Abstract
We calculate the generalized soft functions at \( \mathcal{O} \)(\( {\alpha}_s^2 \)) at next-to-leading power accuracy for the Drell-Yan process at threshold. The operator definitions of these objects contain explicit insertions of soft gauge and matter fields, giving rise to a dependence on additional convolution variables with respect to the leading power result. These soft functions constitute the last missing ingredient for the validation of the bare factorization theorem to NNLO accuracy. We carry out the calculations by reducing the soft squared amplitudes into a set of canonical master integrals and we employ the method of differential equations to evaluate them. We retain the exact d-dimensional dependence of the convolution variables at the integration boundaries in order to regulate the fixed-order convolution integrals. After combining the soft functions with the relevant collinear functions, we perform checks of the results at the cross-section level against the literature and expansion-by-regions calculations, at NNLO and partly at N3LO, finding agreement.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
M. Beneke and T. Feldmann, Multipole expanded soft collinear effective theory with nonAbelian gauge symmetry, Phys. Lett. B 553 (2003) 267 [hep-ph/0211358] [INSPIRE].
I. Moult, I.W. Stewart, G. Vita and H.X. Zhu, First Subleading Power Resummation for Event Shapes, JHEP 08 (2018) 013 [arXiv:1804.04665] [INSPIRE].
M. Beneke et al., Leading-logarithmic threshold resummation of the Drell-Yan process at next-to-leading power, JHEP 03 (2019) 043 [arXiv:1809.10631] [INSPIRE].
M. Beneke, M. Garny, S. Jaskiewicz, R. Szafron, L. Vernazza and J. Wang, Leading-logarithmic threshold resummation of Higgs production in gluon fusion at next-to-leading power, JHEP 01 (2020) 094 [arXiv:1910.12685] [INSPIRE].
N. Bahjat-Abbas, D. Bonocore, J. Sinninghe Damsté, E. Laenen, L. Magnea, L. Vernazza et al., Diagrammatic resummation of leading-logarithmic threshold effects at next-to-leading power, JHEP 11 (2019) 002 [arXiv:1905.13710] [INSPIRE].
M. van Beekveld, E. Laenen, J. Sinninghe Damsté and L. Vernazza, Next-to-leading power threshold corrections for finite order and resummed colour-singlet cross sections, JHEP 05 (2021) 114 [arXiv:2101.07270] [INSPIRE].
M. Beneke and L. Vernazza, B → χcJK decays revisited, Nucl. Phys. B 811 (2009) 155 [arXiv:0810.3575] [INSPIRE].
M. Benzke, S.J. Lee, M. Neubert and G. Paz, Factorization at Subleading Power and Irreducible Uncertainties in \( \overline{B} \) → Xsγ Decay, JHEP 08 (2010) 099 [arXiv:1003.5012] [INSPIRE].
M. Beneke, A. Broggio, S. Jaskiewicz and L. Vernazza, Threshold factorization of the Drell-Yan process at next-to-leading power, JHEP 07 (2020) 078 [arXiv:1912.01585] [INSPIRE].
I. Moult, I.W. Stewart, G. Vita and H.X. Zhu, The Soft Quark Sudakov, JHEP 05 (2020) 089 [arXiv:1910.14038] [INSPIRE].
Z.L. Liu and M. Neubert, Factorization at subleading power and endpoint-divergent convolutions in h → γγ decay, JHEP 04 (2020) 033 [arXiv:1912.08818] [INSPIRE].
M. Beneke, M. Garny, S. Jaskiewicz, R. Szafron, L. Vernazza and J. Wang, Large-x resummation of off-diagonal deep-inelastic parton scattering from d-dimensional refactorization, JHEP 10 (2020) 196 [arXiv:2008.04943] [INSPIRE].
C. Anastasiou and A. Penin, Light Quark Mediated Higgs Boson Threshold Production in the Next-to-Leading Logarithmic Approximation, JHEP 07 (2020) 195 [Erratum ibid. 01 (2021) 164] [arXiv:2004.03602] [INSPIRE].
Z.L. Liu, B. Mecaj, M. Neubert and X. Wang, Factorization at subleading power and endpoint divergences in h → γγ decay. Part II. Renormalization and scale evolution, JHEP 01 (2021) 077 [arXiv:2009.06779] [INSPIRE].
Z.L. Liu, B. Mecaj, M. Neubert and X. Wang, Factorization at subleading power, Sudakov resummation, and endpoint divergences in soft-collinear effective theory, Phys. Rev. D 104 (2021) 014004 [arXiv:2009.04456] [INSPIRE].
M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power N-jet operators, JHEP 03 (2018) 001 [arXiv:1712.04416] [INSPIRE].
M. Beneke, M. Garny, R. Szafron and J. Wang, Anomalous dimension of subleading-power N-jet operators. Part II, JHEP 11 (2018) 112 [arXiv:1808.04742] [INSPIRE].
M. Beneke, M. Garny, R. Szafron and J. Wang, Violation of the Kluberg-Stern-Zuber theorem in SCET, JHEP 09 (2019) 101 [arXiv:1907.05463] [INSPIRE].
C. Marcantonini and I.W. Stewart, Reparameterization Invariant Collinear Operators, Phys. Rev. D 79 (2009) 065028 [arXiv:0809.1093] [INSPIRE].
D.W. Kolodrubetz, I. Moult and I.W. Stewart, Building Blocks for Subleading Helicity Operators, JHEP 05 (2016) 139 [arXiv:1601.02607] [INSPIRE].
I. Feige, D.W. Kolodrubetz, I. Moult and I.W. Stewart, A Complete Basis of Helicity Operators for Subleading Factorization, JHEP 11 (2017) 142 [arXiv:1703.03411] [INSPIRE].
I. Moult, I.W. Stewart and G. Vita, A subleading operator basis and matching for gg → H, JHEP 07 (2017) 067 [arXiv:1703.03408] [INSPIRE].
G. Lustermans, J.K.L. Michel and F.J. Tackmann, Generalized Threshold Factorization with Full Collinear Dynamics, arXiv:1908.00985 [INSPIRE].
R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-Eikonal Corrections to Soft Gluon Radiation: A Diagrammatic Approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [INSPIRE].
D. Bonocore, E. Laenen, L. Magnea, L. Vernazza and C.D. White, Non-abelian factorisation for next-to-leading-power threshold logarithms, JHEP 12 (2016) 121 [arXiv:1610.06842] [INSPIRE].
N. Bahjat-Abbas, J. Sinninghe Damsté, L. Vernazza and C.D. White, On next-to-leading power threshold corrections in Drell-Yan production at N3LO, JHEP 10 (2018) 144 [arXiv:1807.09246] [INSPIRE].
R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order \( {\alpha}_s^2 \) correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. 644 (2002) 403] [INSPIRE].
Z.L. Liu, B. Mecaj, M. Neubert, X. Wang and S. Fleming, Renormalization and Scale Evolution of the Soft-Quark Soft Function, JHEP 07 (2020) 104 [arXiv:2005.03013] [INSPIRE].
G.T. Bodwin, J.-H. Ee, J. Lee and X.-P. Wang, Analyticity, renormalization, and evolution of the soft-quark function, Phys. Rev. D 104 (2021) 016010 [arXiv:2101.04872] [INSPIRE].
C. Oleari and M. Rocco, Power corrections in a transverse-momentum cut for vector-boson production at NNLO: the qg-initiated real-virtual contribution, Eur. Phys. J. C 81 (2021) 183 [arXiv:2012.10538] [INSPIRE].
G. Falcioni, E. Gardi and C. Milloy, Relating amplitude and PDF factorisation through Wilson-line geometries, JHEP 11 (2019) 100 [arXiv:1909.00697] [INSPIRE].
G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett. B 313 (1993) 433 [INSPIRE].
Y. Li, S. Mantry and F. Petriello, An Exclusive Soft Function for Drell-Yan at Next-to-Next-to-Leading Order, Phys. Rev. D 84 (2011) 094014 [arXiv:1105.5171] [INSPIRE].
T. Becher, G. Bell and S. Marti, NNLO soft function for electroweak boson production at large transverse momentum, JHEP 04 (2012) 034 [arXiv:1201.5572] [INSPIRE].
A. Ferroglia, B.D. Pecjak, L.L. Yang, B.D. Pecjak and L.L. Yang, The NNLO soft function for the pair invariant mass distribution of boosted top quarks, JHEP 10 (2012) 180 [arXiv:1207.4798] [INSPIRE].
G. Wang, X. Xu, L.L. Yang and H.X. Zhu, The next-to-next-to-leading order soft function for top quark pair production, JHEP 06 (2018) 013 [arXiv:1804.05218] [INSPIRE].
C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA, Comput. Phys. Commun. 222 (2018) 295 [arXiv:1705.06252] [INSPIRE].
E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
M. Höschele, J. Hoff, A. Pak, M. Steinhauser and T. Ueda, MT: A Mathematica package to compute convolutions, Comput. Phys. Commun. 185 (2014) 528 [arXiv:1307.6925] [INSPIRE].
D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].
J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
T. Huber and D. Maître, HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2107.07353
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Broggio, A., Jaskiewicz, S. & Vernazza, L. Next-to-leading power two-loop soft functions for the Drell-Yan process at threshold. J. High Energ. Phys. 2021, 61 (2021). https://doi.org/10.1007/JHEP10(2021)061
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2021)061