Abstract
A search for CP violation in the Cabibbo-suppressed D0 → K+K−π+π− decay mode is performed using an amplitude analysis. The measurement uses a sample of pp collisions recorded by the LHCb experiment during 2011 and 2012, corresponding to an integrated luminosity of 3.0 fb−1. The D0 mesons are reconstructed from semileptonic b-hadron decays into D0μ−X final states. The selected sample contains more than 160 000 signal decays, allowing the most precise amplitude modelling of this D0 decay to date. The obtained amplitude model is used to perform the search for CP violation. The result is compatible with CP symmetry, with a sensitivity ranging from 1% to 15% depending on the amplitude considered.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
A.D. Sakharov, Violation of CP invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].
P. Huet and E. Sather, Electroweak baryogenesis and standard model CP-violation, Phys. Rev. D 51 (1995) 379 [hep-ph/9404302] [INSPIRE].
W. Bernreuther, CP violation and baryogenesis, Lect. Notes Phys. 591 (2002) 237 [hep-ph/0205279] [INSPIRE].
F. Buccella et al., Nonleptonic weak decays of charmed mesons, Phys. Rev. D 51 (1995) 3478 [hep-ph/9411286] [INSPIRE].
A. Khodjamirian and A.A. Petrov, Direct CP asymmetry in D → π − π + and D → K − K + in QCD-based approach, Phys. Lett. B 774 (2017) 235 [arXiv:1706.07780] [INSPIRE].
Y. Grossman, A.L. Kagan and Y. Nir, New physics and CP violation in singly Cabibbo suppressed D decays, Phys. Rev. D 75 (2007) 036008 [hep-ph/0609178] [INSPIRE].
CLEO collaboration, Amplitude analysis of D 0 → K + K − π + π −, Phys. Rev. D 85 (2012) 122002 [arXiv:1201.5716] [INSPIRE].
P. d’Argent et al., Amplitude analyses of D 0 → π + π − π + π − and D 0 → K + K − π + π − decays, JHEP 05 (2017) 143 [arXiv:1703.08505] [INSPIRE].
BaBar collaboration, Search for CP violation using T-odd correlations in D 0 → K + K − π + π − decays, Phys. Rev. D 81 (2010) 111103 [arXiv:1003.3397] [INSPIRE].
LHCb collaboration, Search for CP violation using T-odd correlations in D 0 → K + K − π + π − decays, JHEP 10 (2014) 005 [arXiv:1408.1299] [INSPIRE].
Belle collaboration, Search for CP violation with kinematic asymmetries in the D 0 → K + K − π + π − decay, Phys. Rev. D 99 (2019) 011104 [arXiv:1810.06457] [INSPIRE].
G. Durieux and Y. Grossman, Probing CP violation systematically in differential distributions, Phys. Rev. D 92 (2015) 076013 [arXiv:1508.03054] [INSPIRE].
M. Williams, Observing CP violation in many-body decays, Phys. Rev. D 84 (2011) 054015 [arXiv:1105.5338] [INSPIRE].
LHCb collaboration, Search for CP violation in the phase space of D 0 → π + π − π + π − decays, Phys. Lett. B 769 (2017) 345 [arXiv:1612.03207] [INSPIRE].
J. Rademacker and G. Wilkinson, Determining the unitarity triangle gamma with a four-body amplitude analysis of B ± → (K + K − π + π −)D K ± decays, Phys. Lett. B 647 (2007) 400 [hep-ph/0611272] [INSPIRE].
LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].
LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].
D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
GEANT4 collaboration, GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.
GEANT4 collaboration, GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].
V.V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, 2013 JINST 8 P02013 [arXiv:1210.6861] [INSPIRE].
L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth International Group, Belmont U.S.A. (1984).
Y. Freund and R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.
Fermilab E653 collaboration, Measurement of the relative branching fraction Γ(D 0 → Kμν)/Γ(D 0 → μX), Phys. Rev. Lett. 66 (1991) 1819 [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
N. Cabibbo and A. Maksymowicz, Angular correlations in K e4 decays and determination of low-energy π-π phase shifts, Phys. Rev. 137 (1965) B438 [Erratum ibid. 168 (1968) 1926] [INSPIRE].
D. Herndon, P. Söding and R.J. Cashmore, A generalized isobar model formalism, Phys. Rev. D 11 (1975) 3165 [INSPIRE].
R.M. Sternheimer and S.J. Lindenbaum, Extension of the isobaric nucleon model for pion production in pion-nucleon, nucleon-nucleon and antinucleon-nucleon interactions, Phys. Rev. 123 (1961) 333 [INSPIRE].
J.M. Blatt and V.F. Weisskopf, Theoretical nuclear physics, Springer, Germany (1952), see chapter VIII.5.
B.S. Zou and D.V. Bugg, Covariant tensor formalism for partial wave analyses of ψ decay to mesons, Eur. Phys. J. A 16 (2003) 537 [hep-ph/0211457] [INSPIRE].
G. Breit and E. Wigner, Capture of slow neutrons, Phys. Rev. 49 (1936) 519 [INSPIRE].
CLEO collaboration, Hadronic structure in the decay τ − → τ ν π − π 0 π 0 and the sign of the τ ν helicity, Phys. Rev. D 61 (2000) 012002 [hep-ex/9902022] [INSPIRE].
P. Lichard and M. Vojik, An alternative parametrization of the pion form-factor and the mass and width of ρ(770), hep-ph/0611163 [INSPIRE].
S.M. Flatté, Coupled-channel analysis of the πη and \( K\overline{K} \) systems near \( K\overline{K} \) threshold, Phys. Lett. 63B (1976) 224 [INSPIRE].
G.J. Gounaris and J.J. Sakurai, Finite width corrections to the vector meson dominance prediction for ρ → e + e −, Phys. Rev. Lett. 21 (1968) 244 [INSPIRE].
S.U. Chung et al., Partial wave analysis in K-matrix formalism, Ann. Phys. 507 (1995) 404.
V.V. Anisovich and A.V. Sarantsev, K matrix analysis of the (IJ PC) = 00++)-wave in the mass region below 1900 MeV, Eur. Phys. J. A 16 (2003) 229 [hep-ph/0204328] [INSPIRE].
BaBar collaboration, Improved measurement of the CKM angle γ in B ∓ → D (*) K (*∓) decays with a Dalitz plot analysis of D decays to K 0S π + π − and K 0S K + K −, Phys. Rev. D 78 (2008) 034023 [arXiv:0804.2089] [INSPIRE].
FOCUS collaboration, Dalitz plot analysis of the D + → K − π + π + decay in the FOCUS experiment, Phys. Lett. B 653 (2007) 1 [arXiv:0705.2248] [INSPIRE].
LHCb collaboration, Studies of the resonance structure in D 0 → K ∓ π ± π ± π ∓ decays, Eur. Phys. J. C 78 (2018) 443 [arXiv:1712.08609] [INSPIRE].
A. Rogozhnikov, Reweighting with boosted decision trees, J. Phys. Conf. Ser. 762 (2016) 012036 [arXiv:1608.05806] [INSPIRE].
B. Efron, Bootstrap methods: another look at the jackknife, Ann. Statist. 7 (1979) 1.
LHCb collaboration, Studies of the resonance structure in D 0 → K 0S K ± π ∓ decays, Phys. Rev. D 93 (2016) 052018 [arXiv:1509.06628] [INSPIRE].
BaBar collaboration, Dalitz plot analyses of J/ψ → π + π − π 0 , J/ψ → K + K − π 0 and J/ψ → K 0S K ± π ∓ produced via e + e − annihilation with initial-state radiation, Phys. Rev. D 95 (2017) 072007 [arXiv:1702.01551] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Consortia
Corresponding author
Additional information
ArXiv ePrint: 1811.08304
Deceased (Y. Shcheglov)
A. Hicheur, C. Göbel and V. Salustino Guimaraes are associated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
G. Liu, H. Cai, L. Sun, B. Dey, W. Hu, M. Mukherjee, Y. Wang, D. Xiao, Y. Xie, M. Xu, H. Yin, J. Yu and D. Zhang are associated to Center for High Energy Physics, Tsinghua University, Beijing, China
D. A. Milanes, I. A. Monroy and J. A. Rodriguez Lopez are associated to LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
O. Grünberg, M. Heß, N. Meinert, H. Viemann and R. Waldi are associated to Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
C. J. G. Onderwater is associated to Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
T. Likhomanenko, A. Malinin, O. Morgunova, A. Nogay, A. Petrov, V. Shevchenko, F. Baryshnikov, S. Didenko, A. Golutvin, N. Polukhina, E. Shmanin, G. Panshin, S. Strokov and A. Vagner are associated to Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
D. Derkach, M. Hushchyn, N. Kazeev, F. Ratnikov and A. Ustyuzhanin are associated to Yandex School of Data Analysis, Moscow, Russia
L. M. Garcia Martin, L. Henry, B. K. Jashal, F. Martinez Vidal, A. Oyanguren, C. Remon Alepuz, J. Ruiz Vidal and C. Sanchez Mayordomo are associated to ICCUB, Universitat de Barcelona, Barcelona, Spain
C. A. Aidala, C. L. Da Silva and J. M. Durham are associated to Syracuse University, Syracuse, NY, United States
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
The LHCb collaboration., Aaij, R., Abellán Beteta, C. et al. Search for CP violation through an amplitude analysis of D0 → K+K−π+π− decays. J. High Energ. Phys. 2019, 126 (2019). https://doi.org/10.1007/JHEP02(2019)126
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2019)126