Abstract
The decreasing uncertainties in theoretical predictions and experimental measurements of several hadronic observables related to weak processes, which in many cases are now smaller than O(1%), require theoretical calculations to include subleading corrections that were neglected so far. Precise determinations of leptonic and semi-leptonic decay rates, including QED and strong isospin-breaking effects, can play a central role in solving the current tensions in the first-row unitarity of the CKM matrix. In this work we present the first RBC/UKQCD lattice calculation of the isospin-breaking corrections to the ratio of leptonic decay rates of kaons and pions into muons and neutrinos. The calculation is performed at fixed lattice spacing (a−1 ≃ 1.730 GeV) on a 483 × 96 volume with Nf = 2 + 1 dynamical quarks close to the physical point and domain wall fermions in the Möbius formulation are employed. Long-distance QED interactions are included according to the QEDL prescription and the crucial role of finite-volume electromagnetic corrections in the determination of leptonic decay rates, which produce a large systematic uncertainty, is extensively discussed. Finally, we study the different sources of uncertainty on |Vus|/|Vud| and observe that, if finite-volume systematics can be reduced, the error from isospin-breaking corrections is potentially sub-dominant in the final precision of the ratio of the CKM matrix elements.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
Flavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2021, Eur. Phys. J. C 82 (2022) 869 [arXiv:2111.09849] [INSPIRE].
V. Cirigliano, A. Crivellin, M. Hoferichter and M. Moulson, Scrutinizing CKM unitarity with a new measurement of the Kμ3/Kμ2 branching fraction, Phys. Lett. B 838 (2023) 137748 [arXiv:2208.11707] [INSPIRE].
B. Ananthanarayan and B. Moussallam, Four-point correlator constraints on electromagnetic chiral parameters and resonance effective Lagrangians, JHEP 06 (2004) 047 [hep-ph/0405206] [INSPIRE].
S. Descotes-Genon and B. Moussallam, Radiative corrections in weak semi-leptonic processes at low energy: A Two-step matching determination, Eur. Phys. J. C 42 (2005) 403 [hep-ph/0505077] [INSPIRE].
V. Cirigliano and I. Rosell, \( \pi /K\to e{\overline{\nu}}_e \) branching ratios to O(e2p4) in Chiral Perturbation Theory, JHEP 10 (2007) 005 [arXiv:0707.4464] [INSPIRE].
D. Giusti et al., First lattice calculation of the QED corrections to leptonic decay rates, Phys. Rev. Lett. 120 (2018) 072001 [arXiv:1711.06537] [INSPIRE].
M. Di Carlo et al., Light-meson leptonic decay rates in lattice QCD+QED, Phys. Rev. D 100 (2019) 034514 [arXiv:1904.08731] [INSPIRE].
F. Bloch and A. Nordsieck, Note on the Radiation Field of the electron, Phys. Rev. 52 (1937) 54 [INSPIRE].
N. Carrasco et al., QED Corrections to Hadronic Processes in Lattice QCD, Phys. Rev. D 91 (2015) 074506 [arXiv:1502.00257] [INSPIRE].
A. Desiderio et al., First lattice calculation of radiative leptonic decay rates of pseudoscalar mesons, Phys. Rev. D 103 (2021) 014502 [arXiv:2006.05358] [INSPIRE].
M. Hayakawa and S. Uno, QED in finite volume and finite size scaling effect on electromagnetic properties of hadrons, Prog. Theor. Phys. 120 (2008) 413 [arXiv:0804.2044] [INSPIRE].
V. Cirigliano and H. Neufeld, A note on isospin violation in Pℓ2(γ) decays, Phys. Lett. B 700 (2011) 7 [arXiv:1102.0563] [INSPIRE].
M. Di Carlo, M.T. Hansen, A. Portelli and N. Hermansson-Truedsson, Relativistic, model-independent determination of electromagnetic finite-size effects beyond the pointlike approximation, Phys. Rev. D 105 (2022) 074509 [arXiv:2109.05002] [INSPIRE].
E. Tiesinga, P.J. Mohr, D.B. Newell and B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2018, Rev. Mod. Phys. 93 (2021) 025010 [INSPIRE].
Budapest-Marseille-Wuppertal collaboration, Isospin splittings in the light baryon octet from lattice QCD and QED, Phys. Rev. Lett. 111 (2013) 252001 [arXiv:1306.2287] [INSPIRE].
Z. Fodor et al., Up and down quark masses and corrections to Dashen’s theorem from lattice QCD and quenched QED, Phys. Rev. Lett. 117 (2016) 082001 [arXiv:1604.07112] [INSPIRE].
S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].
J. Bijnens and N. Danielsson, Electromagnetic Corrections in Partially Quenched Chiral Perturbation Theory, Phys. Rev. D 75 (2007) 014505 [hep-lat/0610127] [INSPIRE].
J. Gasser, A. Rusetsky and I. Scimemi, Electromagnetic corrections in hadronic processes, Eur. Phys. J. C 32 (2003) 97 [hep-ph/0305260] [INSPIRE].
A. Duncan, E. Eichten and H. Thacker, Electromagnetic splittings and light quark masses in lattice QCD, Phys. Rev. Lett. 76 (1996) 3894 [hep-lat/9602005] [INSPIRE].
RM123 collaboration, Leading isospin breaking effects on the lattice, Phys. Rev. D 87 (2013) 114505 [arXiv:1303.4896] [INSPIRE].
D. Giusti et al., Leading isospin-breaking corrections to pion, kaon and charmed-meson masses with Twisted-Mass fermions, Phys. Rev. D 95 (2017) 114504 [arXiv:1704.06561] [INSPIRE].
V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula and N. Tantalo, Finite-Volume QED Corrections to Decay Amplitudes in Lattice QCD, Phys. Rev. D 95 (2017) 034504 [arXiv:1611.08497] [INSPIRE].
N. Tantalo, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo and S. Simula, Electromagnetic corrections to leptonic decay rates of charged pseudoscalar mesons: finite-volume effects, arXiv:1612.00199 [INSPIRE].
A. Sirlin, Radiative Corrections in the SU(2)L × U (1) Theory: A Simple Renormalization Framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].
A. Sirlin, Large mW, mZ Behavior of the O(α) Corrections to Semileptonic Processes Mediated by W, Nucl. Phys. B 196 (1982) 83 [INSPIRE].
S.M. Berman, Radiative corrections to muon and neutron decay, Phys. Rev. 112 (1958) 267 [INSPIRE].
T. Kinoshita and A. Sirlin, Radiative corrections to Fermi interactions, Phys. Rev. 113 (1959) 1652 [INSPIRE].
T. Harris, V. Gülpers, A. Portelli and J. Richings, Efficiently unquenching QCD+QED at O(α), arXiv:2301.03995.
Z. Davoudi and M.J. Savage, Finite-Volume Electromagnetic Corrections to the Masses of Mesons, Baryons and Nuclei, Phys. Rev. D 90 (2014) 054503 [arXiv:1402.6741] [INSPIRE].
S. Borsanyi et al., Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452 [arXiv:1406.4088] [INSPIRE].
Z. Davoudi, J. Harrison, A. Jüttner, A. Portelli and M.J. Savage, Theoretical aspects of quantum electrodynamics in a finite volume with periodic boundary conditions, Phys. Rev. D 99 (2019) 034510 [arXiv:1810.05923] [INSPIRE].
RBC, UKQCD collaborations, Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 121 (2018) 022003 [arXiv:1801.07224] [INSPIRE].
M.G. Endres, A. Shindler, B.C. Tiburzi and A. Walker-Loud, Massive photons: an infrared regularization scheme for lattice QCD+QED, Phys. Rev. Lett. 117 (2016) 072002 [arXiv:1507.08916] [INSPIRE].
B. Lucini, A. Patella, A. Ramos and N. Tantalo, Charged hadrons in local finite-volume QED+QCD with C⋆ boundary conditions, JHEP 02 (2016) 076 [arXiv:1509.01636] [INSPIRE].
P. Boyle et al., Isospin breaking corrections to meson masses and the hadronic vacuum polarization: a comparative study, JHEP 09 (2017) 153 [arXiv:1706.05293] [INSPIRE].
R.C. Brower, H. Neff and K. Orginos, The Möbius domain wall fermion algorithm, Comput. Phys. Commun. 220 (2017) 1 [arXiv:1206.5214] [INSPIRE].
RBC, UKQCD collaborations, Domain wall QCD with physical quark masses, Phys. Rev. D 93 (2016) 074505 [arXiv:1411.7017] [INSPIRE].
Y. Iwasaki, Renormalization group analysis of lattice theories and improved lattice action: Two-dimensional non-linear O(N) sigma model, Nucl. Phys. B 258 (1985) 141 [INSPIRE].
G. Mcglynn, Algorithmic improvements for weak coupling simulations of domain wall fermions, PoS LATTICE2015 (2016) 019 [INSPIRE].
P.A. Boyle, G. Cossu, A. Yamaguchi and A. Portelli, Grid: A next generation data parallel C++ QCD library, PoS LATTICE2015 (2016) 023 [INSPIRE].
A. Yamaguchi, P. Boyle, G. Cossu, G. Filaci, C. Lehner and A. Portelli, Grid: OneCode and FourAPIs, PoS LATTICE2021 (2022) 035 [arXiv:2203.06777] [INSPIRE].
A. Portelli et al., aportelli/hadrons: Hadrons v1.3, Zenodo (Mar. 2022).
P.A.M. Dirac, Gauge invariant formulation of quantum electrodynamics, Can. J. Phys. 33 (1955) 650 [INSPIRE].
M. Hansen, B. Lucini, A. Patella and N. Tantalo, Gauge invariant determination of charged hadron masses, JHEP 05 (2018) 146 [arXiv:1802.05474] [INSPIRE].
V. Furman and Y. Shamir, Axial symmetries in lattice QCD with Kaplan fermions, Nucl. Phys. B 439 (1995) 54 [hep-lat/9405004] [INSPIRE].
S. Aoki and Y. Taniguchi, One loop calculation in lattice QCD with domain wall quarks, Phys. Rev. D 59 (1999) 054510 [hep-lat/9711004] [INSPIRE].
P.A. Boyle, Four momentum boosted fermion fields, Nucl. Phys. B Proc. Suppl. 129 (2004) 358 [hep-lat/0309100] [INSPIRE].
P.F. Bedaque, Aharonov-Bohm effect and nucleon nucleon phase shifts on the lattice, Phys. Lett. B 593 (2004) 82 [nucl-th/0402051] [INSPIRE].
G.M. de Divitiis, R. Petronzio and N. Tantalo, On the discretization of physical momenta in lattice QCD, Phys. Lett. B 595 (2004) 408 [hep-lat/0405002] [INSPIRE].
C.T. Sachrajda and G. Villadoro, Twisted boundary conditions in lattice simulations, Phys. Lett. B 609 (2005) 73 [hep-lat/0411033] [INSPIRE].
RBC/UKQCD collaboration, The kaon semileptonic form factor in Nf = 2 + 1 domain wall lattice QCD with physical light quark masses, JHEP 06 (2015) 164 [arXiv:1504.01692] [INSPIRE].
S.-Z. Huang, T.-N. Ruan, N. Wu and Z.-P. Zheng, Solution to the Rarita-Schwinger equations, Eur. Phys. J. C 26 (2003) 609 [INSPIRE].
H. Akaike, A new look at the statistical model identification, IEEE Trans. Automatic Control 19 (1974) 716.
R.D. Piyadi Gamage, W. Ning and A.K. Gupta, Adjusted Empirical Likelihood for Time Series Models, arXiv:1602.09128.
W.I. Jay and E.T. Neil, Bayesian model averaging for analysis of lattice field theory results, Phys. Rev. D 103 (2021) 114502 [arXiv:2008.01069] [INSPIRE].
J. Bijnens, G. Ecker and J. Gasser, Radiative semileptonic kaon decays, Nucl. Phys. B 396 (1993) 81 [hep-ph/9209261] [INSPIRE].
V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, Kaon Decays in the Standard Model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].
A. Patella, QED Corrections to Hadronic Observables, PoS LATTICE2016 (2017) 020 [arXiv:1702.03857] [INSPIRE].
HPQCD, UKQCD collaborations, High Precision determination of the pi, K, D and D(s) decay constants from lattice QCD, Phys. Rev. Lett. 100 (2008) 062002 [arXiv:0706.1726] [INSPIRE].
S. Durr et al., The ratio FK/Fpi in QCD, Phys. Rev. D 81 (2010) 054507 [arXiv:1001.4692] [INSPIRE].
RBC, UKQCD collaborations, Continuum Limit Physics from 2+1 Flavor Domain Wall QCD, Phys. Rev. D 83 (2011) 074508 [arXiv:1011.0892] [INSPIRE].
RBC, UKQCD collaborations, Domain Wall QCD with Near-Physical Pions, Phys. Rev. D 87 (2013) 094514 [arXiv:1208.4412] [INSPIRE].
E.E. Scholz and S. Durr, Leptonic decay-constant ratio fK/fπ from clover-improved Nf = 2 + 1 QCD, PoS LATTICE2016 (2016) 283 [arXiv:1610.00932] [INSPIRE].
S. Dürr et al., Leptonic decay-constant ratio fK/fπ from lattice QCD using 2+1 clover-improved fermion flavors with 2-HEX smearing, Phys. Rev. D 95 (2017) 054513 [arXiv:1601.05998] [INSPIRE].
QCDSF–UKQCD collaborations, Flavour breaking effects in the pseudoscalar meson decay constants, Phys. Lett. B 767 (2017) 366 [arXiv:1612.04798] [INSPIRE].
F. Niedermayer, Exact chiral symmetry, topological charge and related topics, Nucl. Phys. B Proc. Suppl. 73 (1999) 105 [hep-lat/9810026] [INSPIRE].
S. Capitani et al., Renormalization and off-shell improvement in lattice perturbation theory, Nucl. Phys. B 593 (2001) 183 [hep-lat/0007004] [INSPIRE].
Y. Shamir, Chiral fermions from lattice boundaries, Nucl. Phys. B 406 (1993) 90 [hep-lat/9303005] [INSPIRE].
H. Yin and R.D. Mawhinney, Improving DWF Simulations: the Force Gradient Integrator and the Möbius Accelerated DWF Solver, PoS LATTICE2011 (2011) 051 [arXiv:1111.5059] [INSPIRE].
T. Blum, T. Izubuchi and E. Shintani, New class of variance-reduction techniques using lattice symmetries, Phys. Rev. D 88 (2013) 094503 [arXiv:1208.4349] [INSPIRE].
S. Capitani, Lattice perturbation theory, Phys. Rept. 382 (2003) 113 [hep-lat/0211036] [INSPIRE].
M. Tomii, Unphysical poles and dispersion relations for Möbius domain-wall fermions in free field theory at finite Ls, Phys. Rev. D 96 (2017) 074504 [arXiv:1706.03099] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2211.12865
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Boyle, P., Di Carlo, M., Erben, F. et al. Isospin-breaking corrections to light-meson leptonic decays from lattice simulations at physical quark masses. J. High Energ. Phys. 2023, 242 (2023). https://doi.org/10.1007/JHEP02(2023)242
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2023)242