Abstract
In many strongly-interacting models of electroweak symmetry breaking the lowest-lying observable particle is a pseudo-Goldstone boson of approximate scale symmetry, the pseudo-dilaton. Its interactions with Standard Model particles can be described using a low-energy effective nonlinear chiral Lagrangian supplemented by terms that restore approximate scale symmetry, yielding couplings of the pseudo-dilaton that differ from those of a Standard Model Higgs boson by fixed factors. We review the experimental constraints on such a pseudo-dilaton in light of new data from the LHC and elsewhere. The effective nonlinear chiral Lagrangian has Skyrmion solutions that may be identified with the ‘electroweak baryons’ of the underlying strongly-interacting theory, whose nature may be revealed by the properties of the Skyrmions. We discuss the finite-temperature electroweak phase transition in the low-energy effective theory, finding that the possibility of a first-order electroweak phase transition is resurrected. We discuss the evolution of the Universe during this transition and derive an order-of-magnitude lower limit on the abundance of electroweak baryons in the absence of a cosmological asymmetry, which suggests that such an asymmetry would be necessary if the electroweak baryons are to provide the cosmological density of dark matter. We revisit estimates of the corresponding spin-independent dark matter scattering cross section, with a view to direct detection experiments.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
CMS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 fb−1 of pp collision data at \( \sqrt {s} = 7\,TeV \) at the LHC, PAS-HIG-11-023, CERN, Geneva Switzerland (2011).
ATLAS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 fb−1 of pp collisions at \( \sqrt {s} = 7\,TeV \) at the LHC, ATLAS-CONF-2011-157, CERN, Geneva Switzerland (2011).
ATLAS, CMS and LHC Higgs Combination Group collaborations, L. Rolandi, Higgsstatus and combinations, http://indico.in2p3.fr/getFile.py/access?contribId=72 &sessionId = 19&resId = 0&materialId = slides&confId = 6004.
M. Veltman, Second threshold in weak interactions, Acta Phys. Polon. B 8 (1977) 475 [INSPIRE].
C.E. Vayonakis, New threshold of weak interactions, preprint University of Athens, Athens Greece (1977) [INSPIRE].
B.W. Lee, C. Quigg and H. Thacker, The strength of weak interactions at very high-energies and the Higgs boson mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].
B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].
LEP Electroweak Working Group webpage, http://lepewwg.web.cern.ch/LEPEWWG/.
Gfitter collaboration, M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, arXiv:1107.0975 [INSPIRE].
G. Altarelli and G. Isidori, Lower limit on the Higgs mass in the Standard Model: an update, Phys. Lett. B 337 (1994) 141 [INSPIRE].
J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the Standard Model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].
J. Ellis, J. Espinosa, G. Giudice, A. Hoecker and A. Riotto, The probable fate of the Standard Model, Phys. Lett. B 679 (2009) 369 [arXiv:0906.0954] [INSPIRE].
J.R. Ellis and D. Ross, A light Higgs boson would invite supersymmetry, Phys. Lett. B 506 (2001) 331 [hep-ph/0012067] [INSPIRE].
C. Csáki, J. Hubisz and S.J. Lee, Radion phenomenology in realistic warped space models, Phys. Rev. D 76 (2007) 125015 [arXiv:0705.3844] [INSPIRE].
W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].
J. Fan, W.D. Goldberger, A. Ross and W. Skiba, Standard Model couplings and collider signatures of a light scalar, Phys. Rev. D 79 (2009) 035017 [arXiv:0803.2040] [INSPIRE].
K. Yamawaki, Walking over the composites: in the spirit of Sakata, Prog. Theor. Phys. Suppl. 167 (2007) 127 [INSPIRE].
K. Yamawaki, Quest for the dynamical origin of mass: an LHC perspective from Sakata, Nambu and Maskawa, Prog. Theor. Phys. Suppl. 180 (2010) 1 [arXiv:0907.5277] [INSPIRE].
K. Yamawaki, Conformal Higgs, or techni-dilaton-composite Higgs near conformality, Int. J. Mod. Phys. A 25 (2010) 5128 [arXiv:1008.1834] [INSPIRE].
S. Matsuzaki and K. Yamawaki, Techni-dilaton signatures at LHC, arXiv:1109.5448 [INSPIRE].
R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].
J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].
R. Contino, Tasi 2009 lectures: the Higgs as a composite Nambu-Goldstone boson, arXiv:1005.4269 [INSPIRE].
R. Contino, Hunting the composite Higgs, talk at the Higgs Hunting Workshop, http://indico2.lal.in2p3.fr/indico/getFile.py/access?contribId=27&sessionId=11&resId=0&materialId=slides&confId=1507, Orsay France July 28-30 2011.
S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568 [INSPIRE].
S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].
C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].
A. Salam and J. Strathdee, Nonlinear realizations. 2. Conformal symmetry, Phys. Rev. 184 (1969) 1760 [INSPIRE].
J.R. Ellis, Aspects of conformal symmetry and chirality, Nucl. Phys. B 22 (1970) 478 [INSPIRE].
T. Appelquist and C.W. Bernard, Strongly interacting Higgs bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].
B. Grinstein, Strong electroweak symmetry breaking, arXiv:1102.4009 [INSPIRE].
J. Andersen et al., Discovering technicolor, Eur. Phys. J. Plus 126 (2011) 81 [arXiv:1104.1255] [INSPIRE].
K. Yamawaki, M. Bando and K.-I. Matumoto, Scale invariant technicolor model and a technidilaton, Phys. Rev. Lett. 56 (1986) 1335 [INSPIRE].
M. Bando, K.-I. Matumoto and K. Yamawaki, Technidilaton, Phys. Lett. B 178 (1986) 308 [INSPIRE].
D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: predictions for CERN LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [INSPIRE].
M. Hashimoto and K. Yamawaki, Techni-dilaton at conformal edge, Phys. Rev. D 83 (2011) 015008 [arXiv:1009.5482] [INSPIRE].
T. Appelquist and Y. Bai, A light dilaton in walking gauge theories, Phys. Rev. D 82 (2010) 071701 [arXiv:1006.4375] [INSPIRE].
B. Grinstein and P. Uttayarat, A very light dilaton, JHEP 07 (2011) 038 [arXiv:1105.2370] [INSPIRE].
A. Delgado, K. Lane and A. Martin, A light scalar in low-scale technicolor, Phys. Lett. B 696 (2011) 482 [arXiv:1011.0745] [INSPIRE].
O. Antipin, M. Mojaza and F. Sannino, Light dilaton at fixed points and ultra light scale super Yang-Mills, arXiv:1107.2932 [INSPIRE].
B. Grinstein and P. Uttayarat, A very light dilaton, JHEP 07 (2011) 038 [arXiv:1105.2370] [INSPIRE].
R. Crewther, Broken scale invariance in the width of a single dilaton, Phys. Lett. B 33 (1970) 305 [INSPIRE].
R. Crewther, Nonperturbative evaluation of the anomalies in low-energy theorems, Phys. Rev. Lett. 28 (1972) 1421 [INSPIRE].
M.S. Chanowitz and J.R. Ellis, Canonical anomalies and broken scale invariance, Phys. Lett. B 40 (1972) 397 [INSPIRE].
M.S. Chanowitz and J.R. Ellis, Canonical trace anomalies, Phys. Rev. D 7 (1973) 2490 [INSPIRE].
J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].
B. Campbell, J.R. Ellis and K.A. Olive, Effective Lagrangian approach to QCD phase transitions, Phys. Lett. B 235 (1990) 325 [INSPIRE].
B.A. Campbell, J.R. Ellis and K.A. Olive, QCD phase transitions in an effective field theory, Nucl. Phys. B 345 (1990) 57 [INSPIRE].
T. Skyrme, A nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127 [INSPIRE].
T. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556 [INSPIRE].
J.M. Cline, M. Jarvinen and F. Sannino, The electroweak phase transition in nearly conformal technicolor, Phys. Rev. D 78 (2008) 075027 [arXiv:0808.1512] [INSPIRE].
F. Sannino, Conformal dynamics for TeV physics and cosmology, Acta Phys. Polon. B 40 (2009)3533 [arXiv:0911.0931] [INSPIRE].
R. Chivukula and T.P. Walker, Technicolor cosmology, Nucl. Phys. B 329 (1990) 445 [INSPIRE].
S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].
J. Bagnasco, M. Dine and S.D. Thomas, Detecting technibaryon dark matter, Phys. Lett. B 320 (1994) 99 [hep-ph/9310290] [INSPIRE].
M. Gell-Mann and M. Levy, The axial vector current in β decay, Nuovo Cim. 16 (1960) 705 [INSPIRE].
M. Gell-Mann, R. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].
J. Schechter, Effective Lagrangian with two color singlet gluon fields, Phys. Rev. D 21 (1980) 3393 [INSPIRE].
A. Salomone, J. Schechter and T. Tudron, Properties of scalar gluonium, Phys. Rev. D 23 (1981) 1143 [INSPIRE].
A.A. Migdal and M.A. Shifman, Dilaton effective Lagrangian in gluodynamics, Phys. Lett. B 114 (1982) 445 [INSPIRE].
J.R. Ellis and J. Lanik, Is scalar gluonium observable?, Phys. Lett. B 150 (1985) 289 [INSPIRE].
F. Gianotti et al., Physics potential and experimental challenges of the LHC luminosity upgrade, Eur. Phys. J. C 39 (2005) 293 [hep-ph/0204087] [INSPIRE].
CLIC Physics Working Group collaboration, E. Accomando et al., Physics at the CLIC multi-TeV linear collider, hep-ph/0412251 [INSPIRE].
M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].
R. Gastmans, S.L. Wu and T.T. Wu, Higgs decay H → γγ through a W loop: difficulty with dimensional regularization, arXiv:1108.5322 [INSPIRE].
R. Gastmans, S.L. Wu and T.T. Wu, Higgs decay into two photons, revisited, arXiv:1108.5872 [INSPIRE].
K. Fujikawa, B. Lee and A. Sanda, Generalized renormalizable gauge formulation of spontaneously broken gauge theories, Phys. Rev. D 6 (1972) 2923 [INSPIRE].
M. Shifman, A. Vainshtein, M. Voloshin and V. Zakharov, Higgs decay into two photons through the W -boson loop: no decoupling in the mW → 0 limit, Phys. Rev. D 85 (2012) 013015 [arXiv:1109.1785] [INSPIRE].
D. Huang, Y. Tang and Y.-L. Wu, Note on Higgs decay into two photons H → γγ, arXiv:1109.4846 [INSPIRE].
W.J. Marciano, C. Zhang and S. Willenbrock, Higgs decay to two photons, Phys. Rev. D 85 (2012) 013002 [arXiv:1109.5304] [INSPIRE].
F. Jegerlehner, Comment on H → γγ and the role of the decoupling theorem and the equivalence theorem, arXiv:1110.0869 [INSPIRE].
H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Higgs decay into two photons and reduction schemes in cutoff regularization, JHEP 01 (2012) 053 [arXiv:1110.6925] [INSPIRE].
M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].
R. Foadi and F. Sannino, WW scattering in walking technicolor: no discovery scenarios at the CERN LHC and ILC, Phys. Rev. D 78 (2008) 037701 [arXiv:0801.0663] [INSPIRE].
K. Haba, S. Matsuzaki and K. Yamawaki, S parameter in the holographic walking/conformal technicolor, Prog. Theor. Phys. 120 (2008) 691 [arXiv:0804.3668] [INSPIRE].
R. Foadi, M. Jarvinen and F. Sannino, Unitarity in technicolor, Phys. Rev. D 79 (2009) 035010 [arXiv:0811.3719] [INSPIRE].
A. Falkowski, C. Grojean, A. Kaminska, S. Pokorski and A. Weiler, If no Higgs then what?, JHEP 11 (2011) 028 [arXiv:1108.1183] [INSPIRE].
M. Gillioz, A. von Manteuffel, P. Schwaller and D. Wyler, The little skyrmion: new dark matter for little Higgs models, JHEP 03 (2011) 048 [arXiv:1012.5288] [INSPIRE].
E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].
J.R. Ellis and M. Karliner, An analysis of the angular momentum of the proton, Phys. Lett. B 213 (1988) 73 [INSPIRE].
G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-completion by classicalization, JHEP 08 (2011) 108 [arXiv:1010.1415] [INSPIRE].
C. Grojean and R.S. Gupta, Theory and LHC phenomenology of classicalon decays, arXiv:1110.5317 [INSPIRE].
J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B 184 (1987) 83 [INSPIRE].
J. Gasser and H. Leutwyler, Thermodynamics of chiral symmetry, Phys. Lett. B 188 (1987) 477 [INSPIRE].
T. Konstandin and G. Servant, Cosmological consequences of nearly conformal dynamics at the TeV scale, JCAP 12 (2011) 009 [arXiv:1104.4791] [INSPIRE].
T. Konstandin and G. Servant, Natural cold baryogenesis from strongly interacting electroweak symmetry breaking, JCAP 07 (2011) 024 [arXiv:1104.4793] [INSPIRE].
A.H. Guth and E.J. Weinberg, Could the universe have recovered from a slow first order phase transition?, Nucl. Phys. B 212 (1983) 321 [INSPIRE].
L. Randall and G. Servant, Gravitational waves from warped spacetime, JHEP 05 (2007) 054 [hep-ph/0607158] [INSPIRE].
T. Konstandin, G. Nardini and M. Quirós, Gravitational backreaction effects on the holographic phase transition, Phys. Rev. D 82 (2010) 083513 [arXiv:1007.1468] [INSPIRE].
E. D’Hoker and E. Farhi, The decay of the skyrmion, Phys. Lett. B 134 (1984) 86 [INSPIRE].
T. Kibble, Topology of cosmic domains and strings, J. Phys. A 9 (1976) 1387 [INSPIRE].
W. Zurek, Cosmological experiments in superfluid helium?, Nature 317 (1985) 505 [INSPIRE].
H. Murayama and J. Shu, Topological dark matter, Phys. Lett. B 686 (2010) 162 [arXiv:0905.1720] [INSPIRE].
WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE] and references therein.
M. Gillioz, Dangerous skyrmions in little Higgs models, JHEP 02 (2012) 121 [arXiv:1111.2047] [INSPIRE].
J.R. Ellis, V. Mayes and D.V. Nanopoulos, Flipped cryptons and the UHECRs, Phys. Rev. D 70 (2004) 075015 [hep-ph/0403144] [INSPIRE].
M. Pospelov, Particle physics catalysis of thermal big bang nucleosynthesis, Phys. Rev. Lett. 98 (2007) 231301 [hep-ph/0605215] [INSPIRE].
R. Foadi, M.T. Frandsen and F. Sannino, Technicolor dark matter, Phys. Rev. D 80 (2009) 037702 [arXiv:0812.3406] [INSPIRE].
XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE] and references therein.
R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].
M.A. Shifman, A. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].
J.R. Ellis, K.A. Olive and C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].
H. de Sandes and R. Rosenfeld, Radion-Higgs mixing effects on bounds from LHC Higgs searches, arXiv:1111.2006 [INSPIRE].
V. Barger, M. Ishida and W.-Y. Keung, Dilaton at the LHC, Phys. Rev. D 85 (2012) 015024 [arXiv:1111.2580] [INSPIRE].
B. Coleppa, T. Gregoire and H.E. Logan, Dilaton constraints and LHC prospects, arXiv:1111.3276 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Campbell, B.A., Ellis, J. & Olive, K.A. Phenomenology and cosmology of an electroweak pseudo-dilaton and electroweak baryons. J. High Energ. Phys. 2012, 26 (2012). https://doi.org/10.1007/JHEP03(2012)026
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2012)026