Abstract
We propose a new mechanism to simultaneously explain the observed dark matter abundance and the baryon asymmetry of the Universe. The mechanism is based on the Filtered Dark Matter scenario, where dark matter particles acquire a large mass during a first-order phase transition. This implies that only a small fraction of them are energetic enough to enter the advancing true vacuum bubbles and survive until today, while the rest are reflected and annihilate away quickly. We supplement this scenario with a CP-violating interaction, which creates a chiral asymmetry in the population of dark matter particles. In the false vacuum phase, a portal interaction quickly converts the dark sector chiral asymmetry into a Standard Model lepton asymmetry. The lepton asymmetry is then partially converted to a baryon asymmetry by standard electroweak sphaleron processes. We discuss the dependence of the generated asymmetry on the parameters of the model for two different portal interactions and demonstrate successful baryogenesis for both. For one of the portals, it is also possible to simultaneously explain the observed dark matter abundance, over many orders of magnitude in the dark matter mass.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M. J. Baker, J. Kopp and A. J. Long, Filtered Dark Matter at a First Order Phase Transition, Phys. Rev. Lett. 125 (2020) 151102 [arXiv:1912.02830] [INSPIRE].
D. Chway, T. H. Jung and C. S. Shin, Dark matter filtering-out effect during a first-order phase transition, Phys. Rev. D 101 (2020) 095019 [arXiv:1912.04238] [INSPIRE].
M. Battaglieri et al., US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in U.S. Cosmic Visions: New Ideas in Dark Matter, Maryland University, College Park, U.S.A., 23–25 March 2017 [arXiv:1707.04591] [INSPIRE].
V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].
M. E. Shaposhnikov, Possible Appearance of the Baryon Asymmetry of the Universe in an Electroweak Theory, JETP Lett. 44 (1986) 465 [INSPIRE].
M. E. Shaposhnikov, Baryon Asymmetry of the Universe in Standard Electroweak Theory, Nucl. Phys. B 287 (1987) 757 [INSPIRE].
M. Carena, M. Quirós and C. E. M. Wagner, Opening the window for electroweak baryogenesis, Phys. Lett. B 380 (1996) 81 [hep-ph/9603420] [INSPIRE].
S. J. Huber, T. Konstandin, T. Prokopec and M. G. Schmidt, Electroweak Phase Transition and Baryogenesis in the NMSSM, Nucl. Phys. B 757 (2006) 172 [hep-ph/0606298] [INSPIRE].
V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].
B. Garbrecht, Why is there more matter than antimatter? Calculational methods for leptogenesis and electroweak baryogenesis, Prog. Part. Nucl. Phys. 110 (2020) 103727 [arXiv:1812.02651] [INSPIRE].
J. De Vries, M. Postma and J. van de Vis, The role of leptons in electroweak baryogenesis, JHEP 04 (2019) 024 [arXiv:1811.11104] [INSPIRE].
J. M. Cline and K. Kainulainen, Electroweak baryogenesis at high bubble wall velocities, Phys. Rev. D 101 (2020) 063525 [arXiv:2001.00568] [INSPIRE].
B. Laurent and J. M. Cline, Fluid equations for fast-moving electroweak bubble walls, Phys. Rev. D 102 (2020) 063516 [arXiv:2007.10935] [INSPIRE].
E. Fuchs, M. Losada, Y. Nir and Y. Viernik, Analytic techniques for solving the transport equations in electroweak baryogenesis, JHEP 07 (2021) 060 [arXiv:2007.06940] [INSPIRE].
A. G. Cohen, D. B. Kaplan and A. E. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].
J. M. Cline, Baryogenesis, in Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime, (2006) [hep-ph/0609145] [INSPIRE].
D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].
J. Arakawa, A. Rajaraman and T. M. P. Tait, Annihilogenesis, arXiv:2109.13941 [INSPIRE].
A. Azatov, M. Vanvlasselaer and W. Yin, Baryogenesis via relativistic bubble walls, JHEP 10 (2021) 043 [arXiv:2106.14913] [INSPIRE].
I. Baldes, S. Blasi, A. Mariotti, A. Sevrin and K. Turbang, Baryogenesis via relativistic bubble expansion, Phys. Rev. D 104 (2021) 115029 [arXiv:2106.15602] [INSPIRE].
B. Dutta and J. Kumar, Hidden sector baryogenesis, Phys. Lett. B 643 (2006) 284 [hep-th/0608188] [INSPIRE].
J. Shelton and K. M. Zurek, Darkogenesis: A baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [INSPIRE].
E. Hall, T. Konstandin, R. McGehee, H. Murayama and G. Servant, Baryogenesis From a Dark First-Order Phase Transition, JHEP 04 (2020) 042 [arXiv:1910.08068] [INSPIRE].
J. M. Cline, K. Kainulainen and D. Tucker-Smith, Electroweak baryogenesis from a dark sector, Phys. Rev. D 95 (2017) 115006 [arXiv:1702.08909] [INSPIRE].
J. Choi and R. R. Volkas, Real Higgs singlet and the electroweak phase transition in the Standard Model, Phys. Lett. B 317 (1993) 385 [hep-ph/9308234] [INSPIRE].
J. R. Espinosa, T. Konstandin and F. Riva, Strong Electroweak Phase Transitions in the Standard Model with a Singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].
J. M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].
S. Nussinov, Technocosmology — could a technibaryon excess provide a “natural” missing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].
S. M. Barr, R. S. Chivukula and E. Farhi, Electroweak Fermion Number Violation and the Production of Stable Particles in the Early Universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].
S. M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev. D 44 (1991) 3062 [INSPIRE].
D. E. Kaplan, M. A. Luty and K. M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].
H. An, S.-L. Chen, R. N. Mohapatra and Y. Zhang, Leptogenesis as a Common Origin for Matter and Dark Matter, JHEP 03 (2010) 124 [arXiv:0911.4463] [INSPIRE].
N. Haba and S. Matsumoto, Baryogenesis from Dark Sector, Prog. Theor. Phys. 125 (2011) 1311 [arXiv:1008.2487] [INSPIRE].
H. Davoudiasl, D. E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: A Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [INSPIRE].
M. R. Buckley and L. Randall, Xogenesis, JHEP 09 (2011) 009 [arXiv:1009.0270] [INSPIRE].
P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, WIMP Dark Matter and Baryogenesis, Phys. Rev. D 83 (2011) 055008 [arXiv:1009.2690] [INSPIRE].
M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via Leptogenesis and Dark Sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [INSPIRE].
R. Allahverdi, B. Dutta and K. Sinha, Cladogenesis: Baryon-Dark Matter Coincidence from Branchings in Moduli Decay, Phys. Rev. D 83 (2011) 083502 [arXiv:1011.1286] [INSPIRE].
B. Dutta and J. Kumar, Asymmetric Dark Matter from Hidden Sector Baryogenesis, Phys. Lett. B 699 (2011) 364 [arXiv:1012.1341] [INSPIRE].
A. Falkowski, J. T. Ruderman and T. Volansky, Asymmetric Dark Matter from Leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].
M. L. Graesser, I. M. Shoemaker and L. Vecchi, Asymmetric WIMP dark matter, JHEP 10 (2011) 110 [arXiv:1103.2771] [INSPIRE].
M. R. Buckley, Asymmetric Dark Matter and Effective Operators, Phys. Rev. D 84 (2011) 043510 [arXiv:1104.1429] [INSPIRE].
N. F. Bell, K. Petraki, I. M. Shoemaker and R. R. Volkas, Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism, Phys. Rev. D 84 (2011) 123505 [arXiv:1105.3730] [INSPIRE].
C. Cheung and K. M. Zurek, Affleck-Dine Cogenesis, Phys. Rev. D 84 (2011) 035007 [arXiv:1105.4612] [INSPIRE].
J. March-Russell and M. McCullough, Asymmetric Dark Matter via Spontaneous Co-Genesis, JCAP 03 (2012) 019 [arXiv:1106.4319] [INSPIRE].
Y. Cui, L. Randall and B. Shuve, Emergent Dark Matter, Baryon, and Lepton Numbers, JHEP 08 (2011) 073 [arXiv:1106.4834] [INSPIRE].
Y. Cui, L. Randall and B. Shuve, A WIMPy Baryogenesis Miracle, JHEP 04 (2012) 075 [arXiv:1112.2704] [INSPIRE].
H. Davoudiasl and R. N. Mohapatra, On Relating the Genesis of Cosmic Baryons and Dark Matter, New J. Phys. 14 (2012) 095011 [arXiv:1203.1247] [INSPIRE].
J. Unwin, Exodus: Hidden origin of dark matter and baryons, JHEP 06 (2013) 090 [arXiv:1212.1425] [INSPIRE].
Y. Cui and R. Sundrum, Baryogenesis for weakly interacting massive particles, Phys. Rev. D 87 (2013) 116013 [arXiv:1212.2973] [INSPIRE].
S. M. Barr and H.-Y. Chen, Cogeneration of Dark Matter and Baryons by Non-Standard-Model Sphalerons in Unified Models, JHEP 10 (2013) 129 [arXiv:1309.0020] [INSPIRE].
G. Servant and S. Tulin, Baryogenesis and Dark Matter through a Higgs Asymmetry, Phys. Rev. Lett. 111 (2013) 151601 [arXiv:1304.3464] [INSPIRE].
W.-Z. Feng, A. Mazumdar and P. Nath, Baryogenesis from dark matter, Phys. Rev. D 88 (2013) 036014 [arXiv:1302.0012] [INSPIRE].
E. Hall, T. Konstandin, R. McGehee and H. Murayama, Asymmetric Matters from a Dark First-Order Phase Transition, arXiv:1911.12342 [INSPIRE].
T. Hambye, A. Strumia and D. Teresi, Super-cool Dark Matter, JHEP 08 (2018) 188 [arXiv:1805.01473] [INSPIRE].
L. Delle Rose, G. Panico, M. Redi and A. Tesi, Gravitational Waves from Supercool Axions, JHEP 04 (2020) 025 [arXiv:1912.06139] [INSPIRE].
E. K. Akhmedov, Neutrino physics, in ICTP Summer School in Particle Physics, (1999), pp. 103–164 [hep-ph/0001264] [INSPIRE].
R. N. Mohapatra and J. W. F. Valle, Solar Neutrino Oscillations From Superstrings, Phys. Lett. B 177 (1986) 47 [INSPIRE].
S. Centelles Chuliá, R. Srivastava and A. Vicente, The inverse seesaw family: Dirac and Majorana, JHEP 03 (2021) 248 [arXiv:2011.06609] [INSPIRE].
M. J. Baker, M. Breitbach, J. Kopp and L. Mittnacht, Primordial Black Holes from First-Order Cosmological Phase Transitions, arXiv:2105.07481 [INSPIRE].
M. J. Baker, M. Breitbach, J. Kopp and L. Mittnacht, Detailed Calculation of Primordial Black Hole Formation During First-Order Cosmological Phase Transitions, arXiv:2110.00005 [INSPIRE].
R. Apreda, M. Maggiore, A. Nicolis and A. Riotto, Gravitational waves from electroweak phase transitions, Nucl. Phys. B 631 (2002) 342 [gr-qc/0107033] [INSPIRE].
S. Matsumoto, Y.-L. S. Tsai and P.-Y. Tseng, Light Fermionic WIMP Dark Matter with Light Scalar Mediator, JHEP 07 (2019) 050 [arXiv:1811.03292] [INSPIRE].
M. Escudero, A. Berlin, D. Hooper and M.-X. Lin, Toward (Finally!) Ruling Out Z and Higgs Mediated Dark Matter Models, JCAP 12 (2016) 029 [arXiv:1609.09079] [INSPIRE].
A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs–portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].
J. de Vries, M. Postma, J. van de Vis and G. White, Electroweak Baryogenesis and the Standard Model Effective Field Theory, JHEP 01 (2018) 089 [arXiv:1710.04061] [INSPIRE].
E. Fuchs, M. Losada, Y. Nir and Y. Viernik, CP violation from τ, t and b dimension-6 Yukawa couplings - interplay of baryogenesis, EDM and Higgs physics, JHEP 05 (2020) 056 [arXiv:2003.00099] [INSPIRE].
C. Lee, V. Cirigliano and M. J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE].
V. Cirigliano, M. J. Ramsey-Musolf, S. Tulin and C. Lee, Yukawa and tri-scalar processes in electroweak baryogenesis, Phys. Rev. D 73 (2006) 115009 [hep-ph/0603058] [INSPIRE].
D. Bödeker, G. D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard thermal loops on the lattice, Phys. Rev. D 61 (2000) 056003 [hep-ph/9907545] [INSPIRE].
J. M. Cline and K. Kainulainen, A New source for electroweak baryogenesis in the MSSM, Phys. Rev. Lett. 85 (2000) 5519 [hep-ph/0002272] [INSPIRE].
K. Kainulainen, CP-violating transport theory for electroweak baryogenesis with thermal corrections, JCAP 11 (2021) 042 [arXiv:2108.08336] [INSPIRE].
J. M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis in the WKB approximation, Phys. Lett. B 417 (1998) 79 [Erratum ibid. 448 (1999) 321] [hep-ph/9708393] [INSPIRE].
J. M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis, JHEP 07 (2000) 018 [hep-ph/0006119] [INSPIRE].
J. M. Cline, M. Joyce and K. Kainulainen, Erratum for ‘Supersymmetric electroweak baryogenesis’, hep-ph/0110031 [INSPIRE].
K. Kainulainen, T. Prokopec, M. G. Schmidt and S. Weinstock, First principle derivation of semiclassical force for electroweak baryogenesis, JHEP 06 (2001) 031 [hep-ph/0105295] [INSPIRE].
K. Kainulainen, T. Prokopec, M. G. Schmidt and S. Weinstock, Semiclassical force for electroweak baryogenesis: Three-dimensional derivation, Phys. Rev. D 66 (2002) 043502 [hep-ph/0202177] [INSPIRE].
K. Kainulainen and O. Koskivaara, Non-equilibrium dynamics of a scalar field with quantum backreaction, JHEP 12 (2021) 190 [arXiv:2105.09598] [INSPIRE].
L. Fromme and S. J. Huber, Top transport in electroweak baryogenesis, JHEP 03 (2007) 049 [hep-ph/0604159] [INSPIRE].
J. M. Cline and B. Laurent, Electroweak baryogenesis from light fermion sources: A critical study, Phys. Rev. D 104 (2021) 083507 [arXiv:2108.04249] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
A. Gutlein et al., Solar and atmospheric neutrinos: Background sources for the direct dark matter search, Astropart. Phys. 34 (2010) 90 [arXiv:1003.5530] [INSPIRE].
J. Kopp, New Signals in Dark Matter Detectors, J. Phys. Conf. Ser. 485 (2014) 012032 [arXiv:1210.2703] [INSPIRE].
J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].
J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210 (2017) 103 [arXiv:1601.05437] [INSPIRE].
M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 1: Thin wall regime, Phys. Rev. D 53 (1996) 2930 [hep-ph/9410281] [INSPIRE].
A. J. Long, A. Tesi and L.-T. Wang, Baryogenesis at a Lepton-Number-Breaking Phase Transition, JHEP 10 (2017) 095 [arXiv:1703.04902] [INSPIRE].
R. Baier and R. Kobes, On the damping rate of a fast fermion in hot QED, Phys. Rev. D 50 (1994) 5944 [hep-ph/9403335] [INSPIRE].
P. Elmfors, K. Enqvist, A. Riotto and I. Vilja, Damping rates in the MSSM and electroweak baryogenesis, Phys. Lett. B 452 (1999) 279 [hep-ph/9809529] [INSPIRE].
G. D. Moore and M. Tassler, The Sphaleron Rate in SU(N) Gauge Theory, JHEP 02 (2011) 105 [arXiv:1011.1167] [INSPIRE].
M. Joyce, T. Prokopec and N. Turok, Efficient electroweak baryogenesis from lepton transport, Phys. Lett. B 338 (1994) 269 [hep-ph/9401352] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2112.08987
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Baker, M.J., Breitbach, M., Kopp, J. et al. Filtered baryogenesis. J. High Energ. Phys. 2022, 10 (2022). https://doi.org/10.1007/JHEP08(2022)010
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2022)010