Abstract
The future high-energy muon colliders, featuring both high energy and low background, could play a critical role in our searches for new physics. The smallness of neutrino mass is a puzzle of particle physics. Broad classes of solutions to the neutrino puzzles can be best tested by seeking the partners of SM light neutrinos, dubbed as heavy neutral leptons (HNLs), at muon colliders. We can parametrize HNLs in terms of the mass mN and the mixing angle with ℓ-flavor Uℓ. In this work, we focus on the regime mN > O(100) GeV and study the projected sensitivities on the |Uℓ|2 − mN plane with the full-reconstructable HNL decay into a hadronic W and a charged lepton. The projected reach in |Uℓ|2 leads to the best sensitivities in the TeV realm.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
M. Boscolo, J.-P. Delahaye and M. Palmer, The future prospects of muon colliders and neutrino factories, Rev. Accel. Sci. Tech. 10 (2019) 189 [arXiv:1808.01858] [INSPIRE].
J.P. Delahaye et al., Muon Colliders, arXiv:1901.06150 [INSPIRE].
H. Al Ali et al., The muon Smasher’s guide, Rept. Prog. Phys. 85 (2022) 084201 [arXiv:2103.14043] [INSPIRE].
K.M. Black et al., Muon Collider Forum Report, arXiv:2209.01318 [FERMILAB-FN-1194] [INSPIRE].
M. Narain et al., The Future of U.S. Particle Physics — The Snowmass 2021 Energy Frontier Report, arXiv:2211.11084 [FERMILAB-FN-1219-PPD-T] [INSPIRE].
T. Bose et al., Report of the Topical Group on Physics Beyond the Standard Model at Energy Frontier for Snowmass 2021, arXiv:2209.13128 [FERMILAB-FN-1204-AD-QIS-SCD] [INSPIRE].
C. Aime et al., Muon Collider Physics Summary, arXiv:2203.07256 [FERMILAB-PUB-22-377-PPD] [INSPIRE].
International Muon Collider collaboration, The Muon Collider, JACoW IPAC2022 (2022) 821 [INSPIRE].
F. Zimmermann, Accelerator Technology and Beam Physics of Future Colliders, Front. Phys. 10 (2022) 888395 [INSPIRE].
S.M. Bilenky and B. Pontecorvo, Lepton Mixing and Neutrino Oscillations, Phys. Rept. 41 (1978) 225 [INSPIRE].
Super-Kamiokande collaboration, Measurement of the flux and zenith angle distribution of upward through going muons by Super-Kamiokande, Phys. Rev. Lett. 82 (1999) 2644 [hep-ex/9812014] [INSPIRE].
Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
SNO collaboration, Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].
KamLAND collaboration, First results from KamLAND: Evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].
S.M. Bilenky, Neutrino masses, mixing and oscillations, Prog. Part. Nucl. Phys. 57 (2006) 61 [hep-ph/0510175] [INSPIRE].
S.M. Bilenky, Majorana neutrino mixing, J. Phys. G 32 (2006) R127 [hep-ph/0511227] [INSPIRE].
M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].
S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].
S.M. Bilenky, Neutrino in Standard Model and beyond, Phys. Part. Nucl. 46 (2015) 475 [arXiv:1501.00232] [INSPIRE].
Particle Data collaboration, Review of Particle Physics, Prog. Theor. Exp. Phys. 2022 (2022) 083C01 [INSPIRE].
J.D. Bjorken and C.H. Llewellyn Smith, Spontaneously Broken Gauge Theories of Weak Interactions and Heavy Leptons, Phys. Rev. D 7 (1973) 887 [INSPIRE].
P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
O. Sawada and A. Sugamoto, Proceedings of the Workshop on the Unified Theories and the Baryon Number in the Universe, Tsukuba, Japan, 13–14 February 1979, National Laboratory for High Energy Physics, Tsukuba, Japan (1979) [INSPIRE].
M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
R.N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].
T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].
J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
D. Chang and R.N. Mohapatra, Comment on the ‘Seesaw’ Mechanism for Small Neutrino Masses, Phys. Rev. D 32 (1985) 1248 [INSPIRE].
P. Langacker and D. London, Mixing Between Ordinary and Exotic Fermions, Phys. Rev. D 38 (1988) 886 [INSPIRE].
M. Dittmar, A. Santamaria, M.C. Gonzalez-Garcia and J.W.F. Valle, Production Mechanisms and Signatures of Isosinglet Neutral Heavy Leptons in Z0 Decays, Nucl. Phys. B 332 (1990) 1 [INSPIRE].
A.Y. Smirnov, Seesaw enhancement of lepton mixing, Phys. Rev. D 48 (1993) 3264 [hep-ph/9304205] [INSPIRE].
A. Strumia and F. Vissani, Neutrino masses and mixings and. . . , hep-ph/0606054 [IFUP-TH-2004-1] [INSPIRE].
R.N. Mohapatra and A.Y. Smirnov, Neutrino Mass and New Physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [INSPIRE].
J. Kersten and A.Y. Smirnov, Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].
S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].
A. Kusenko, Sterile neutrinos: The Dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [INSPIRE].
B. Dasgupta and A.Y. Smirnov, Leptonic CP Violation Phases, Quark-Lepton Similarity and Seesaw Mechanism, Nucl. Phys. B 884 (2014) 357 [arXiv:1404.0272] [INSPIRE].
N. Arkani-Hamed and Y. Grossman, Light active and sterile neutrinos from compositeness, Phys. Lett. B 459 (1999) 179 [hep-ph/9806223] [INSPIRE].
Y. Grossman and D.J. Robinson, Composite Dirac Neutrinos, JHEP 01 (2011) 132 [arXiv:1009.2781] [INSPIRE].
Z. Chacko, P.J. Fox, R. Harnik and Z. Liu, Neutrino Masses from Low Scale Partial Compositeness, JHEP 03 (2021) 112 [arXiv:2012.01443] [INSPIRE].
P. Cox, T. Gherghetta and M.D. Nguyen, Light sterile neutrinos and a high-quality axion from a holographic Peccei-Quinn mechanism, Phys. Rev. D 105 (2022) 055011 [arXiv:2107.14018] [INSPIRE].
M.S. Chanowitz, M.A. Furman and I. Hinchliffe, Weak Interactions of Ultraheavy Fermions. Part 2, Nucl. Phys. B 153 (1979) 402 [INSPIRE].
A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [INSPIRE].
E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets, Phys. Rev. Lett. 80 (1998) 5716 [hep-ph/9802445] [INSPIRE].
T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].
A.M. Abdullahi et al., The present and future status of heavy neutral leptons, J. Phys. G 50 (2023) 020501 [arXiv:2203.08039] [INSPIRE].
H.B. Thacker and J.J. Sakurai, Lifetimes and branching ratios of heavy leptons, Phys. Lett. B 36 (1971) 103 [INSPIRE].
J.C. Helo, S. Kovalenko and I. Schmidt, Sterile neutrinos in lepton number and lepton flavor violating decays, Nucl. Phys. B 853 (2011) 80 [arXiv:1005.1607] [INSPIRE].
J.C. Helo, M. Hirsch and S. Kovalenko, Heavy neutrino searches at the LHC with displaced vertices, Phys. Rev. D 89 (2014) 073005 [Erratum ibid. 93 (2016) 099902] [arXiv:1312.2900] [INSPIRE].
J. Liu, Z. Liu, L.-T. Wang and X.-P. Wang, Seeking for sterile neutrinos with displaced leptons at the LHC, JHEP 07 (2019) 159 [arXiv:1904.01020] [INSPIRE].
A. Maiezza, M. Nemevšek and F. Nesti, Lepton Number Violation in Higgs Decay at LHC, Phys. Rev. Lett. 115 (2015) 081802 [arXiv:1503.06834] [INSPIRE].
B. Batell, M. Pospelov and B. Shuve, Shedding Light on Neutrino Masses with Dark Forces, JHEP 08 (2016) 052 [arXiv:1604.06099] [INSPIRE].
S. Antusch, E. Cazzato and O. Fischer, Displaced vertex searches for sterile neutrinos at future lepton colliders, JHEP 12 (2016) 007 [arXiv:1604.02420] [INSPIRE].
S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches via displaced vertices at LHCb, Phys. Lett. B 774 (2017) 114 [arXiv:1706.05990] [INSPIRE].
G. Cottin, J.C. Helo and M. Hirsch, Searches for light sterile neutrinos with multitrack displaced vertices, Phys. Rev. D 97 (2018) 055025 [arXiv:1801.02734] [INSPIRE].
A. Abada, N. Bernal, M. Losada and X. Marcano, Inclusive Displaced Vertex Searches for Heavy Neutral Leptons at the LHC, JHEP 01 (2019) 093 [arXiv:1807.10024] [INSPIRE].
M. Drewes and J. Hajer, Heavy Neutrinos in displaced vertex searches at the LHC and HL-LHC, JHEP 02 (2020) 070 [arXiv:1903.06100] [INSPIRE].
K. Bondarenko, A. Boyarsky, M. Ovchynnikov, O. Ruchayskiy and L. Shchutska, Probing new physics with displaced vertices: muon tracker at CMS, Phys. Rev. D 100 (2019) 075015 [arXiv:1903.11918] [INSPIRE].
NA3 collaboration, Direct Photon Production From Pions and Protons at 200 GeV/c, Z. Phys. C 31 (1986) 341 [INSPIRE].
WA66 collaboration, Search for Heavy Neutrino Decays in the BEBC Beam Dump Experiment, Phys. Lett. B 160 (1985) 207 [INSPIRE].
M. Gronau, C.N. Leung and J.L. Rosner, Extending Limits on Neutral Heavy Leptons, Phys. Rev. D 29 (1984) 2539 [INSPIRE].
S.A. Baranov et al., Search for heavy neutrinos at the IHEP-JINR neutrino detector, Phys. Lett. B 302 (1993) 336 [INSPIRE].
NOMAD collaboration, Search for heavy neutrinos mixing with tau neutrinos, Phys. Lett. B 506 (2001) 27 [hep-ex/0101041] [INSPIRE].
FMMF collaboration, Search for neutral weakly interacting massive particles in the Fermilab Tevatron wide band neutrino beam, Phys. Rev. D 52 (1995) 6 [INSPIRE].
SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [CERN-SPSC-2015-016] [INSPIRE].
P. Ballett, T. Boschi and S. Pascoli, Heavy Neutral Leptons from low-scale seesaws at the DUNE Near Detector, JHEP 03 (2020) 111 [arXiv:1905.00284] [INSPIRE].
FASER collaboration, FASER’s physics reach for long-lived particles, Phys. Rev. D 99 (2019) 095011 [arXiv:1811.12522] [INSPIRE].
FASER collaboration, FASER: Forward Search Experiment at the LHC, PoS EPS-HEP2021 (2022) 705 [INSPIRE].
CHARM collaboration, A Search for Decays of Heavy Neutrinos in the Mass Range 0.5 GeV to 2.8 GeV, Phys. Lett. B 166 (1986) 473 [INSPIRE].
CHARM II collaboration, Search for heavy isosinglet neutrinos, Phys. Lett. B 343 (1995) 453 [INSPIRE].
NuTeV and E815 collaborations, Search for neutral heavy leptons in a high-energy neutrino beam, Phys. Rev. Lett. 83 (1999) 4943 [hep-ex/9908011] [INSPIRE].
F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [INSPIRE].
D. Alva, T. Han and R. Ruiz, Heavy Majorana neutrinos from Wγ fusion at hadron colliders, JHEP 02 (2015) 072 [arXiv:1411.7305] [INSPIRE].
C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, Fully-Automated Precision Predictions for Heavy Neutrino Production Mechanisms at Hadron Colliders, Phys. Rev. D 94 (2016) 053002 [arXiv:1602.06957] [INSPIRE].
E. Accomando, L. Delle Rose, S. Moretti, E. Olaiya and C.H. Shepherd-Themistocleous, Extra Higgs boson and Z′ as portals to signatures of heavy neutrinos at the LHC, JHEP 02 (2018) 109 [arXiv:1708.03650] [INSPIRE].
S. Pascoli, R. Ruiz and C. Weiland, Heavy neutrinos with dynamic jet vetoes: multilepton searches at \( \sqrt{s} \) = 14, 27, and 100 TeV, JHEP 06 (2019) 049 [arXiv:1812.08750] [INSPIRE].
E. Fernández-Martínez, X. Marcano and D. Naredo-Tuero, HNL mass degeneracy: implications for low-scale seesaws, LNV at colliders and leptogenesis, JHEP 03 (2023) 057 [arXiv:2209.04461] [INSPIRE].
A. Abada, P. Escribano, X. Marcano and G. Piazza, Collider searches for heavy neutral leptons: beyond simplified scenarios, Eur. Phys. J. C 82 (2022) 1030 [arXiv:2208.13882] [INSPIRE].
E. Arganda, M.J. Herrero, X. Marcano and C. Weiland, Exotic μτjj events from heavy ISS neutrinos at the LHC, Phys. Lett. B 752 (2016) 46 [arXiv:1508.05074] [INSPIRE].
A. Ismail, S. Jana and R.M. Abraham, Neutrino up-scattering via the dipole portal at forward LHC detectors, Phys. Rev. D 105 (2022) 055008 [arXiv:2109.05032] [INSPIRE].
P.S.B. Dev, A. Pilaftsis and U.-K. Yang, New Production Mechanism for Heavy Neutrinos at the LHC, Phys. Rev. Lett. 112 (2014) 081801 [arXiv:1308.2209] [INSPIRE].
A. Das and N. Okada, Bounds on heavy Majorana neutrinos in type-I seesaw and implications for collider searches, Phys. Lett. B 774 (2017) 32 [arXiv:1702.04668] [INSPIRE].
A. Das, Pair production of heavy neutrinos in next-to-leading order QCD at the hadron colliders in the inverse seesaw framework, Int. J. Mod. Phys. A 36 (2021) 2150012 [arXiv:1701.04946] [INSPIRE].
A. Das, P. Konar and A. Thalapillil, Jet substructure shedding light on heavy Majorana neutrinos at the LHC, JHEP 02 (2018) 083 [arXiv:1709.09712] [INSPIRE].
A. Das, S. Jana, S. Mandal and S. Nandi, Probing right handed neutrinos at the LHeC and lepton colliders using fat jet signatures, Phys. Rev. D 99 (2019) 055030 [arXiv:1811.04291] [INSPIRE].
A. Das and N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. D 88 (2013) 113001 [arXiv:1207.3734] [INSPIRE].
S. Banerjee, P.S.B. Dev, A. Ibarra, T. Mandal and M. Mitra, Prospects of Heavy Neutrino Searches at Future Lepton Colliders, Phys. Rev. D 92 (2015) 075002 [arXiv:1503.05491] [INSPIRE].
A. Blondel et al., Searches for long-lived particles at the future FCC-ee, Front. Phys. 10 (2022) 967881 [arXiv:2203.05502] [INSPIRE].
K. Mękała, J. Reuter and A.F. Żarnecki, Heavy neutrinos at future linear e+e− colliders, JHEP 06 (2022) 010 [arXiv:2202.06703] [INSPIRE].
I. Chakraborty, H. Roy and T. Srivastava, Searches for heavy neutrinos at multi-TeV muon collider: a resonant leptogenesis perspective, arXiv:2206.07037 [INSPIRE].
A.G. Dias, C.A. de Sousa Pires , P.S. Rodrigues da Silva and A. Sampieri, A Simple Realization of the Inverse Seesaw Mechanism, Phys. Rev. D 86 (2012) 035007 [arXiv:1206.2590] [INSPIRE].
S.S.C. Law and K.L. McDonald, Generalized inverse seesaw mechanisms, Phys. Rev. D 87 (2013) 113003 [arXiv:1303.4887] [INSPIRE].
R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
E. Ma, Lepton Number Nonconservation in E6 Superstring Models, Phys. Lett. B 191 (1987) 287 [INSPIRE].
E. Ma, Radiative inverse seesaw mechanism for nonzero neutrino mass, Phys. Rev. D 80 (2009) 013013 [arXiv:0904.4450] [INSPIRE].
F. Bazzocchi, Minimal Dynamical Inverse See Saw, Phys. Rev. D 83 (2011) 093009 [arXiv:1011.6299] [INSPIRE].
D. Wyler and L. Wolfenstein, Massless Neutrinos in Left-Right Symmetric Models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].
E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Left-right symmetry breaking in NJL approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].
E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Dynamical left-right symmetry breaking, Phys. Rev. D 53 (1996) 2752 [hep-ph/9509255] [INSPIRE].
A. de Gouvêa, P.J. Fox, B.J. Kayser and K.J. Kelly, Three-body decays of heavy Dirac and Majorana fermions, Phys. Rev. D 104 (2021) 015038 [arXiv:2104.05719] [INSPIRE].
A.B. Balantekin, A. de Gouvêa and B. Kayser, Addressing the Majorana vs. Dirac Question with Neutrino Decays, Phys. Lett. B 789 (2019) 488 [arXiv:1808.10518] [INSPIRE].
A. Baha Balantekin and B. Kayser, On the Properties of Neutrinos, Ann. Rev. Nucl. Part. Sci. 68 (2018) 313 [arXiv:1805.00922] [INSPIRE].
T. Han, Y. Ma and K. Xie, High energy leptonic collisions and electroweak parton distribution functions, Phys. Rev. D 103 (2021) L031301 [arXiv:2007.14300] [INSPIRE].
G.L. Kane, W.W. Repko and W.B. Rolnick, The Effective W±, Z0 Approximation for High-Energy Collisions, Phys. Lett. B 148 (1984) 367 [INSPIRE].
S. Dawson, The Effective W Approximation, Nucl. Phys. B 249 (1985) 42 [INSPIRE].
B. Fornal, A.V. Manohar and W.J. Waalewijn, Electroweak Gauge Boson Parton Distribution Functions, JHEP 05 (2018) 106 [arXiv:1803.06347] [INSPIRE].
J. Chen, T. Han and B. Tweedie, Electroweak Splitting Functions and High Energy Showering, JHEP 11 (2017) 093 [arXiv:1611.00788] [INSPIRE].
A. Costantini et al., Vector boson fusion at multi-TeV muon colliders, JHEP 09 (2020) 080 [arXiv:2005.10289] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
R. Ruiz, A. Costantini, F. Maltoni and O. Mattelaer, The Effective Vector Boson Approximation in high-energy muon collisions, JHEP 06 (2022) 114 [arXiv:2111.02442] [INSPIRE].
C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
I.F. Ginzburg, Initial particle instability in muon collisions, Nucl. Phys. B Proc. Suppl. 51 (1996) 85 [hep-ph/9601272] [INSPIRE].
C. Dams and R. Kleiss, Singular cross-sections in muon colliders, Eur. Phys. J. C 29 (2003) 11 [hep-ph/0212301] [INSPIRE].
K. Melnikov and V.G. Serbo, Processes with the T channel singularity in the physical region: Finite beam sizes make cross-sections finite, Nucl. Phys. B 483 (1997) 67 [Erratum ibid. 662 (2003) 409] [hep-ph/9601290] [INSPIRE].
E. Izaguirre and B. Shuve, Multilepton and Lepton Jet Probes of Sub-Weak-Scale Right-Handed Neutrinos, Phys. Rev. D 91 (2015) 093010 [arXiv:1504.02470] [INSPIRE].
S. Antusch, O. Fischer and A. Hammad, Lepton-Trijet and Displaced Vertex Searches for Heavy Neutrinos at Future Electron-Proton Colliders, JHEP 03 (2020) 110 [arXiv:1908.02852] [INSPIRE].
S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches at future e−e+, pp, and e−p colliders, Int. J. Mod. Phys. A 32 (2017) 1750078 [arXiv:1612.02728] [INSPIRE].
FCC collaboration, FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report. Volume 2, Eur. Phys. J. Spec. Top. 228 (2019) 261 [INSPIRE].
CEPC Study Group, CEPC Conceptual Design Report. Volume 2 — Physics & Detector, arXiv:1811.10545 [IHEP-CEPC-DR-2018-02] [INSPIRE].
F. An et al., Precision Higgs physics at the CEPC, Chin. Phys. C 43 (2019) 043002 [arXiv:1810.09037] [INSPIRE].
CEPC Physics Study Group, The Physics potential of the CEPC. Prepared for the U.S. Snowmass Community Planning Exercise (Snowmass 2021), in proceedings of the 2022 Snowmass Summer Study, Seattle, WA, U.S.A., 17–26 July 2022, arXiv:2205.08553 [INSPIRE].
K. Mękała, J. Reuter and A.F. Żarnecki, Optimal search reach for heavy neutral leptons at a muon collider, arXiv:2301.02602 [INSPIRE].
T.H. Kwok, L. Li, T. Liu and A. Rock, Searching for Heavy Neutral Leptons at A Future Muon Collider, arXiv:2301.05177 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2301.07117
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Li, P., Liu, Z. & Lyu, KF. Heavy neutral leptons at muon colliders. J. High Energ. Phys. 2023, 231 (2023). https://doi.org/10.1007/JHEP03(2023)231
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2023)231