Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T15:36:56.862Z Has data issue: false hasContentIssue false

Automatic AMS Sample Combustion and CO2 Collection

Published online by Cambridge University Press:  18 July 2016

A T Aerts-Bijma
Affiliation:
Center for Isotope Research, Groningen University, Groningen, the Netherlands
J van der Plicht*
Affiliation:
Center for Isotope Research, Groningen University, Groningen, the Netherlands
H A J Meijer
Affiliation:
Center for Isotope Research, Groningen University, Groningen, the Netherlands
*
Corresponding author email: plicht@phys.rug.nl.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Groningen, all organic samples for accelerator mass spectrometry (AMS) are combusted in an automatic Elemental Analyzer, coupled to an Isotope Ratio Mass Spectrometer and Cryogenic Trapping System. The Gas Chromatographic (GC) column, part of the Elemental Analyzer system, appeared to be the main cause for memory effects. Therefore we modified the Elemental Analyzer, such that the trapped CO2 no longer passed the GC column. Our system modification reduced the memory effect significantly, as shown by lower radiocarbon concentration values for anthracite backgrounds, and a much smaller spread in these values. Our modified system can perform up to 40 combustions unattended in about 6 hr.

Type
I. Becoming Better
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Aerts-Bijma, AT, Meijer, HAJ, van der Plicht, J. 1997. AMS sample handling in Groningen. Nuclear Instruments and Methods B123:221–5.Google Scholar
Gagnon, AR, McNichol, AP, Donoghue, JC, Stuart, DR, von Reden, K. 2000. The NOSAMS sample preparation laboratory in the next millennium: progress after the WOCE program. Nuclear Instruments and Methods B172:409–15.Google Scholar
Gottdang, A, Mous, DW, van der Plicht, J. 1995. The HVEE 14C system at Groningen. Radiocarbon 37(2): 649–56.CrossRefGoogle Scholar
Purser, KH. 1992. A high throughput 14C accelerator mass spectrometer. Radiocarbon 34(3):458–67.CrossRefGoogle Scholar
van der Plicht, J, Aerts, AT, Wijma, S, Zondervan, A. 1995. First results from the Groningen AMS facility. Radiocarbon 37(2):657–61.CrossRefGoogle Scholar
van der Plicht, J, Wijma, S, Aerts, AT, Pertuisot, MH, Meijer, HAJ. 2000. Status Report: the Groningen AMS facility. Nuclear Instruments and Methods B172:5865.CrossRefGoogle Scholar
Wijma, S, van der Plicht, J. 1997. The Groningen AMS tandetron. Nuclear Instruments and Methods B123: 8792.CrossRefGoogle Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C intercomparison exercise. Radiocarbon 34(3): 506–19.CrossRefGoogle Scholar