Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The medium-modified \( g\to c\overline{c} \) splitting function in the BDMPS-Z formalism

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 16 January 2023
  • Volume 2023, article number 80, (2023)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The medium-modified \( g\to c\overline{c} \) splitting function in the BDMPS-Z formalism
Download PDF
  • Maximilian Attems1,
  • Jasmine Brewer1,
  • Gian Michele Innocenti2,
  • Aleksas Mazeliauskas  ORCID: orcid.org/0000-0003-2893-76821,
  • Sohyun Park1,
  • Wilke van der Schee1 &
  • …
  • Urs Achim Wiedemann1 
  • 454 Accesses

  • 12 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The formalism of Baier-Dokshitzer-Mueller-Peigné-Schiff and Zakharov determines the modifications of parton splittings in the QCD plasma that arise from medium-induced gluon radiation. Here, we study medium-modifications of the gluon splitting into a quark-anti-quark pair in this BDMPS-Z formalism. We derive a compact path-integral formulation that resums effects from an arbitrary number of interactions with the medium to leading order in the \( 1/{N}_c^2 \) expansion. Analyses in the N = 1 opacity and the saddle point approximations reveal two phenomena: a medium-induced momentum broadening of the relative quark-anti-quark pair momentum that increases the invariant mass of quark-anti-quark pairs, and a medium-enhanced production of such pairs. We note that both effects are numerically sizeable if the average momentum transfer from the medium is comparable to the quark mass. In ultra-relativistic heavy-ion collisions, this condition is satisfied for charm quarks. We therefore focus our numerical analysis on the medium modification of \( g\to c\overline{c} \), although our derivation applies equally well to \( g\to b\overline{b} \) and to gluons splitting into light-flavoured quark-anti-quark pairs.

Article PDF

Download to read the full article text

Similar content being viewed by others

Quarkonium in-medium properties from realistic lattice NRQCD

Article Open access 14 November 2018

Non-perturbative quarkonium dissociation rates in strongly coupled quark-gluon plasma

Article Open access 15 July 2025

Universal quark to gluon ratio in medium-induced parton cascade

Article Open access 25 September 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Matter-Antimatter Interactions
  • Nuclear and Particle Physics
  • Nuclear Physics
  • Particle Physics
  • Post-translational Modifications
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. M. Connors, C. Nattrass, R. Reed and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90 (2018) 025005 [arXiv:1705.01974] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. J.D. Bjorken, Energy loss of energetic partons in quark-gluon plasma: possible extinction of high pt jets in hadron-hadron collisions, FERMILAB-PUB-82-59-THY, Fermilab, Batavia, IL, U.S.A. (1982).

  3. X.-N. Wang, M. Gyulassy and M. Plumer, The LPM effect in QCD and radiative energy loss in a quark gluon plasma, Phys. Rev. D 51 (1995) 3436 [hep-ph/9408344] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Gyulassy and X.-n. Wang, Multiple collisions and induced gluon bremsstrahlung in QCD, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].

    Article  ADS  Google Scholar 

  5. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and pT broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

    Article  ADS  Google Scholar 

  7. B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].

    Article  ADS  Google Scholar 

  8. B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].

    Article  ADS  Google Scholar 

  9. S. Cao and X.-N. Wang, Jet quenching and medium response in high-energy heavy-ion collisions: a review, Rept. Prog. Phys. 84 (2021) 024301 [arXiv:2002.04028] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G.-Y. Qin and X.-N. Wang, Jet quenching in high-energy heavy-ion collisions, Int. J. Mod. Phys. E 24 (2015) 1530014 [arXiv:1511.00790] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Radiative energy loss of high-energy partons traversing an expanding QCD plasma, Phys. Rev. C 58 (1998) 1706 [hep-ph/9803473] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C.A. Salgado and U.A. Wiedemann, Calculating quenching weights, Phys. Rev. D 68 (2003) 014008 [hep-ph/0302184] [INSPIRE].

    Article  ADS  Google Scholar 

  13. U.A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].

    Article  ADS  Google Scholar 

  14. U.A. Wiedemann, Jet quenching versus jet enhancement: a quantitative study of the BDMPS-Z gluon radiation spectrum, Nucl. Phys. A 690 (2001) 731 [hep-ph/0008241] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, On the angular dependence of the radiative gluon spectrum, Phys. Rev. C 64 (2001) 057902 [hep-ph/0105062] [INSPIRE].

    Article  ADS  Google Scholar 

  16. B.G. Zakharov, Transverse spectra of radiation processes in-medium, JETP Lett. 70 (1999) 176 [hep-ph/9906536] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Y.L. Dokshitzer and D.E. Kharzeev, Heavy quark colorimetry of QCD matter, Phys. Lett. B 519 (2001) 199 [hep-ph/0106202] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to non-Abelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. X.-N. Wang and X.-f. Guo, Multiple parton scattering in nuclei: parton energy loss, Nucl. Phys. A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.-P. Blaizot, F. Dominguez, E. Iancu and Y. Mehtar-Tani, Medium-induced gluon branching, JHEP 01 (2013) 143 [arXiv:1209.4585] [INSPIRE].

    Article  ADS  Google Scholar 

  21. L. Apolinário, N. Armesto, J.G. Milhano and C.A. Salgado, Medium-induced gluon radiation and colour decoherence beyond the soft approximation, JHEP 02 (2015) 119 [arXiv:1407.0599] [INSPIRE].

    Article  ADS  Google Scholar 

  22. Y. Mehtar-Tani, Gluon bremsstrahlung in finite media beyond multiple soft scattering approximation, JHEP 07 (2019) 057 [arXiv:1903.00506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. X. Feal, C.A. Salgado and R.A. Vazquez, Jet quenching test of the QCD matter created at RHIC and the LHC needs opacity-resummed medium induced radiation, Phys. Lett. B 816 (2021) 136251 [arXiv:1911.01309] [INSPIRE].

    Article  Google Scholar 

  24. C. Andres, L. Apolinário and F. Dominguez, Medium-induced gluon radiation with full resummation of multiple scatterings for realistic parton-medium interactions, JHEP 07 (2020) 114 [arXiv:2002.01517] [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Andres, F. Dominguez and M. Gonzalez Martinez, From soft to hard radiation: the role of multiple scatterings in medium-induced gluon emissions, JHEP 03 (2021) 102 [arXiv:2011.06522] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. J.A. Barata, Y. Mehtar-Tani, A. Soto-Ontoso and K. Tywoniuk, Medium-induced radiative kernel with the improved opacity expansion, JHEP 09 (2021) 153 [arXiv:2106.07402] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Schlichting and I. Soudi, Splitting rates in QCD plasmas from a nonperturbative determination of the momentum broadening kernel C(q⊥), Phys. Rev. D 105 (2022) 076002 [arXiv:2111.13731] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.H. Isaksen, A. Takacs and K. Tywoniuk, A unified picture of medium-induced radiation, arXiv:2206.02811 [INSPIRE].

  29. J.H. Isaksen and K. Tywoniuk, Wilson line correlators beyond the large-Nc, JHEP 21 (2020) 125 [arXiv:2107.02542] [INSPIRE].

    MATH  Google Scholar 

  30. T. Liou, A.H. Mueller and B. Wu, Radiative p⊥-broadening of high-energy quarks and gluons in QCD matter, Nucl. Phys. A 916 (2013) 102 [arXiv:1304.7677] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.-P. Blaizot and Y. Mehtar-Tani, Renormalization of the jet-quenching parameter, Nucl. Phys. A 929 (2014) 202 [arXiv:1403.2323] [INSPIRE].

    Article  ADS  Google Scholar 

  32. B. Wu, Radiative energy loss and radiative p⊥-broadening of high-energy partons in QCD matter, JHEP 12 (2014) 081 [arXiv:1408.5459] [INSPIRE].

    Article  ADS  Google Scholar 

  33. N. Armesto, H. Ma, Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, Coherence effects and broadening in medium-induced QCD radiation off a massive qq¯ antenna, JHEP 01 (2012) 109 [arXiv:1110.4343] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Casalderrey-Solana and E. Iancu, Interference effects in medium-induced gluon radiation, JHEP 08 (2011) 015 [arXiv:1105.1760] [INSPIRE].

    Article  ADS  Google Scholar 

  35. Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, The radiation pattern of a QCD antenna in a dense medium, JHEP 10 (2012) 197 [arXiv:1205.5739] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J.a. Barata, F. Domínguez, C.A. Salgado and V. Vila, A modified in-medium evolution equation with color coherence, JHEP 05 (2021) 148 [arXiv:2101.12135] [INSPIRE].

    Article  Google Scholar 

  37. P. Arnold and S. Iqbal, The LPM effect in sequential bremsstrahlung, JHEP 04 (2015) 070 [arXiv:1501.04964] [INSPIRE].

    Article  ADS  Google Scholar 

  38. P. Arnold, T. Gorda and S. Iqbal, The LPM effect in sequential bremsstrahlung: nearly complete results for QCD, JHEP 11 (2020) 053 [arXiv:2007.15018] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. K. Zapp, J. Stachel and U.A. Wiedemann, A local Monte Carlo implementation of the non-Abelian Landau-Pomerantschuk-Migdal effect, Phys. Rev. Lett. 103 (2009) 152302 [arXiv:0812.3888] [INSPIRE].

    Article  ADS  Google Scholar 

  40. K.C. Zapp, F. Krauss and U.A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].

    Article  ADS  Google Scholar 

  41. K.C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys. J. C 74 (2014) 2762 [arXiv:1311.0048] [INSPIRE].

    Article  ADS  Google Scholar 

  42. N. Armesto, L. Cunqueiro and C.A. Salgado, Q-PYTHIA: a medium-modified implementation of final state radiation, Eur. Phys. J. C 63 (2009) 679 [arXiv:0907.1014] [INSPIRE].

    Article  ADS  Google Scholar 

  43. B. Schenke, C. Gale and S. Jeon, MARTINI: an event generator for relativistic heavy-ion collisions, Phys. Rev. C 80 (2009) 054913 [arXiv:0909.2037] [INSPIRE].

    Article  ADS  Google Scholar 

  44. P. Caucal, E. Iancu, A.H. Mueller and G. Soyez, A new pQCD based Monte Carlo event generator for jets in the quark-gluon plasma, PoS HardProbes2018 (2019) 028 [arXiv:1812.05393] [INSPIRE].

  45. J.H. Putschke et al., The JETSCAPE framework, arXiv:1903.07706 [INSPIRE].

  46. P. Caucal, E. Iancu, A.H. Mueller and G. Soyez, Vacuum-like jet fragmentation in a dense QCD medium, Phys. Rev. Lett. 120 (2018) 232001 [arXiv:1801.09703] [INSPIRE].

    Article  ADS  Google Scholar 

  47. P. Caucal, E. Iancu and G. Soyez, Deciphering the zg distribution in ultrarelativistic heavy ion collisions, JHEP 10 (2019) 273 [arXiv:1907.04866] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Caron-Huot and C. Gale, Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter, Phys. Rev. C 82 (2010) 064902 [arXiv:1006.2379] [INSPIRE].

    Article  ADS  Google Scholar 

  49. Z.-B. Kang, F. Ringer and I. Vitev, Effective field theory approach to open heavy flavor production in heavy-ion collisions, JHEP 03 (2017) 146 [arXiv:1610.02043] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M.D. Sievert, I. Vitev and B. Yoon, A complete set of in-medium splitting functions to any order in opacity, Phys. Lett. B 795 (2019) 502 [arXiv:1903.06170] [INSPIRE].

    Article  ADS  Google Scholar 

  51. W. Ke and I. Vitev, Searching for QGP droplets with high-pT hadrons and heavy flavor, arXiv:2204.00634 [INSPIRE].

  52. F. Domínguez, J.G. Milhano, C.A. Salgado, K. Tywoniuk and V. Vila, Mapping collinear in-medium parton splittings, Eur. Phys. J. C 80 (2020) 11 [arXiv:1907.03653] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason and G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC, JHEP 10 (2012) 137 [arXiv:1205.6344] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].

  55. R.K. Ellis and J.C. Sexton, Explicit formulae for heavy flavor production, Nucl. Phys. B 282 (1987) 642 [INSPIRE].

  56. A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981] [INSPIRE].

    Article  ADS  Google Scholar 

  57. P. Ilten, N.L. Rodd, J. Thaler and M. Williams, Disentangling heavy flavor at colliders, Phys. Rev. D 96 (2017) 054019 [arXiv:1702.02947] [INSPIRE].

    Article  ADS  Google Scholar 

  58. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  59. A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].

    Article  ADS  Google Scholar 

  60. C. Aidala et al., sPHENIX: an upgrade concept from the PHENIX collaboration, arXiv:1207.6378 [INSPIRE].

  61. Z. Citron et al., Report from working group 5: future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams, CERN Yellow Rep. Monogr. 7 (2019) 1159 [arXiv:1812.06772] [INSPIRE].

    Google Scholar 

  62. D. Adamová et al., A next-generation LHC heavy-ion experiment, arXiv:1902.01211 [INSPIRE].

  63. M. Attems et al., Medium-enhanced cc¯ radiation, arXiv:2209.13600 [INSPIRE].

  64. N. Armesto et al., Comparison of jet quenching formalisms for a quark-gluon plasma ‘brick’, Phys. Rev. C 86 (2012) 064904 [arXiv:1106.1106] [INSPIRE].

    Article  ADS  Google Scholar 

  65. JET collaboration, Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C 90 (2014) 014909 [arXiv:1312.5003] [INSPIRE].

  66. H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].

    Article  ADS  Google Scholar 

  67. J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].

    Article  ADS  Google Scholar 

  68. F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet quenching parameter, redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].

    Article  ADS  Google Scholar 

  69. S. Caron-Huot, O(g) plasma effects in jet quenching, Phys. Rev. D 79 (2009) 065039 [arXiv:0811.1603] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Panero, K. Rummukainen and A. Schäfer, Lattice study of the jet quenching parameter, Phys. Rev. Lett. 112 (2014) 162001 [arXiv:1307.5850] [INSPIRE].

    Article  ADS  Google Scholar 

  71. G.D. Moore, S. Schlichting, N. Schlusser and I. Soudi, Non-perturbative determination of collisional broadening and medium induced radiation in QCD plasmas, JHEP 10 (2021) 059 [arXiv:2105.01679] [INSPIRE].

    Article  ADS  Google Scholar 

  72. Y.-T. Chien, A. Emerman, Z.-B. Kang, G. Ovanesyan and I. Vitev, Jet quenching from QCD evolution, Phys. Rev. D 93 (2016) 074030 [arXiv:1509.02936] [INSPIRE].

    Article  ADS  Google Scholar 

  73. E. Bianchi, J. Elledge, A. Kumar, A. Majumder, G.-Y. Qin and C. Shen, The x and Q2 dependence of \( \hat{q} \), quasi-particles and the JET puzzle, arXiv:1702.00481 [INSPIRE].

  74. C. Andrés, N. Armesto, M. Luzum, C.A. Salgado and P. Zurita, Energy versus centrality dependence of the jet quenching parameter \( \hat{q} \) at RHIC and LHC: a new puzzle?, Eur. Phys. J. C 76 (2016) 475 [arXiv:1606.04837] [INSPIRE].

  75. J. Noronha-Hostler, B. Betz, J. Noronha and M. Gyulassy, Event-by-event hydrodynamics + jet energy loss: a solution to the RAA ⨂ v2 puzzle, Phys. Rev. Lett. 116 (2016) 252301 [arXiv:1602.03788] [INSPIRE].

    Article  ADS  Google Scholar 

  76. J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, A hybrid strong/weak coupling approach to jet quenching, JHEP 10 (2014) 019 [arXiv:1405.3864] [INSPIRE].

    Article  ADS  Google Scholar 

  77. D. Zigic, I. Salom, J. Auvinen, M. Djordjevic and M. Djordjevic, DREENA-B framework: first predictions of RAA and v2 within dynamical energy loss formalism in evolving QCD medium, Phys. Lett. B 791 (2019) 236 [arXiv:1805.04786] [INSPIRE].

    Article  ADS  Google Scholar 

  78. C. Andres, N. Armesto, H. Niemi, R. Paatelainen and C.A. Salgado, Jet quenching as a probe of the initial stages in heavy-ion collisions, Phys. Lett. B 803 (2020) 135318 [arXiv:1902.03231] [INSPIRE].

    Article  Google Scholar 

  79. A. Huss, A. Kurkela, A. Mazeliauskas, R. Paatelainen, W. van der Schee and U.A. Wiedemann, Predicting parton energy loss in small collision systems, Phys. Rev. C 103 (2021) 054903 [arXiv:2007.13758] [INSPIRE].

    Article  ADS  Google Scholar 

  80. JETSCAPE collaboration, Determining the jet transport coefficient qˆ from inclusive hadron suppression measurements using Bayesian parameter estimation, Phys. Rev. C 104 (2021) 024905 [arXiv:2102.11337] [INSPIRE].

  81. P.B. Arnold, Simple formula for high-energy gluon bremsstrahlung in a finite, expanding medium, Phys. Rev. D 79 (2009) 065025 [arXiv:0808.2767] [INSPIRE].

    Article  ADS  Google Scholar 

  82. S. Platzer and M. Sjodahl, The Sudakov veto algorithm reloaded, Eur. Phys. J. Plus 127 (2012) 26 [arXiv:1108.6180] [INSPIRE].

    Article  Google Scholar 

  83. L. Lönnblad, Fooling around with the Sudakov veto algorithm, Eur. Phys. J. C 73 (2013) 2350 [arXiv:1211.7204] [INSPIRE].

    Article  ADS  Google Scholar 

  84. R. Kleiss and R. Verheyen, Competing Sudakov veto algorithms, Eur. Phys. J. C 76 (2016) 359 [arXiv:1605.09246] [INSPIRE].

    Article  ADS  Google Scholar 

  85. R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press (2011) [INSPIRE].

  86. M. Bahr et al., Herwig++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  87. S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J. C 75 (2015) 461 [arXiv:1506.05057] [INSPIRE].

    Article  ADS  Google Scholar 

  88. Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  89. A.H. Mueller and P. Nason, Heavy particle content in QCD jets, Phys. Lett. B 157 (1985) 226 [INSPIRE].

  90. A.H. Mueller and P. Nason, Heavy particle content in QCD jets, Nucl. Phys. B 266 (1986) 265 [INSPIRE].

  91. K. Kastella, G.F. Sterman and J. Milana, Scattering in nuclei and QCD, Phys. Rev. D 39 (1989) 2586 [INSPIRE].

  92. A. Kovner and U.A. Wiedemann, Gluon radiation and parton energy loss, hep-ph/0304151 [INSPIRE].

  93. N. Armesto, C.A. Salgado and U.A. Wiedemann, Medium induced gluon radiation off massive quarks fills the dead cone, Phys. Rev. D 69 (2004) 114003 [hep-ph/0312106] [INSPIRE].

    Article  ADS  Google Scholar 

  94. Y.V. Kovchegov and L.D. McLerran, Diffractive structure function in a quasiclassical approximation, Phys. Rev. D 60 (1999) 054025 [hep-ph/9903246] [INSPIRE].

    Article  ADS  Google Scholar 

  95. T. Lappi and R. Paatelainen, The one loop gluon emission light cone wave function, Annals Phys. 379 (2017) 34 [arXiv:1611.00497] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. H.E. Haber, Useful relations among the generators in the defining and adjoint representations of SU(N), SciPost Phys. Lect. Notes 21 (2021) 1 [arXiv:1912.13302] [INSPIRE].

    Google Scholar 

  97. J. Jalilian-Marian and Y.V. Kovchegov, Inclusive two-gluon and valence quark-gluon production in DIS and pA, Phys. Rev. D 70 (2004) 114017 [hep-ph/0405266] [INSPIRE].

    Article  ADS  Google Scholar 

  98. L. Apolinário, J.G. Milhano, G.P. Salam and C.A. Salgado, Probing the time structure of the quark-gluon plasma with top quarks, Phys. Rev. Lett. 120 (2018) 232301 [arXiv:1711.03105] [INSPIRE].

    Article  ADS  Google Scholar 

  99. L.S. Schulman, Techniques and applications of path integration, Dover Publications (1981) [INSPIRE].

  100. G. Moliere, Theorie der Streuung schneller geladener Teilchen II Mehrfach-und Vielfachstreuung (in German), Z. Naturforsch. A 3 (1948) 78.

  101. F. D’Eramo, K. Rajagopal and Y. Yin, Molière scattering in quark-gluon plasma: finding point-like scatterers in a liquid, JHEP 01 (2019) 172 [arXiv:1808.03250] [INSPIRE].

    Article  ADS  Google Scholar 

  102. B.G. Zakharov, On validity of the eikonal approximation for calculation of the probability of ultrarelativistic positronium penetration through matter, Yad. Fiz. 46 (1987) 148 [INSPIRE].

  103. Y.V. Kovchegov, Non-Abelian Weizsacker-Williams field and a two-dimensional effective color charge density for a very large nucleus, Phys. Rev. D 54 (1996) 5463 [hep-ph/9605446] [INSPIRE].

    Article  ADS  Google Scholar 

  104. J. Jalilian-Marian, A. Kovner, L.D. McLerran and H. Weigert, The intrinsic glue distribution at very small x, Phys. Rev. D 55 (1997) 5414 [hep-ph/9606337] [INSPIRE].

    Article  ADS  Google Scholar 

  105. R. Baier, A. Kovner and U.A. Wiedemann, Saturation and parton level Cronin effect: enhancement versus suppression of gluon production in p-A and A-A collisions, Phys. Rev. D 68 (2003) 054009 [hep-ph/0305265] [INSPIRE].

    Article  ADS  Google Scholar 

  106. A. Kurkela and U.A. Wiedemann, Picturing perturbative parton cascades in QCD matter, Phys. Lett. B 740 (2015) 172 [arXiv:1407.0293] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Theoretical Physics Department, CERN, CH-1211, Geneva 23, Switzerland

    Maximilian Attems, Jasmine Brewer, Aleksas Mazeliauskas, Sohyun Park, Wilke van der Schee & Urs Achim Wiedemann

  2. Experimental Physics Department, CERN, CH-1211, Geneva 23, Switzerland

    Gian Michele Innocenti

Authors
  1. Maximilian Attems
    View author publications

    Search author on:PubMed Google Scholar

  2. Jasmine Brewer
    View author publications

    Search author on:PubMed Google Scholar

  3. Gian Michele Innocenti
    View author publications

    Search author on:PubMed Google Scholar

  4. Aleksas Mazeliauskas
    View author publications

    Search author on:PubMed Google Scholar

  5. Sohyun Park
    View author publications

    Search author on:PubMed Google Scholar

  6. Wilke van der Schee
    View author publications

    Search author on:PubMed Google Scholar

  7. Urs Achim Wiedemann
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Aleksas Mazeliauskas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2203.11241

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attems, M., Brewer, J., Innocenti, G.M. et al. The medium-modified \( g\to c\overline{c} \) splitting function in the BDMPS-Z formalism. J. High Energ. Phys. 2023, 80 (2023). https://doi.org/10.1007/JHEP01(2023)080

Download citation

  • Received: 31 August 2022

  • Accepted: 28 December 2022

  • Published: 16 January 2023

  • DOI: https://doi.org/10.1007/JHEP01(2023)080

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Quark-Gluon Plasma
  • Jets and Jet Substructure
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature