Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

(Non-)commutative closed string on T-dual toroidal backgrounds

  • Open access
  • Published: 06 June 2013
  • Volume 2013, article number 21, (2013)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
(Non-)commutative closed string on T-dual toroidal backgrounds
Download PDF
  • David Andriot1,2,
  • Magdalena Larfors3,
  • Dieter Lüst1,2,4 &
  • …
  • Peter Patalong1,2 
  • 555 Accesses

  • 63 Citations

  • 1 Altmetric

  • Explore all metrics

Abstract

In this paper we investigate the connection between (non-)geometry and (non-)commutativity of the closed string. To this end, we solve the classical string on three T-dual toroidal backgrounds: a torus with H-flux, a twisted torus and a non-geometric background with Q-flux. In all three situations we work under the assumption of a dilute flux and consider quantities to linear order in the flux density. Furthermore, we perform the first steps of a canonical quantization for the twisted torus, to derive commutators of the string expansion modes. We use them as well as T-duality to determine, in the non-geometric background, a commutator of two string coordinates, which turns out to be non-vanishing. We relate this non-commutativity to the closed string boundary conditions, and the non-geometric Q-flux.

Article PDF

Download to read the full article text

Similar content being viewed by others

Open-string T-duality and applications to non-geometric backgrounds

Article Open access 31 August 2018

Noncommutative gauge theories on D-branes in non-geometric backgrounds

Article Open access 09 September 2019

Open-string non-associativity in an R-flux background

Article Open access 29 May 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Algebraic Topology
  • Category Theory, Homological Algebra
  • Commutative Rings and Algebras
  • Field Theory and Polynomials
  • Non-associative Rings and Algebras
  • String Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP 01 (2004) 024 [hep-th/0208174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].

    Article  ADS  Google Scholar 

  11. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. C.-S. Chu and P.-M. Ho, Noncommutative open string and D-brane, Nucl. Phys. B 550 (1999) 151 [hep-th/9812219] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. V. Schomerus, D-branes and deformation quantization, JHEP 06 (1999) 030 [hep-th/9903205] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. F. Ardalan, H. Arfaei and M. Sheikh-Jabbari, Mixed branes and M(atrix) theory on noncommutative torus, hep-th/9803067 [INSPIRE].

  16. F. Ardalan, H. Arfaei and M. Sheikh-Jabbari, Noncommutative geometry from strings and branes, JHEP 02 (1999) 016 [hep-th/9810072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. F. Ardalan, H. Arfaei and M. Sheikh-Jabbari, Dirac quantization of open strings and noncommutativity in branes, Nucl. Phys. B 576 (2000) 578 [hep-th/9906161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Blumenhagen and E. Plauschinn, Nonassociative gravity in string theory?, J. Phys. A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].

    Article  Google Scholar 

  20. R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric fluxes, asymmetric strings and nonassociative geometry, J. Phys. A 44 (2011) 385401 [arXiv:1106.0316] [INSPIRE].

    ADS  Google Scholar 

  21. C. Condeescu, I. Florakis and D. Lüst, Asymmetric orbifolds, non-geometric fluxes and non-commutativity in closed string theory, JHEP 04 (2012) 121 [arXiv:1202.6366] [INSPIRE].

    Article  ADS  Google Scholar 

  22. P. Bouwknegt and V. Mathai, D-branes, B fields and twisted k-theory, JHEP 03 (2000) 007 [hep-th/0002023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. V. Mathai and J.M. Rosenberg, T duality for torus bundles with H fluxes via noncommutative topology, Commun. Math. Phys. 253 (2004) 705 [hep-th/0401168] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. V. Mathai and J.M. Rosenberg, On mysteriously missing T-duals, H-flux and the T-duality group, hep-th/0409073 [INSPIRE].

  25. P. Bouwknegt, K. Hannabuss and V. Mathai, Nonassociative tori and applications to T-duality, Commun. Math. Phys. 264 (2006) 41 [hep-th/0412092] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. J. Brodzki, V. Mathai, J.M. Rosenberg and R.J. Szabo, Noncommutative correspondences, duality and D-branes in bivariant k-theory, Adv. Theor. Math. Phys. 13 (2009) 497 [arXiv:0708.2648] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  27. C. Sämann and R.J. Szabo, Groupoid quantization of loop spaces, PoS (CORFU2011) 046 [arXiv:1203.5921] [INSPIRE].

  28. C. Sämann and R.J. Szabo, Groupoids, loop spaces and quantization of 2-plectic manifolds, Rev. Math. Phys. 25 (2003) 1330005 [arXiv:1211.0395] [INSPIRE].

    Article  Google Scholar 

  29. P. Grange and S. Schäfer-Nameki, T-duality with H-flux: non-commutativity, T-folds and G×G structure, Nucl. Phys. B 770 (2007) 123[hep-th/0609084][INSPIRE].

    Article  ADS  Google Scholar 

  30. D. Mylonas, P. Schupp and R.J. Szabo, Membrane σ-models and quantization of non-geometric flux backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Chatzistavrakidis and L. Jonke, Matrix theory origins of non-geometric fluxes, JHEP 02 (2013) 040 [arXiv:1207.6412] [INSPIRE].

    Article  ADS  Google Scholar 

  32. S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. D.A. Lowe, H. Nastase and S. Ramgoolam, Massive IIA string theory and matrix theory compactification, Nucl. Phys. B 667 (2003) 55 [hep-th/0303173] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. T. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. T. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 1: Introduction, Cambridge University Press, Cambridge U.K. (1987), pg. 469.

  38. F. Marchesano and W. Schulgin, Non-geometric fluxes as supergravity backgrounds, Phys. Rev. D 76 (2007) 041901 [arXiv:0704.3272] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. L. Davidovic and B. Sazdovic, Nongeometric background arising in the solution of Neumann boundary conditions, Eur. Phys. J. C 72 (2012) 2199 [arXiv:1205.0921] [INSPIRE].

    ADS  Google Scholar 

  41. L. Davidovic and B. Sazdovic, T-duality in the weakly curved background, arXiv:1205.1991 [INSPIRE].

  42. D.C. Thompson, T-duality invariant approaches to string theory, arXiv:1012.4393 [INSPIRE].

  43. S. Groot Nibbelink and P. Patalong, A Lorentz invariant doubled worldsheet theory, Phys. Rev. D 87 (2013) 041902 [arXiv:1207.6110] [INSPIRE].

    ADS  Google Scholar 

  44. M. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. I. Todorov, ’Quantization is a mystery’, Bulg. J. Phys. 39 (2012) 107 [arXiv:1206.3116] [INSPIRE].

    MathSciNet  Google Scholar 

  47. C. Esposito, Lectures on deformation quantization of Poisson manifolds, arXiv:1207.3287.

  48. M. Axenides and E. Floratos, Nambu-Lie 3-algebras on fuzzy 3-manifolds, JHEP 02 (2009) 039 [arXiv:0809.3493] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. B. Nikolić and B. Sazdović, Fermionic T-duality and momenta noncommutativity, Phys. Rev. D 84 (2011) 065012 [arXiv:1103.4520] [INSPIRE].

    ADS  Google Scholar 

  50. A. Shirzad, A. Bakhshi and Y. Koohsarian, Symplectic quantization of massive bosonic string in background B-field, Mod. Phys. Lett. A 27 (2012) 1250073 [arXiv:1112.5781] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. M.B. Schulz, T-folds, doubled geometry and the SU(2) WZW model, JHEP 06 (2012) 158 [arXiv:1106.6291] [INSPIRE].

    Article  ADS  Google Scholar 

  52. E. Alvarez, L. Álvarez-Gaumé and Y. Lozano, A canonical approach to duality transformations, Phys. Lett. B 336 (1994) 183 [hep-th/9406206] [INSPIRE].

    ADS  Google Scholar 

  53. M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

    Article  ADS  Google Scholar 

  54. R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, A bi-invariant Einstein-Hilbert action for the non-geometric string, Phys. Lett. B 720 (2013) 215 [arXiv:1210.1591] [INSPIRE].

    ADS  Google Scholar 

  55. R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids, JHEP 02 (2013) 122 [arXiv:1211.0030] [INSPIRE].

    Article  ADS  Google Scholar 

  56. G. Dall’Agata, N. Prezas, H. Samtleben and M. Trigiante, Gauged Supergravities from Twisted Doubled Tori and Non-Geometric String Backgrounds, Nucl. Phys. B 799 (2008) 80 [arXiv:0712.1026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 1111 (2011) 109] [arXiv:1109.0290] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Arnold-Sommerfeld-Center for Theoretical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333, München, Germany

    David Andriot, Dieter Lüst & Peter Patalong

  2. Max-Planck-Institut für Physik, Föhringer Ring 6, 80805, München, Germany

    David Andriot, Dieter Lüst & Peter Patalong

  3. Mathematical Institute, Oxford University, 24-29 St Giles’, Oxford, OX1 3LB, England

    Magdalena Larfors

  4. Theory Group, CERN, 1211, Geneva 23, Switzerland

    Dieter Lüst

Authors
  1. David Andriot
    View author publications

    Search author on:PubMed Google Scholar

  2. Magdalena Larfors
    View author publications

    Search author on:PubMed Google Scholar

  3. Dieter Lüst
    View author publications

    Search author on:PubMed Google Scholar

  4. Peter Patalong
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Magdalena Larfors.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Andriot, D., Larfors, M., Lüst, D. et al. (Non-)commutative closed string on T-dual toroidal backgrounds. J. High Energ. Phys. 2013, 21 (2013). https://doi.org/10.1007/JHEP06(2013)021

Download citation

  • Received: 19 February 2013

  • Revised: 08 May 2013

  • Accepted: 23 May 2013

  • Published: 06 June 2013

  • DOI: https://doi.org/10.1007/JHEP06(2013)021

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Flux compactifications
  • Non-Commutative Geometry
  • String Duality
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature