)0.02535 (6)
N10.16189 (15)0.08661 (17)0.57962 (9)0.0136 (3)
C40.0234 (2)0.0336 (2)0.79109 (11)0.0208 (4)
H40.00540.06280.84000.025*
C30.1511 (2)0.0952 (2)0.76984 (11)0.0188 (4)
H00E0.20620.16530.80470.023*
C10.11300 (17)0.0517 (2)0.64724 (10)0.0132 (3)
C20.19582 (18)0.0553 (2)0.70021 (11)0.0155 (3)
C70.09670 (18)0.2165 (2)0.61497 (11)0.0151 (3)
C60.01674 (18)0.1142 (2)0.66830 (10)0.0140 (3)
C50.05846 (19)0.0666 (2)0.74244 (11)0.0180 (4)
H50.14400.10560.75750.022*
C80.04826 (18)0.2483 (2)0.54252 (11)0.0143 (3)
C90.12454 (19)0.3433 (2)0.48222 (11)0.0181 (4)
H00F0.21210.38860.49050.022*
C100.0730 (2)0.3696 (2)0.41308 (11)0.0204 (4)
H00H0.12560.43170.37340.024*
C110.0583 (2)0.3050 (2)0.39988 (11)0.0197 (4)
H00G0.09260.32520.35140.024*
C120.13676 (19)0.2144 (2)0.45524 (11)0.0160 (4)
C130.08391 (18)0.1815 (2)0.52841 (10)0.0135 (3)
C140.23209 (19)0.2891 (2)0.63433 (12)0.0195 (4)
H140.31150.22350.61150.029*
H00K0.23060.29370.69140.029*
H00L0.24210.39730.61260.029*
C150.32514 (18)0.1282 (2)0.67560 (11)0.0179 (4)
H00A0.34380.23150.70290.021*
H150.30960.14950.61850.021*
C160.27561 (19)0.1482 (2)0.44095 (11)0.0194 (4)
H160.29090.04370.46760.023*
H00D0.27630.13110.38400.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01288 (9)0.02093 (10)0.02761 (11)0.00163 (7)0.00282 (7)0.00626 (7)
Br20.01582 (10)0.03085 (12)0.02905 (11)0.00623 (7)0.00162 (7)0.00327 (8)
N10.0109 (7)0.0112 (7)0.0182 (7)0.0012 (5)0.0001 (5)0.0029 (6)
C40.0213 (9)0.0209 (9)0.0208 (9)0.0089 (8)0.0048 (8)0.0007 (8)
C30.0196 (9)0.0124 (8)0.0227 (9)0.0043 (7)0.0037 (7)0.0027 (7)
C10.0103 (8)0.0107 (8)0.0179 (8)0.0028 (6)0.0008 (6)0.0021 (7)
C20.0119 (8)0.0108 (8)0.0225 (9)0.0024 (6)0.0024 (7)0.0008 (7)
C70.0100 (8)0.0114 (8)0.0233 (9)0.0025 (6)0.0006 (7)0.0047 (7)
C60.0111 (8)0.0115 (8)0.0191 (9)0.0033 (6)0.0010 (6)0.0029 (7)
C50.0133 (8)0.0182 (9)0.0230 (9)0.0041 (7)0.0042 (7)0.0032 (7)
C80.0121 (8)0.0095 (8)0.0204 (9)0.0019 (6)0.0018 (7)0.0039 (7)
C90.0141 (8)0.0127 (8)0.0257 (10)0.0001 (7)0.0042 (7)0.0031 (7)
C100.0220 (9)0.0152 (9)0.0210 (9)0.0030 (7)0.0091 (7)0.0009 (7)
C110.0234 (10)0.0185 (9)0.0159 (9)0.0072 (7)0.0025 (7)0.0014 (7)
C120.0155 (8)0.0146 (8)0.0173 (9)0.0039 (7)0.0002 (7)0.0047 (7)
C130.0116 (8)0.0108 (8)0.0174 (8)0.0036 (6)0.0012 (6)0.0037 (6)
C140.0127 (8)0.0186 (9)0.0266 (10)0.0010 (7)0.0006 (7)0.0012 (8)
C150.0146 (8)0.0126 (8)0.0251 (9)0.0000 (7)0.0027 (7)0.0018 (7)
C160.0171 (9)0.0221 (10)0.0192 (9)0.0045 (7)0.0033 (7)0.0062 (7)
Geometric parameters (Å, º) top
Br1—C151.9736 (18)C8—C91.432 (3)
Br2—C161.9782 (19)C8—C131.436 (2)
N1—C11.341 (2)C9—C101.363 (3)
N1—C131.341 (2)C9—H00F0.9500
C4—C51.362 (3)C10—C111.416 (3)
C4—C31.420 (3)C10—H00H0.9500
C4—H40.9500C11—C121.366 (3)
C3—C21.365 (3)C11—H00G0.9500
C3—H00E0.9500C12—C131.443 (3)
C1—C61.440 (2)C12—C161.493 (3)
C1—C21.442 (2)C14—H140.9800
C2—C151.493 (3)C14—H00K0.9800
C7—C61.409 (3)C14—H00L0.9800
C7—C81.410 (3)C15—H00A0.9900
C7—C141.510 (2)C15—H150.9900
C6—C51.441 (3)C16—H160.9900
C5—H50.9500C16—H00D0.9900
C1—N1—C13118.09 (15)C9—C10—H00H119.7
C5—C4—C3121.00 (18)C11—C10—H00H119.7
C5—C4—H4119.5C12—C11—C10121.54 (18)
C3—C4—H4119.5C12—C11—H00G119.2
C2—C3—C4121.07 (17)C10—C11—H00G119.2
C2—C3—H00E119.5C11—C12—C13119.35 (17)
C4—C3—H00E119.5C11—C12—C16121.08 (17)
N1—C1—C6123.29 (16)C13—C12—C16119.57 (16)
N1—C1—C2117.24 (16)N1—C13—C8123.45 (16)
C6—C1—C2119.47 (16)N1—C13—C12117.20 (16)
C3—C2—C1119.76 (17)C8—C13—C12119.34 (16)
C3—C2—C15121.03 (17)C7—C14—H14109.5
C1—C2—C15119.11 (16)C7—C14—H00K109.5
C6—C7—C8118.45 (16)H14—C14—H00K109.5
C6—C7—C14120.94 (17)C7—C14—H00L109.5
C8—C7—C14120.61 (16)H14—C14—H00L109.5
C7—C6—C1118.32 (16)H00K—C14—H00L109.5
C7—C6—C5123.66 (16)C2—C15—Br1111.78 (12)
C1—C6—C5118.01 (16)C2—C15—H00A109.3
C4—C5—C6120.69 (17)Br1—C15—H00A109.3
C4—C5—H5119.7C2—C15—H15109.3
C6—C5—H5119.7Br1—C15—H15109.3
C7—C8—C9123.31 (17)H00A—C15—H15107.9
C7—C8—C13118.32 (16)C12—C16—Br2110.38 (13)
C9—C8—C13118.38 (17)C12—C16—H16109.6
C10—C9—C8120.83 (17)Br2—C16—H16109.6
C10—C9—H00F119.6C12—C16—H00D109.6
C8—C9—H00F119.6Br2—C16—H00D109.6
C9—C10—C11120.54 (17)H16—C16—H00D108.1
5-(Mo) top
Crystal data top
C16H13Br2NF(000) = 744
Mr = 379.09Dx = 1.836 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.599 (2) ÅCell parameters from 9736 reflections
b = 8.378 (2) Åθ = 2.3–26.8°
c = 17.194 (3) ŵ = 5.90 mm1
β = 97.32 (2)°T = 100 K
V = 1371.5 (5) Å30.20 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker Smart APEX II Quazar
diffractometer
2754 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.023
ω scansθmax = 26.8°, θmin = 2.3°
Absorption correction: multi-scan
SADABS-2014/4
h = 1212
Tmin = 0.452, Tmax = 0.519k = 1010
34451 measured reflectionsl = 2121
2918 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.026P)2 + 1.6275P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2918 reflectionsΔρmax = 0.79 e Å3
173 parametersΔρmin = 0.59 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00996 (2)0.01221 (2)0.19965 (2)0.02202 (7)
Br20.07147 (2)0.29647 (3)0.01920 (2)0.02705 (7)
N010.33788 (16)0.08678 (19)0.07965 (9)0.0150 (3)
C0040.3042 (2)0.0555 (2)0.20016 (12)0.0171 (4)
C0050.41590 (19)0.1815 (2)0.02838 (11)0.0150 (4)
C0060.38696 (19)0.0517 (2)0.14726 (11)0.0148 (4)
C0070.3632 (2)0.2145 (2)0.04472 (11)0.0175 (4)
C0080.5586 (2)0.0667 (2)0.24237 (12)0.0197 (4)
H0080.64430.10540.25740.024*
C0090.51671 (19)0.1143 (2)0.16839 (11)0.0157 (4)
C00A0.54823 (19)0.2482 (2)0.04254 (11)0.0158 (4)
C00B0.1749 (2)0.1282 (2)0.17557 (12)0.0194 (4)
H00A0.19040.14940.11850.023*
H00B0.15630.23150.20290.023*
C00C0.2247 (2)0.1480 (3)0.05908 (12)0.0209 (4)
H00C0.22410.13100.11600.025*
H00D0.20950.04360.03240.025*
C00D0.6245 (2)0.3434 (2)0.01772 (12)0.0195 (4)
H00E0.71210.38870.00940.023*
C00E0.4417 (2)0.3050 (2)0.10020 (12)0.0213 (4)
H00F0.40750.32490.14880.026*
C00F0.3490 (2)0.0950 (2)0.26977 (12)0.0202 (4)
H00G0.29380.16490.30460.024*
C00G0.5729 (2)0.3696 (2)0.08683 (12)0.0223 (4)
H00H0.62540.43190.12640.027*
C00H0.5967 (2)0.2165 (2)0.11492 (12)0.0169 (4)
C00I0.4767 (2)0.0335 (3)0.29113 (12)0.0219 (4)
H00I0.50530.06260.34010.026*
C00J0.7321 (2)0.2890 (2)0.13425 (13)0.0213 (4)
H00J0.74260.39670.11210.032*
H00K0.73020.29460.19130.032*
H00L0.81140.22270.11190.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01422 (10)0.02267 (11)0.02919 (12)0.00169 (7)0.00287 (8)0.00642 (8)
Br20.01727 (11)0.03276 (13)0.03074 (13)0.00650 (8)0.00164 (8)0.00341 (9)
N010.0119 (7)0.0130 (7)0.0195 (8)0.0014 (6)0.0001 (6)0.0029 (6)
C0040.0134 (8)0.0127 (8)0.0242 (10)0.0027 (7)0.0016 (7)0.0008 (7)
C0050.0138 (8)0.0126 (8)0.0179 (9)0.0037 (7)0.0008 (7)0.0035 (7)
C0060.0121 (8)0.0116 (8)0.0199 (9)0.0027 (7)0.0004 (7)0.0027 (7)
C0070.0167 (9)0.0169 (9)0.0184 (9)0.0042 (7)0.0004 (7)0.0042 (7)
C0080.0150 (9)0.0204 (9)0.0241 (10)0.0045 (8)0.0044 (7)0.0028 (8)
C0090.0125 (8)0.0136 (8)0.0208 (9)0.0034 (7)0.0010 (7)0.0028 (7)
C00A0.0130 (8)0.0119 (8)0.0213 (9)0.0023 (7)0.0027 (7)0.0033 (7)
C00B0.0157 (9)0.0146 (9)0.0266 (10)0.0002 (7)0.0024 (7)0.0013 (8)
C00C0.0184 (9)0.0239 (10)0.0208 (10)0.0042 (8)0.0040 (8)0.0054 (8)
C00D0.0153 (9)0.0139 (9)0.0275 (10)0.0004 (7)0.0041 (8)0.0026 (8)
C00E0.0248 (10)0.0206 (10)0.0170 (9)0.0072 (8)0.0027 (8)0.0009 (8)
C00F0.0203 (9)0.0147 (9)0.0240 (10)0.0042 (7)0.0037 (8)0.0031 (8)
C00G0.0230 (10)0.0179 (9)0.0228 (10)0.0032 (8)0.0089 (8)0.0010 (8)
C00H0.0119 (8)0.0133 (8)0.0247 (10)0.0017 (7)0.0002 (7)0.0047 (7)
C00I0.0224 (10)0.0222 (10)0.0217 (10)0.0081 (8)0.0050 (8)0.0005 (8)
C00J0.0142 (9)0.0199 (10)0.0293 (11)0.0005 (7)0.0011 (8)0.0001 (8)
Geometric parameters (Å, º) top
Br1—C00B1.9738 (19)C007—C00C1.491 (3)
Br2—C00C1.980 (2)C008—C00I1.363 (3)
N01—C0061.341 (2)C008—C0091.438 (3)
N01—C0051.341 (2)C009—C00H1.410 (3)
C004—C00F1.363 (3)C00A—C00H1.408 (3)
C004—C0061.442 (3)C00A—C00D1.433 (3)
C004—C00B1.491 (3)C00D—C00G1.362 (3)
C005—C00A1.437 (3)C00E—C00G1.416 (3)
C005—C0071.440 (3)C00F—C00I1.420 (3)
C006—C0091.440 (3)C00H—C00J1.510 (3)
C007—C00E1.367 (3)
C006—N01—C005118.07 (16)C00H—C009—C006118.22 (17)
C00F—C004—C006119.68 (18)C008—C009—C006118.09 (17)
C00F—C004—C00B121.10 (18)C00H—C00A—C00D123.25 (18)
C006—C004—C00B119.13 (18)C00H—C00A—C005118.36 (17)
N01—C005—C00A123.39 (17)C00D—C00A—C005118.39 (18)
N01—C005—C007117.27 (17)C004—C00B—Br1111.81 (13)
C00A—C005—C007119.33 (18)C007—C00C—Br2110.28 (14)
N01—C006—C009123.35 (17)C00G—C00D—C00A120.75 (19)
N01—C006—C004117.18 (17)C007—C00E—C00G121.41 (19)
C009—C006—C004119.46 (17)C004—C00F—C00I121.19 (19)
C00E—C007—C005119.44 (18)C00D—C00G—C00E120.65 (19)
C00E—C007—C00C121.03 (19)C00A—C00H—C009118.51 (17)
C005—C007—C00C119.52 (18)C00A—C00H—C00J120.61 (18)
C00I—C008—C009120.65 (18)C009—C00H—C00J120.87 (18)
C00H—C009—C008123.68 (17)C008—C00I—C00F120.92 (19)
6-(Ag) top
Crystal data top
C30H46Br2Cl2CoN4Si2F(000) = 1652
Mr = 808.54Dx = 1.461 Mg m3
Monoclinic, P21/nAg Kα radiation, λ = 0.56086 Å
a = 18.568 (3) ÅCell parameters from 9912 reflections
b = 9.504 (2) Åθ = 2.6–20.8°
c = 21.378 (3) ŵ = 1.53 mm1
β = 102.95 (2)°T = 100 K
V = 3676.6 (11) Å30.08 × 0.06 × 0.02 mm
Z = 4
Data collection top
Bruker Smart APEX II Quazar
diffractometer
6882 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.038
ω scansθmax = 20.8°, θmin = 1.5°
Absorption correction: multi-scan
SADABS-2014/4
h = 2323
Tmin = 0.841, Tmax = 0.960k = 1212
60559 measured reflectionsl = 2727
7811 independent reflections
Refinement top
Refinement on F279 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0225P)2 + 1.990P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7811 reflectionsΔρmax = 0.41 e Å3
420 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.03359 (2)0.56713 (2)0.27668 (2)0.01389 (5)
Br10.10445 (2)0.77476 (2)0.28356 (2)0.02096 (6)0.9736 (8)
Cl1B0.0799 (13)0.779 (2)0.2769 (12)0.02096 (6)0.0264 (8)
Br20.07057 (2)0.49224 (2)0.38454 (2)0.02330 (6)0.9736 (8)
Cl2B0.0782 (13)0.461 (3)0.3686 (9)0.02330 (6)0.0264 (8)
Si10.03220 (2)0.54932 (5)0.17408 (2)0.01487 (9)
Si20.06621 (2)0.44281 (5)0.27142 (2)0.01473 (9)
Cl10.01344 (6)0.38328 (15)0.11392 (7)0.0258 (2)0.9736 (8)
Br1C0.0267 (11)0.381 (3)0.1166 (12)0.0258 (2)0.0264 (8)
Cl20.15454 (6)0.42642 (11)0.19043 (5)0.02511 (17)0.9736 (8)
Br2C0.1617 (10)0.402 (2)0.1952 (9)0.02511 (17)0.0264 (8)
N20.02298 (7)0.69982 (15)0.12014 (6)0.0167 (3)
N30.06660 (7)0.27216 (14)0.30928 (6)0.0163 (3)
N40.11687 (7)0.45964 (15)0.33466 (6)0.0178 (3)
C10.09426 (8)0.68819 (18)0.11746 (7)0.0163 (3)
N10.11945 (7)0.57260 (15)0.15020 (6)0.0174 (3)
C20.19081 (9)0.49658 (18)0.16081 (8)0.0198 (3)
C30.2580 (4)0.5936 (8)0.1683 (5)0.0324 (15)0.56 (2)
H3A0.30320.53680.17510.049*0.56 (2)
H3B0.25380.65030.12930.049*0.56 (2)
H3C0.26020.65590.20520.049*0.56 (2)
C40.1908 (7)0.4013 (12)0.1030 (5)0.0288 (18)0.56 (2)
H4A0.23790.35060.10970.043*0.56 (2)
H4B0.15010.33350.09820.043*0.56 (2)
H4C0.18430.45880.06400.043*0.56 (2)
C50.1938 (8)0.4071 (13)0.2198 (5)0.041 (2)0.56 (2)
H5A0.24010.35370.22940.061*0.56 (2)
H5B0.19130.46790.25630.061*0.56 (2)
H5C0.15190.34180.21190.061*0.56 (2)
C3A0.2533 (5)0.5921 (10)0.1942 (9)0.041 (3)0.44 (2)
H3A10.30030.54100.20100.061*0.44 (2)
H3A20.25550.67500.16740.061*0.44 (2)
H3A30.24450.62200.23570.061*0.44 (2)
C4A0.2015 (11)0.4354 (17)0.0985 (6)0.037 (3)0.44 (2)
H4A10.24880.38530.10600.055*0.44 (2)
H4A20.16120.36960.08160.055*0.44 (2)
H4A30.20140.51130.06750.055*0.44 (2)
C5A0.1858 (10)0.3759 (15)0.2069 (7)0.037 (3)0.44 (2)
H5A10.23200.32220.21540.056*0.44 (2)
H5A20.17750.41420.24730.056*0.44 (2)
H5A30.14460.31390.18760.056*0.44 (2)
C60.03355 (9)0.80599 (18)0.09232 (8)0.0190 (3)
C70.04532 (11)0.8055 (2)0.01940 (8)0.0315 (4)
H7A0.08600.86920.00080.047*
H7B0.05750.70990.00320.047*
H7C0.00000.83700.00730.047*
C80.01139 (11)0.9523 (2)0.11873 (9)0.0305 (4)
H8A0.03120.98510.10280.046*
H8B0.00170.94880.16570.046*
H8C0.05281.01730.10470.046*
C90.10376 (10)0.7593 (2)0.11194 (11)0.0370 (5)
H9A0.14390.82510.09440.055*
H9B0.09520.75810.15890.055*
H9C0.11740.66470.09520.055*
C100.13825 (9)0.78651 (19)0.08709 (8)0.0203 (3)
C110.17443 (10)0.8989 (2)0.12244 (9)0.0265 (4)
H110.16780.91660.16450.032*
C120.22007 (11)0.9849 (2)0.09610 (11)0.0357 (5)
H120.24541.06090.12040.043*
C130.22877 (11)0.9602 (3)0.03455 (11)0.0438 (6)
H130.26011.01940.01660.053*
C140.19231 (11)0.8507 (3)0.00082 (10)0.0430 (6)
H140.19830.83520.04330.052*
C150.14673 (10)0.7623 (2)0.02487 (8)0.0304 (4)
H150.12170.68640.00030.036*
C160.10367 (8)0.32501 (18)0.35097 (7)0.0169 (3)
C170.16234 (9)0.56885 (18)0.35680 (8)0.0211 (4)
C180.16415 (15)0.6923 (2)0.31120 (12)0.0515 (7)
H18A0.18770.66290.26750.077*
H18B0.11360.72360.31250.077*
H18C0.19230.76980.32430.077*
C190.12719 (11)0.6159 (2)0.42487 (10)0.0350 (5)
H19A0.07620.64580.42710.052*
H19B0.12740.53750.45460.052*
H19C0.15540.69480.43680.052*
C200.24004 (10)0.5136 (2)0.35197 (11)0.0372 (5)
H20A0.25920.47520.30890.056*
H20B0.27200.59060.35990.056*
H20C0.23910.43950.38400.056*
C210.02628 (9)0.13691 (17)0.30850 (8)0.0197 (3)
C220.03268 (10)0.16586 (19)0.27051 (9)0.0241 (4)
H22A0.00910.20210.22790.036*
H22B0.05900.07840.26590.036*
H22C0.06780.23570.29330.036*
C230.08000 (11)0.0267 (2)0.27371 (10)0.0319 (4)
H23A0.11800.00860.29800.048*
H23B0.05320.06060.27000.048*
H23C0.10340.06110.23070.048*
C240.01131 (12)0.0868 (2)0.37563 (9)0.0335 (5)
H24A0.04470.00860.37240.050*
H24B0.02620.05520.39820.050*
H24C0.03960.16440.39950.050*
C250.12520 (9)0.24780 (18)0.40419 (8)0.0188 (3)
C260.18171 (10)0.1489 (2)0.39064 (8)0.0241 (4)
H260.20800.13430.34760.029*
C270.19967 (11)0.0714 (2)0.44003 (9)0.0308 (4)
H270.23830.00380.43090.037*
C280.16099 (11)0.0930 (2)0.50267 (9)0.0321 (4)
H280.17270.03880.53640.039*
C290.10548 (12)0.1928 (2)0.51648 (8)0.0307 (4)
H290.07980.20800.55960.037*
C300.08733 (10)0.27045 (19)0.46741 (8)0.0244 (4)
H300.04920.33900.47680.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01348 (10)0.01527 (11)0.01304 (10)0.00228 (8)0.00321 (8)0.00187 (8)
Br10.02282 (11)0.01803 (9)0.02184 (9)0.00764 (9)0.00462 (9)0.00273 (7)
Cl1B0.02282 (11)0.01803 (9)0.02184 (9)0.00764 (9)0.00462 (9)0.00273 (7)
Br20.02393 (10)0.02937 (12)0.01439 (10)0.00656 (8)0.00035 (7)0.00056 (7)
Cl2B0.02393 (10)0.02937 (12)0.01439 (10)0.00656 (8)0.00035 (7)0.00056 (7)
Si10.0141 (2)0.0166 (2)0.01422 (19)0.00006 (17)0.00368 (16)0.00155 (17)
Si20.0132 (2)0.0154 (2)0.0157 (2)0.00007 (17)0.00342 (16)0.00192 (17)
Cl10.0283 (5)0.0275 (2)0.0221 (3)0.0068 (4)0.0072 (3)0.01013 (19)
Br1C0.0283 (5)0.0275 (2)0.0221 (3)0.0068 (4)0.0072 (3)0.01013 (19)
Cl20.0167 (3)0.0336 (5)0.0225 (3)0.0060 (3)0.0010 (2)0.0081 (3)
Br2C0.0167 (3)0.0336 (5)0.0225 (3)0.0060 (3)0.0010 (2)0.0081 (3)
N20.0141 (7)0.0210 (7)0.0157 (6)0.0022 (5)0.0047 (5)0.0026 (5)
N30.0158 (7)0.0149 (7)0.0180 (6)0.0008 (5)0.0034 (5)0.0019 (5)
N40.0159 (7)0.0173 (7)0.0219 (7)0.0026 (5)0.0082 (5)0.0041 (6)
C10.0142 (7)0.0229 (9)0.0116 (7)0.0004 (6)0.0026 (6)0.0028 (6)
N10.0144 (7)0.0220 (8)0.0161 (6)0.0033 (6)0.0044 (5)0.0004 (6)
C20.0146 (8)0.0211 (9)0.0237 (8)0.0058 (7)0.0042 (6)0.0015 (7)
C30.018 (2)0.027 (2)0.049 (4)0.0034 (15)0.001 (2)0.014 (3)
C40.027 (3)0.026 (4)0.034 (3)0.003 (3)0.010 (2)0.008 (3)
C50.039 (4)0.053 (5)0.033 (3)0.032 (4)0.012 (3)0.017 (3)
C3A0.016 (3)0.030 (3)0.067 (7)0.005 (2)0.011 (4)0.016 (4)
C4A0.045 (7)0.037 (6)0.034 (3)0.020 (5)0.019 (3)0.003 (3)
C5A0.036 (5)0.043 (5)0.039 (5)0.018 (3)0.019 (4)0.014 (4)
C60.0149 (8)0.0242 (9)0.0182 (8)0.0056 (7)0.0042 (6)0.0042 (7)
C70.0278 (10)0.0466 (13)0.0176 (8)0.0146 (9)0.0006 (7)0.0008 (8)
C80.0341 (11)0.0256 (10)0.0298 (9)0.0092 (8)0.0027 (8)0.0008 (8)
C90.0193 (9)0.0405 (12)0.0542 (13)0.0115 (8)0.0150 (9)0.0191 (10)
C100.0123 (8)0.0291 (10)0.0196 (8)0.0045 (7)0.0042 (6)0.0064 (7)
C110.0229 (9)0.0287 (10)0.0278 (9)0.0001 (8)0.0056 (7)0.0066 (8)
C120.0218 (9)0.0331 (11)0.0507 (13)0.0032 (8)0.0051 (9)0.0143 (10)
C130.0220 (10)0.0635 (16)0.0476 (13)0.0003 (10)0.0113 (9)0.0316 (12)
C140.0273 (11)0.0785 (18)0.0262 (10)0.0058 (11)0.0123 (8)0.0198 (11)
C150.0205 (9)0.0532 (13)0.0179 (8)0.0029 (8)0.0049 (7)0.0063 (8)
C160.0125 (7)0.0192 (8)0.0177 (7)0.0029 (6)0.0003 (6)0.0011 (6)
C170.0206 (8)0.0209 (9)0.0243 (8)0.0058 (7)0.0102 (7)0.0015 (7)
C180.0750 (17)0.0338 (12)0.0608 (15)0.0332 (12)0.0471 (14)0.0231 (11)
C190.0322 (11)0.0299 (11)0.0398 (11)0.0042 (9)0.0017 (9)0.0135 (9)
C200.0191 (9)0.0484 (13)0.0460 (12)0.0031 (9)0.0114 (8)0.0177 (10)
C210.0214 (8)0.0142 (8)0.0231 (8)0.0018 (7)0.0041 (7)0.0004 (7)
C220.0228 (9)0.0174 (9)0.0332 (9)0.0025 (7)0.0088 (7)0.0014 (7)
C230.0317 (10)0.0213 (10)0.0451 (11)0.0081 (8)0.0134 (9)0.0089 (8)
C240.0435 (12)0.0280 (11)0.0279 (10)0.0167 (9)0.0055 (8)0.0068 (8)
C250.0192 (8)0.0198 (9)0.0173 (7)0.0001 (6)0.0040 (6)0.0031 (6)
C260.0212 (9)0.0296 (10)0.0205 (8)0.0054 (7)0.0023 (7)0.0051 (7)
C270.0285 (10)0.0332 (11)0.0311 (10)0.0100 (8)0.0078 (8)0.0074 (8)
C280.0410 (11)0.0338 (11)0.0243 (9)0.0010 (9)0.0133 (8)0.0117 (8)
C290.0437 (11)0.0296 (11)0.0166 (8)0.0007 (9)0.0021 (8)0.0038 (7)
C300.0289 (9)0.0210 (9)0.0208 (8)0.0036 (7)0.0001 (7)0.0001 (7)
Geometric parameters (Å, º) top
Co1—Si22.1792 (6)C7—H7C0.9800
Co1—Cl1B2.19 (2)C8—H8A0.9800
Co1—Si12.1942 (6)C8—H8B0.9800
Co1—Cl2B2.196 (19)C8—H8C0.9800
Co1—Br12.3580 (5)C9—H9A0.9800
Co1—Br22.3633 (5)C9—H9B0.9800
Si1—N11.8179 (14)C9—H9C0.9800
Si1—N21.8213 (14)C10—C111.391 (3)
Si1—Cl12.0913 (13)C10—C151.393 (2)
Si1—Br1C2.159 (19)C11—C121.385 (3)
Si1—C12.2716 (17)C11—H110.9500
Si2—N31.8133 (14)C12—C131.381 (3)
Si2—N41.8188 (14)C12—H120.9500
Si2—Cl22.1070 (12)C13—C141.373 (4)
Si2—Br2C2.156 (17)C13—H130.9500
Si2—C162.2713 (16)C14—C151.390 (3)
N2—C11.342 (2)C14—H140.9500
N2—C61.481 (2)C15—H150.9500
N3—C161.340 (2)C16—C251.482 (2)
N3—C211.490 (2)C17—C201.517 (3)
N4—C161.334 (2)C17—C181.521 (3)
N4—C171.481 (2)C17—C191.523 (3)
C1—N11.330 (2)C18—H18A0.9800
C1—C101.483 (2)C18—H18B0.9800
N1—C21.481 (2)C18—H18C0.9800
C2—C4A1.506 (9)C19—H19A0.9800
C2—C51.511 (8)C19—H19B0.9800
C2—C3A1.520 (7)C19—H19C0.9800
C2—C5A1.529 (9)C20—H20A0.9800
C2—C31.531 (6)C20—H20B0.9800
C2—C41.533 (7)C20—H20C0.9800
C3—H3A0.9800C21—C231.521 (2)
C3—H3B0.9800C21—C241.525 (2)
C3—H3C0.9800C21—C221.527 (2)
C4—H4A0.9800C22—H22A0.9800
C4—H4B0.9800C22—H22B0.9800
C4—H4C0.9800C22—H22C0.9800
C5—H5A0.9800C23—H23A0.9800
C5—H5B0.9800C23—H23B0.9800
C5—H5C0.9800C23—H23C0.9800
C3A—H3A10.9800C24—H24A0.9800
C3A—H3A20.9800C24—H24B0.9800
C3A—H3A30.9800C24—H24C0.9800
C4A—H4A10.9800C25—C261.390 (2)
C4A—H4A20.9800C25—C301.393 (2)
C4A—H4A30.9800C26—C271.388 (2)
C5A—H5A10.9800C26—H260.9500
C5A—H5A20.9800C27—C281.386 (3)
C5A—H5A30.9800C27—H270.9500
C6—C91.522 (2)C28—C291.383 (3)
C6—C81.523 (3)C28—H280.9500
C6—C71.525 (2)C29—C301.385 (3)
C7—H7A0.9800C29—H290.9500
C7—H7B0.9800C30—H300.9500
Si2—Co1—Cl1B145.9 (7)C8—C6—C7110.29 (15)
Si2—Co1—Si195.01 (2)C6—C7—H7A109.5
Cl1B—Co1—Si189.4 (7)C6—C7—H7B109.5
Si2—Co1—Cl2B86.8 (6)H7A—C7—H7B109.5
Cl1B—Co1—Cl2B110.5 (9)C6—C7—H7C109.5
Si1—Co1—Cl2B140.9 (6)H7A—C7—H7C109.5
Si2—Co1—Br1155.933 (17)H7B—C7—H7C109.5
Si1—Co1—Br190.479 (18)C6—C8—H8A109.5
Si2—Co1—Br286.83 (2)C6—C8—H8B109.5
Si1—Co1—Br2152.597 (17)H8A—C8—H8B109.5
Br1—Co1—Br298.922 (17)C6—C8—H8C109.5
N1—Si1—N271.93 (6)H8A—C8—H8C109.5
N1—Si1—Cl1100.54 (5)H8B—C8—H8C109.5
N2—Si1—Cl1103.63 (7)C6—C9—H9A109.5
N1—Si1—Br1C107.4 (5)C6—C9—H9B109.5
N2—Si1—Br1C105.0 (8)H9A—C9—H9B109.5
N1—Si1—Co1117.37 (5)C6—C9—H9C109.5
N2—Si1—Co1123.42 (5)H9A—C9—H9C109.5
Cl1—Si1—Co1125.82 (4)H9B—C9—H9C109.5
Br1C—Si1—Co1121.1 (6)C11—C10—C15120.09 (17)
N1—Si1—C135.83 (6)C11—C10—C1119.49 (15)
N2—Si1—C136.21 (6)C15—C10—C1120.33 (17)
Cl1—Si1—C1107.14 (5)C12—C11—C10119.83 (18)
Br1C—Si1—C1112.3 (6)C12—C11—H11120.1
Co1—Si1—C1126.45 (4)C10—C11—H11120.1
N3—Si2—N472.09 (6)C13—C12—C11120.0 (2)
N3—Si2—Cl2102.73 (5)C13—C12—H12120.0
N4—Si2—Cl2100.39 (6)C11—C12—H12120.0
N3—Si2—Br2C95.3 (5)C14—C13—C12120.33 (19)
N4—Si2—Br2C95.9 (5)C14—C13—H13119.8
N3—Si2—Co1123.39 (5)C12—C13—H13119.8
N4—Si2—Co1119.30 (5)C13—C14—C15120.63 (19)
Cl2—Si2—Co1125.36 (3)C13—C14—H14119.7
Br2C—Si2—Co1133.0 (4)C15—C14—H14119.7
N3—Si2—C1636.15 (6)C14—C15—C10119.1 (2)
N4—Si2—C1635.97 (6)C14—C15—H15120.4
Cl2—Si2—C16105.44 (5)C10—C15—H15120.4
Br2C—Si2—C1698.0 (4)N4—C16—N3106.11 (14)
Co1—Si2—C16128.91 (5)N4—C16—C25127.58 (15)
C1—N2—C6131.00 (14)N3—C16—C25126.31 (15)
C1—N2—Si190.50 (10)N4—C16—Si253.19 (8)
C6—N2—Si1138.31 (11)N3—C16—Si252.96 (8)
C16—N3—C21131.71 (14)C25—C16—Si2177.87 (12)
C16—N3—Si290.89 (10)N4—C17—C20109.72 (15)
C21—N3—Si2135.61 (11)N4—C17—C18105.55 (14)
C16—N4—C17132.30 (14)C20—C17—C18109.83 (18)
C16—N4—Si290.83 (10)N4—C17—C19110.99 (14)
C17—N4—Si2136.55 (11)C20—C17—C19111.36 (16)
N1—C1—N2106.23 (14)C18—C17—C19109.22 (18)
N1—C1—C10125.98 (14)C17—C18—H18A109.5
N2—C1—C10127.73 (15)C17—C18—H18B109.5
N1—C1—Si153.15 (8)H18A—C18—H18B109.5
N2—C1—Si153.29 (8)C17—C18—H18C109.5
C10—C1—Si1173.86 (12)H18A—C18—H18C109.5
C1—N1—C2132.88 (14)H18B—C18—H18C109.5
C1—N1—Si191.02 (10)C17—C19—H19A109.5
C2—N1—Si1136.09 (11)C17—C19—H19B109.5
N1—C2—C4A110.1 (7)H19A—C19—H19B109.5
N1—C2—C5105.5 (6)C17—C19—H19C109.5
N1—C2—C3A110.1 (4)H19A—C19—H19C109.5
C4A—C2—C3A114.1 (6)H19B—C19—H19C109.5
N1—C2—C5A106.4 (7)C17—C20—H20A109.5
C4A—C2—C5A108.6 (7)C17—C20—H20B109.5
C3A—C2—C5A107.2 (7)H20A—C20—H20B109.5
N1—C2—C3113.7 (3)C17—C20—H20C109.5
C5—C2—C3112.0 (6)H20A—C20—H20C109.5
N1—C2—C4109.0 (5)H20B—C20—H20C109.5
C5—C2—C4109.5 (6)N3—C21—C23108.89 (14)
C3—C2—C4107.0 (4)N3—C21—C24112.59 (14)
C2—C3—H3A109.5C23—C21—C24110.92 (16)
C2—C3—H3B109.5N3—C21—C22105.81 (13)
H3A—C3—H3B109.5C23—C21—C22109.50 (15)
C2—C3—H3C109.5C24—C21—C22108.98 (15)
H3A—C3—H3C109.5C21—C22—H22A109.5
H3B—C3—H3C109.5C21—C22—H22B109.5
C2—C4—H4A109.5H22A—C22—H22B109.5
C2—C4—H4B109.5C21—C22—H22C109.5
H4A—C4—H4B109.5H22A—C22—H22C109.5
C2—C4—H4C109.5H22B—C22—H22C109.5
H4A—C4—H4C109.5C21—C23—H23A109.5
H4B—C4—H4C109.5C21—C23—H23B109.5
C2—C5—H5A109.5H23A—C23—H23B109.5
C2—C5—H5B109.5C21—C23—H23C109.5
H5A—C5—H5B109.5H23A—C23—H23C109.5
C2—C5—H5C109.5H23B—C23—H23C109.5
H5A—C5—H5C109.5C21—C24—H24A109.5
H5B—C5—H5C109.5C21—C24—H24B109.5
C2—C3A—H3A1109.5H24A—C24—H24B109.5
C2—C3A—H3A2109.5C21—C24—H24C109.5
H3A1—C3A—H3A2109.5H24A—C24—H24C109.5
C2—C3A—H3A3109.5H24B—C24—H24C109.5
H3A1—C3A—H3A3109.5C26—C25—C30119.99 (16)
H3A2—C3A—H3A3109.5C26—C25—C16119.71 (14)
C2—C4A—H4A1109.5C30—C25—C16120.25 (15)
C2—C4A—H4A2109.5C27—C26—C25119.95 (16)
H4A1—C4A—H4A2109.5C27—C26—H26120.0
C2—C4A—H4A3109.5C25—C26—H26120.0
H4A1—C4A—H4A3109.5C28—C27—C26119.71 (18)
H4A2—C4A—H4A3109.5C28—C27—H27120.1
C2—C5A—H5A1109.5C26—C27—H27120.1
C2—C5A—H5A2109.5C29—C28—C27120.53 (17)
H5A1—C5A—H5A2109.5C29—C28—H28119.7
C2—C5A—H5A3109.5C27—C28—H28119.7
H5A1—C5A—H5A3109.5C28—C29—C30120.01 (17)
H5A2—C5A—H5A3109.5C28—C29—H29120.0
N2—C6—C9105.35 (14)C30—C29—H29120.0
N2—C6—C8111.41 (14)C29—C30—C25119.79 (17)
C9—C6—C8109.93 (16)C29—C30—H30120.1
N2—C6—C7109.54 (14)C25—C30—H30120.1
C9—C6—C7110.21 (16)
6-(Mo) top
Crystal data top
C30H46Br2Cl2CoN4Si2F(000) = 1652
Mr = 808.54Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 18.588 (2) ÅCell parameters from 9773 reflections
b = 9.518 (2) Åθ = 2.3–26.7°
c = 21.403 (3) ŵ = 2.87 mm1
β = 102.95 (2)°T = 100 K
V = 3690.3 (11) Å30.08 × 0.06 × 0.02 mm
Z = 4
Data collection top
Bruker Smart APEX II Quazar
diffractometer
6936 reflections with I > 2σ(I)
Radiation source: INCOATEC MicrosourceRint = 0.028
ω scansθmax = 26.8°, θmin = 1.3°
Absorption correction: multi-scan
SADABS-2014/4
h = 2323
Tmin = 0.821, Tmax = 0.927k = 1112
92677 measured reflectionsl = 2727
7847 independent reflections
Refinement top
Refinement on F279 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.027P)2 + 2.4392P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
7847 reflectionsΔρmax = 0.43 e Å3
420 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.03357 (2)0.56689 (3)0.27669 (2)0.01584 (6)
Br10.10426 (2)0.77457 (2)0.28346 (2)0.02326 (7)0.9787 (9)
Cl1B0.0739 (17)0.777 (2)0.2754 (14)0.02326 (7)0.0213 (9)
Br20.07063 (2)0.49209 (2)0.38446 (2)0.02587 (7)0.9787 (9)
Cl2B0.0819 (14)0.454 (3)0.3626 (13)0.02587 (7)0.0213 (9)
Si10.03215 (3)0.54896 (5)0.17417 (2)0.01693 (10)
Si20.06629 (3)0.44261 (5)0.27149 (2)0.01667 (10)
Cl10.01356 (4)0.38262 (12)0.11416 (5)0.02775 (19)0.9787 (9)
Br1C0.0291 (12)0.388 (3)0.1171 (13)0.02775 (19)0.0213 (9)
Cl20.15473 (5)0.42619 (9)0.19056 (4)0.02705 (18)0.9787 (9)
Br2C0.1589 (12)0.396 (2)0.1968 (10)0.02705 (18)0.0213 (9)
N20.02289 (8)0.69936 (16)0.12018 (7)0.0190 (3)
N30.06661 (8)0.27190 (16)0.30937 (7)0.0183 (3)
N40.11686 (8)0.45953 (16)0.33457 (7)0.0200 (3)
C10.09431 (9)0.6876 (2)0.11740 (8)0.0186 (4)
N10.11932 (8)0.57209 (16)0.15023 (7)0.0190 (3)
C20.19098 (10)0.4961 (2)0.16110 (9)0.0223 (4)
C30.2569 (5)0.5955 (10)0.1676 (7)0.033 (2)0.51 (3)
H3A0.30260.54060.17470.050*0.51 (3)
H3B0.25170.65090.12830.050*0.51 (3)
H3C0.25850.65860.20410.050*0.51 (3)
C40.1897 (8)0.4018 (15)0.1026 (6)0.031 (2)0.51 (3)
H4A0.23640.35040.10860.047*0.51 (3)
H4B0.14880.33480.09790.047*0.51 (3)
H4C0.18300.46000.06390.047*0.51 (3)
C50.1979 (9)0.4053 (18)0.2197 (7)0.046 (3)0.51 (3)
H5A0.24490.35440.22760.069*0.51 (3)
H5B0.19630.46450.25690.069*0.51 (3)
H5C0.15700.33790.21290.069*0.51 (3)
C3A0.2549 (6)0.5889 (12)0.1942 (10)0.051 (3)0.49 (3)
H3A10.30110.53570.20060.077*0.49 (3)
H3A20.25780.67140.16750.077*0.49 (3)
H3A30.24690.61950.23580.077*0.49 (3)
C4A0.2026 (11)0.4325 (19)0.1000 (6)0.043 (3)0.49 (3)
H4A10.25000.38310.10840.064*0.49 (3)
H4A20.16270.36590.08340.064*0.49 (3)
H4A30.20260.50690.06840.064*0.49 (3)
C5A0.1827 (9)0.3808 (16)0.2088 (8)0.042 (3)0.49 (3)
H5A10.22790.32430.21900.062*0.49 (3)
H5A20.17410.42380.24810.062*0.49 (3)
H5A30.14070.32050.18980.062*0.49 (3)
C60.03365 (10)0.8055 (2)0.09222 (9)0.0212 (4)
C70.04547 (12)0.8046 (3)0.01963 (10)0.0349 (5)
H7A0.08620.86800.00100.052*
H7B0.05760.70910.00360.052*
H7C0.00030.83600.00750.052*
C80.01133 (12)0.9518 (2)0.11850 (11)0.0332 (5)
H8A0.03030.98540.10150.050*
H8B0.00320.94790.16540.050*
H8C0.05321.01620.10550.050*
C90.10380 (12)0.7597 (3)0.11210 (13)0.0402 (6)
H9A0.14390.82520.09440.060*
H9B0.09520.75940.15900.060*
H9C0.11750.66500.09570.060*
C100.13821 (10)0.7861 (2)0.08686 (9)0.0224 (4)
C110.17437 (11)0.8981 (2)0.12216 (10)0.0290 (4)
H110.16780.91570.16420.035*
C120.22006 (12)0.9841 (3)0.09583 (12)0.0386 (6)
H120.24541.06000.12000.046*
C130.22866 (12)0.9594 (3)0.03451 (13)0.0465 (7)
H130.26011.01810.01660.056*
C140.19205 (12)0.8502 (3)0.00079 (11)0.0458 (7)
H140.19790.83470.04320.055*
C150.14643 (11)0.7617 (3)0.02499 (10)0.0329 (5)
H150.12140.68580.00060.039*
C160.10350 (9)0.3249 (2)0.35105 (9)0.0188 (4)
C170.16214 (10)0.5689 (2)0.35699 (10)0.0242 (4)
C180.16426 (17)0.6918 (3)0.31112 (14)0.0557 (8)
H18A0.18740.66180.26740.084*
H18B0.11380.72400.31260.084*
H18C0.19290.76890.32380.084*
C190.12701 (13)0.6158 (3)0.42478 (11)0.0379 (5)
H19A0.07590.64500.42700.057*
H19B0.12750.53770.45450.057*
H19C0.15490.69500.43660.057*
C200.24010 (11)0.5136 (3)0.35220 (12)0.0394 (6)
H20A0.25890.47310.30960.059*
H20B0.27230.59100.35910.059*
H20C0.23930.44120.38490.059*
C210.02644 (10)0.13684 (19)0.30848 (9)0.0219 (4)
C220.03252 (11)0.1656 (2)0.27052 (10)0.0270 (4)
H22A0.00910.20310.22820.040*
H22B0.05830.07800.26540.040*
H22C0.06800.23430.29360.040*
C230.08016 (12)0.0270 (2)0.27365 (12)0.0349 (5)
H23A0.11780.00810.29810.052*
H23B0.05330.05990.26950.052*
H23C0.10390.06190.23090.052*
C240.01126 (14)0.0869 (2)0.37555 (11)0.0367 (5)
H24A0.04380.00750.37230.055*
H24B0.02620.05730.39850.055*
H24C0.04050.16390.39900.055*
C250.12493 (10)0.2477 (2)0.40422 (9)0.0213 (4)
C260.18177 (11)0.1489 (2)0.39071 (9)0.0264 (4)
H260.20810.13440.34770.032*
C270.19975 (12)0.0718 (2)0.44008 (11)0.0331 (5)
H270.23840.00450.43100.040*
C280.16106 (13)0.0932 (2)0.50266 (10)0.0349 (5)
H280.17270.03900.53630.042*
C290.10558 (13)0.1929 (2)0.51646 (10)0.0332 (5)
H290.08000.20840.55960.040*
C300.08741 (11)0.2704 (2)0.46722 (10)0.0270 (4)
H300.04930.33900.47660.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01383 (11)0.01789 (13)0.01645 (12)0.00248 (9)0.00478 (9)0.00214 (9)
Br10.02365 (12)0.02069 (10)0.02575 (11)0.00797 (9)0.00621 (9)0.00288 (8)
Cl1B0.02365 (12)0.02069 (10)0.02575 (11)0.00797 (9)0.00621 (9)0.00288 (8)
Br20.02453 (11)0.03315 (13)0.01809 (11)0.00704 (8)0.00088 (8)0.00079 (9)
Cl2B0.02453 (11)0.03315 (13)0.01809 (11)0.00704 (8)0.00088 (8)0.00079 (9)
Si10.0143 (2)0.0196 (2)0.0175 (2)0.00021 (19)0.00493 (18)0.00194 (19)
Si20.0131 (2)0.0181 (2)0.0194 (2)0.00038 (18)0.00484 (18)0.00186 (19)
Cl10.0285 (5)0.0305 (3)0.0253 (3)0.0063 (4)0.0083 (3)0.0110 (2)
Br1C0.0285 (5)0.0305 (3)0.0253 (3)0.0063 (4)0.0083 (3)0.0110 (2)
Cl20.0168 (3)0.0361 (5)0.0258 (3)0.0055 (3)0.0003 (2)0.0086 (3)
Br2C0.0168 (3)0.0361 (5)0.0258 (3)0.0055 (3)0.0003 (2)0.0086 (3)
N20.0144 (7)0.0239 (8)0.0197 (7)0.0027 (6)0.0060 (6)0.0018 (6)
N30.0165 (7)0.0176 (8)0.0208 (8)0.0008 (6)0.0041 (6)0.0016 (6)
N40.0174 (7)0.0198 (8)0.0251 (8)0.0022 (6)0.0097 (6)0.0034 (6)
C10.0147 (8)0.0266 (10)0.0147 (8)0.0005 (7)0.0040 (7)0.0034 (7)
N10.0148 (7)0.0242 (8)0.0190 (8)0.0031 (6)0.0061 (6)0.0004 (6)
C20.0142 (8)0.0253 (10)0.0276 (10)0.0054 (7)0.0048 (7)0.0017 (8)
C30.013 (2)0.028 (3)0.050 (5)0.0059 (18)0.009 (3)0.006 (3)
C40.023 (4)0.032 (4)0.040 (4)0.001 (3)0.010 (2)0.014 (3)
C50.026 (6)0.075 (6)0.040 (4)0.020 (4)0.012 (4)0.023 (4)
C3A0.027 (3)0.031 (3)0.081 (8)0.003 (2)0.020 (5)0.009 (5)
C4A0.042 (7)0.050 (7)0.039 (4)0.020 (5)0.016 (4)0.002 (4)
C5A0.016 (5)0.054 (5)0.054 (6)0.020 (3)0.007 (4)0.026 (5)
C60.0150 (8)0.0274 (10)0.0217 (9)0.0059 (7)0.0052 (7)0.0040 (8)
C70.0278 (11)0.0511 (14)0.0229 (10)0.0143 (10)0.0005 (8)0.0013 (10)
C80.0337 (12)0.0306 (11)0.0337 (12)0.0105 (9)0.0038 (9)0.0004 (9)
C90.0206 (10)0.0423 (13)0.0619 (16)0.0109 (9)0.0182 (10)0.0188 (12)
C100.0124 (8)0.0337 (11)0.0217 (9)0.0040 (8)0.0051 (7)0.0055 (8)
C110.0236 (10)0.0320 (11)0.0322 (11)0.0004 (9)0.0079 (8)0.0070 (9)
C120.0223 (10)0.0372 (13)0.0551 (15)0.0043 (9)0.0061 (10)0.0142 (11)
C130.0220 (11)0.0682 (18)0.0521 (15)0.0009 (11)0.0140 (11)0.0321 (14)
C140.0263 (11)0.085 (2)0.0301 (12)0.0062 (12)0.0136 (10)0.0209 (13)
C150.0209 (10)0.0581 (15)0.0206 (10)0.0022 (10)0.0065 (8)0.0057 (10)
C160.0124 (8)0.0217 (9)0.0212 (9)0.0035 (7)0.0011 (7)0.0016 (7)
C170.0213 (9)0.0233 (10)0.0312 (10)0.0055 (8)0.0130 (8)0.0021 (8)
C180.079 (2)0.0367 (14)0.0683 (18)0.0350 (14)0.0524 (16)0.0245 (13)
C190.0336 (12)0.0329 (12)0.0446 (13)0.0052 (10)0.0035 (10)0.0143 (10)
C200.0180 (10)0.0532 (15)0.0489 (14)0.0021 (10)0.0116 (10)0.0173 (12)
C210.0228 (9)0.0154 (9)0.0275 (10)0.0019 (7)0.0059 (8)0.0000 (7)
C220.0231 (10)0.0202 (10)0.0389 (12)0.0031 (8)0.0096 (9)0.0006 (8)
C230.0329 (12)0.0249 (11)0.0503 (14)0.0083 (9)0.0167 (10)0.0091 (10)
C240.0462 (13)0.0298 (12)0.0332 (12)0.0169 (10)0.0072 (10)0.0066 (9)
C250.0187 (9)0.0232 (10)0.0221 (9)0.0005 (7)0.0050 (7)0.0037 (7)
C260.0214 (9)0.0339 (11)0.0237 (10)0.0063 (8)0.0046 (8)0.0045 (8)
C270.0279 (11)0.0375 (12)0.0348 (12)0.0098 (9)0.0089 (9)0.0092 (10)
C280.0411 (13)0.0378 (12)0.0294 (11)0.0006 (10)0.0157 (10)0.0119 (10)
C290.0456 (13)0.0330 (12)0.0192 (10)0.0007 (10)0.0034 (9)0.0047 (9)
C300.0304 (11)0.0238 (10)0.0248 (10)0.0044 (8)0.0019 (8)0.0009 (8)
Geometric parameters (Å, º) top
Co1—Cl1B2.14 (2)C7—H7C0.9800
Co1—Cl2B2.14 (2)C8—H8A0.9800
Co1—Si22.1828 (6)C8—H8B0.9800
Co1—Si12.1953 (6)C8—H8C0.9800
Co1—Br12.3600 (5)C9—H9A0.9800
Co1—Br22.3642 (5)C9—H9B0.9800
Si1—N11.8190 (15)C9—H9C0.9800
Si1—N21.8234 (16)C10—C151.386 (3)
Si1—Cl12.0950 (11)C10—C111.390 (3)
Si1—Br1C2.12 (2)C11—C121.387 (3)
Si1—C12.2763 (19)C11—H110.9500
Si2—N31.8164 (16)C12—C131.377 (4)
Si2—N41.8168 (16)C12—H120.9500
Si2—Cl22.1099 (11)C13—C141.372 (4)
Si2—Br2C2.12 (2)C13—H130.9500
Si2—C162.2715 (19)C14—C151.394 (3)
N2—C11.347 (2)C14—H140.9500
N2—C61.484 (2)C15—H150.9500
N3—C161.340 (2)C16—C251.482 (3)
N3—C211.489 (2)C17—C191.519 (3)
N4—C161.337 (2)C17—C181.522 (3)
N4—C171.484 (2)C17—C201.523 (3)
C1—N11.331 (2)C18—H18A0.9800
C1—C101.487 (3)C18—H18B0.9800
N1—C21.488 (2)C18—H18C0.9800
C2—C4A1.499 (9)C19—H19A0.9800
C2—C51.505 (9)C19—H19B0.9800
C2—C3A1.522 (8)C19—H19C0.9800
C2—C31.529 (7)C20—H20A0.9800
C2—C5A1.530 (9)C20—H20B0.9800
C2—C41.537 (8)C20—H20C0.9800
C3—H3A0.9800C21—C231.521 (3)
C3—H3B0.9800C21—C241.525 (3)
C3—H3C0.9800C21—C221.528 (3)
C4—H4A0.9800C22—H22A0.9800
C4—H4B0.9800C22—H22B0.9800
C4—H4C0.9800C22—H22C0.9800
C5—H5A0.9800C23—H23A0.9800
C5—H5B0.9800C23—H23B0.9800
C5—H5C0.9800C23—H23C0.9800
C3A—H3A10.9800C24—H24A0.9800
C3A—H3A20.9800C24—H24B0.9800
C3A—H3A30.9800C24—H24C0.9800
C4A—H4A10.9800C25—C301.389 (3)
C4A—H4A20.9800C25—C261.396 (3)
C4A—H4A30.9800C26—C271.388 (3)
C5A—H5A10.9800C26—H260.9500
C5A—H5A20.9800C27—C281.386 (3)
C5A—H5A30.9800C27—H270.9500
C6—C71.520 (3)C28—C291.384 (3)
C6—C91.523 (3)C28—H280.9500
C6—C81.524 (3)C29—C301.389 (3)
C7—H7A0.9800C29—H290.9500
C7—H7B0.9800C30—H300.9500
Cl1B—Co1—Cl2B113.5 (11)C9—C6—C8109.75 (17)
Cl1B—Co1—Si2143.4 (8)C6—C7—H7A109.5
Cl2B—Co1—Si287.8 (7)C6—C7—H7B109.5
Cl1B—Co1—Si189.2 (8)H7A—C7—H7B109.5
Cl2B—Co1—Si1136.7 (9)C6—C7—H7C109.5
Si2—Co1—Si195.01 (3)H7A—C7—H7C109.5
Si2—Co1—Br1155.844 (19)H7B—C7—H7C109.5
Si1—Co1—Br190.479 (19)C6—C8—H8A109.5
Si2—Co1—Br286.85 (2)C6—C8—H8B109.5
Si1—Co1—Br2152.552 (19)H8A—C8—H8B109.5
Br1—Co1—Br298.967 (17)C6—C8—H8C109.5
N1—Si1—N271.94 (7)H8A—C8—H8C109.5
N1—Si1—Cl1100.56 (6)H8B—C8—H8C109.5
N2—Si1—Cl1103.72 (7)C6—C9—H9A109.5
N1—Si1—Br1C108.7 (6)C6—C9—H9B109.5
N2—Si1—Br1C103.9 (8)H9A—C9—H9B109.5
N1—Si1—Co1117.39 (6)C6—C9—H9C109.5
N2—Si1—Co1123.41 (5)H9A—C9—H9C109.5
Cl1—Si1—Co1125.73 (4)H9B—C9—H9C109.5
Br1C—Si1—Co1121.1 (7)C15—C10—C11120.30 (19)
N1—Si1—C135.78 (7)C15—C10—C1120.20 (19)
N2—Si1—C136.27 (6)C11—C10—C1119.40 (17)
Cl1—Si1—C1107.19 (6)C12—C11—C10119.8 (2)
Br1C—Si1—C1112.4 (7)C12—C11—H11120.1
Co1—Si1—C1126.48 (5)C10—C11—H11120.1
N3—Si2—N472.16 (7)C13—C12—C11119.9 (2)
N3—Si2—Cl2102.72 (6)C13—C12—H12120.1
N4—Si2—Cl2100.31 (6)C11—C12—H12120.1
N3—Si2—Br2C93.8 (5)C14—C13—C12120.3 (2)
N4—Si2—Br2C96.3 (7)C14—C13—H13119.8
N3—Si2—Co1123.35 (5)C12—C13—H13119.8
N4—Si2—Co1119.33 (6)C13—C14—C15120.7 (2)
Cl2—Si2—Co1125.40 (3)C13—C14—H14119.7
Br2C—Si2—Co1133.7 (5)C15—C14—H14119.7
N3—Si2—C1636.14 (7)C10—C15—C14118.9 (2)
N4—Si2—C1636.06 (7)C10—C15—H15120.5
Cl2—Si2—C16105.47 (5)C14—C15—H15120.5
Br2C—Si2—C1697.5 (5)N4—C16—N3106.13 (15)
Co1—Si2—C16128.85 (5)N4—C16—C25127.69 (17)
C1—N2—C6130.91 (16)N3—C16—C25126.17 (17)
C1—N2—Si190.50 (11)N4—C16—Si253.10 (9)
C6—N2—Si1138.41 (12)N3—C16—Si253.09 (9)
C16—N3—C21131.82 (15)C25—C16—Si2177.91 (13)
C16—N3—Si290.77 (11)N4—C17—C19111.20 (16)
C21—N3—Si2135.63 (12)N4—C17—C18105.38 (15)
C16—N4—C17132.21 (16)C19—C17—C18109.5 (2)
C16—N4—Si290.84 (11)N4—C17—C20109.62 (17)
C17—N4—Si2136.69 (13)C19—C17—C20111.40 (18)
N1—C1—N2106.05 (15)C18—C17—C20109.6 (2)
N1—C1—C10126.26 (16)C17—C18—H18A109.5
N2—C1—C10127.63 (17)C17—C18—H18B109.5
N1—C1—Si153.03 (9)H18A—C18—H18B109.5
N2—C1—Si153.23 (9)C17—C18—H18C109.5
C10—C1—Si1173.88 (13)H18A—C18—H18C109.5
C1—N1—C2132.74 (15)H18B—C18—H18C109.5
C1—N1—Si191.19 (11)C17—C19—H19A109.5
C2—N1—Si1136.07 (13)C17—C19—H19B109.5
N1—C2—C4A111.0 (7)H19A—C19—H19B109.5
N1—C2—C5108.4 (7)C17—C19—H19C109.5
N1—C2—C3A111.6 (5)H19A—C19—H19C109.5
C4A—C2—C3A113.0 (6)H19B—C19—H19C109.5
N1—C2—C3112.6 (4)C17—C20—H20A109.5
C5—C2—C3111.2 (6)C17—C20—H20B109.5
N1—C2—C5A103.4 (6)H20A—C20—H20B109.5
C4A—C2—C5A110.3 (8)C17—C20—H20C109.5
C3A—C2—C5A106.9 (7)H20A—C20—H20C109.5
N1—C2—C4107.9 (7)H20B—C20—H20C109.5
C5—C2—C4109.1 (8)N3—C21—C23108.90 (16)
C3—C2—C4107.6 (5)N3—C21—C24112.52 (16)
C2—C3—H3A109.5C23—C21—C24111.09 (18)
C2—C3—H3B109.5N3—C21—C22105.87 (15)
H3A—C3—H3B109.5C23—C21—C22109.45 (17)
C2—C3—H3C109.5C24—C21—C22108.86 (17)
H3A—C3—H3C109.5C21—C22—H22A109.5
H3B—C3—H3C109.5C21—C22—H22B109.5
C2—C4—H4A109.5H22A—C22—H22B109.5
C2—C4—H4B109.5C21—C22—H22C109.5
H4A—C4—H4B109.5H22A—C22—H22C109.5
C2—C4—H4C109.5H22B—C22—H22C109.5
H4A—C4—H4C109.5C21—C23—H23A109.5
H4B—C4—H4C109.5C21—C23—H23B109.5
C2—C5—H5A109.5H23A—C23—H23B109.5
C2—C5—H5B109.5C21—C23—H23C109.5
H5A—C5—H5B109.5H23A—C23—H23C109.5
C2—C5—H5C109.5H23B—C23—H23C109.5
H5A—C5—H5C109.5C21—C24—H24A109.5
H5B—C5—H5C109.5C21—C24—H24B109.5
C2—C3A—H3A1109.5H24A—C24—H24B109.5
C2—C3A—H3A2109.5C21—C24—H24C109.5
H3A1—C3A—H3A2109.5H24A—C24—H24C109.5
C2—C3A—H3A3109.5H24B—C24—H24C109.5
H3A1—C3A—H3A3109.5C30—C25—C26119.87 (18)
H3A2—C3A—H3A3109.5C30—C25—C16120.35 (17)
C2—C4A—H4A1109.5C26—C25—C16119.75 (17)
C2—C4A—H4A2109.5C27—C26—C25119.94 (19)
H4A1—C4A—H4A2109.5C27—C26—H26120.0
C2—C4A—H4A3109.5C25—C26—H26120.0
H4A1—C4A—H4A3109.5C28—C27—C26119.8 (2)
H4A2—C4A—H4A3109.5C28—C27—H27120.1
C2—C5A—H5A1109.5C26—C27—H27120.1
C2—C5A—H5A2109.5C29—C28—C27120.51 (19)
H5A1—C5A—H5A2109.5C29—C28—H28119.7
C2—C5A—H5A3109.5C27—C28—H28119.7
H5A1—C5A—H5A3109.5C28—C29—C30119.9 (2)
H5A2—C5A—H5A3109.5C28—C29—H29120.0
N2—C6—C7109.59 (15)C30—C29—H29120.0
N2—C6—C9105.40 (15)C29—C30—C25119.97 (19)
C7—C6—C9110.31 (18)C29—C30—H30120.0
N2—C6—C8111.32 (15)C25—C30—H30120.0
C7—C6—C8110.36 (17)
 

Footnotes

1Supporting information is available from the IUCr electronic archives (Reference: AJ5242).

Acknowledgements

We thank the Danish National Research Foundation (DNRF93) funded Centre for Materials Crystallography (CMC) for support. GMS thanks the Volkswagen Stiftung for a Niedersachsen (emeritus) Professorship. The authors thank INCOATEC, Geesthacht, for providing the crystals of 1 and 2, Professor Scherer, Augsburg, and Professor Pöttgen, Münster, for sample 4, and Visscher MSc, Göttingen, for sample 5.

References

First citationArndt, U. W. (1990). J. Appl. Cryst. 23, 161–168.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAzhakar, R., Ghadwal, R. S., Roesky, H. W., Hey, J., Krause, L. & Stalke, D. (2013). Dalton Trans. 42, 10277–10281.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBecker, P. J. & Coppens, P. (1974a). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBecker, P. J. & Coppens, P. (1974b). Acta Cryst. A30, 148–153.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBorek, D., Minor, W. & Otwinowski, Z. (2003). Acta Cryst. D59, 2031–2038.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2 (Version 2.2012.2 0) and SAINT (Version 7.68A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). XPREP (Version 2014/2) and SADABS (Version 2014/4). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBusing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180–182.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationColes, S. J. & Hursthouse, M. B. (2004). J. Appl. Cryst. 37, 988–992.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDiederichs, K. (2010). Acta Cryst. D66, 733–740.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDubler, E., Vedani, A. & Oswald, H. R. (1983). Acta Cryst. C39, 1143–1146.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEickerling, G., Hauf, C., Scheidt, E.-W., Reichardt, L., Schneider, C., Muñoz, A., Lopez-Moreno, S., Humberto Romero, A., Porcher, F., André, G., Pöttgen, R. & Scherer, W. (2013). Z. Anorg. Allg. Chem. 639, 1985–1995.  Web of Science CrossRef CAS Google Scholar
First citationEvans, P. R. & Murshudov, G. N. (2013). Acta Cryst. D69, 1204–1214.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2007). Acta Cryst. E63, i142.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGruner, S. M., Tate, M. W. & Eikenberry, E. F. (2002). Rev. Sci. Instrum. 73, 2815–2842.  Web of Science CrossRef CAS Google Scholar
First citationHamilton, W. C. (1965). Acta Cryst. 18, 502–510.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHarmening, T., van Wüllen, L., Eckert, H., Rodewald, U. C. & Pöttgen, R. (2010). Z. Anorg. Allg. Chem. 636, 972–976.  Web of Science CrossRef CAS Google Scholar
First citationHasse, B., Wiesmann, J., Michaelsen, C., Heidorn, U., Kroth, S. & Hertlein, F. (2010). State-of-the-Art Multilayer Optics for X-ray Diffractometry. Geesthacht: Incoatec.  Google Scholar
First citationHenn, J. & Meindl, K. (2010). Acta Cryst. A66, 676–684.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuber, R. & Kopfmann, G. (1969). Acta Cryst. A25, 143–152.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJørgensen, M. R. V., Svendsen, H., Schmøkel, M. S., Overgaard, J. & Iversen, B. B. (2012). Acta Cryst. A68, 301–303.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKabsch, W. (2010). Acta Cryst. D66, 133–144.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKatayama, C. (1986). Acta Cryst. A42, 19–23.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348–351.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRohrmoser, B., Eickerling, G., Presnitz, M., Scherer, W., Eyert, V., Hoffmann, R.-D., Rodewald, U. C., Vogt, C. & Pöttgen, R. (2007). J. Am. Chem. Soc. 129, 9356–9365.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSaouane, S., Norman, S. E., Hardacre, C. & Fabbiani, F. P. A. (2013). Chem. Sci. 4, 1270–1280.  Web of Science CSD CrossRef CAS Google Scholar
First citationScherer, W., Hauf, C., Presnitz, M., Scheidt, E.-W., Eickerling, G., Eyert, V., Hoffmann, R.-D., Rodewald, U. C., Hammerschmidt, A., Vogt, C. & Pöttgen, R. (2010). Angew. Chem. 122, 1623–1627.  CrossRef Google Scholar
First citationSchulz, T., Meindl, K., Leusser, D., Stern, D., Graf, J., Michaelsen, C., Ruf, M., Sheldrick, G. M. & Stalke, D. (2009). J. Appl. Cryst. 42, 885–891.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStorm, A. B., Michaelsen, C., Oehr, A. & Hoffmann, C. (2004). Proc. SPIE, 5557, 177–181.  CrossRef Google Scholar
First citationWeiss, M. S. (2001). J. Appl. Cryst. 34, 130–135.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoJOURNAL OF
APPLIED
CRYSTALLOGRAPHY
ISSN: 1600-5767
Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds