
Improved machine learning approaches for

individualized human assistance, supervision, and

behavior prediction

Von der Fakultät für Ingenieurwissenschaften,

Abteilung Maschinenbau und Verfahrenstechnik

der

Universität Duisburg-Essen

zur Erlangung des akademischen Grades

einer

Doktorin der Ingenieurwissenschaften

Dr.-Ing.

genehmigte Dissertation

von

Qi Deng

aus

Guizhou, China

Gutachter: Univ.-Prof. Dr.-Ing. Dirk Söffker
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Kurzfassung

Seit einigen Jahren spielt die Forschung zur Vorhersage des Fahrverhaltens von
Fahrerinnen und Fahrern eine wichtige Rolle bei der Entwicklung von Fahrerassis-
tenzsysteme (eng: Advanced Driver Assistance System, ADAS). Aus diesem Grund
wurden viele Methoden des Maschinellen Lernens entwickelt und in diesem Bere-
ich angewendet. Aufgrund der Vorteile des Hidden-Markov-Modells (HMM) beim
Umgang mit Zeitreihendaten sowie Zustandsübergangsbeschreibungen scheint das
HMM ein geeigneter Algorithmus für die Vorhersage des Fahrverhaltens zu sein.
Eines der Ziele dieser Arbeit ist es, verschiedene Fahrverhaltensmodelle und ver-
wandte HMM-basierter Algorithmen zu analysieren.

Außer der Verwendung eines einzelnen HMM zur Erstellung eines Fahrverhaltens-
modells, können zwei Entwurfsideen (HMM-abgeleitete und HMM-kombinierte An-
sätze) aus den vorhandenen Forschungsergebnissen abgeleitet werden, um die HMM-
Leistung zu verbessern. Basierend auf HMM-kombiniertem und HMM-abgeleitetem
Entwurfsideen werden zwei neu Methoden namens Fuzzy Logic-basierte Hidden
Markov-Modelle (FL-HMM) und Multi-Layer-HMM (ML-HMM) in dieser Arbeit
entworfen.

Um das zukünftige Fahrverhalten zu bestimmen und vorherzusagen, besteht die
Hauptidee darin, das historische Verhalten des Fahrers maschinell zu erlernen. Aus
diesem Grund muss zuerst ein Modell erstellt und trainiert werden. Um den Train-
ingsprozess zu verbessern, wird in dieser Arbeit eine Strategie für eine höhere Zu-
verlässigkeit in Bezug auf die Genauigkeit, die Erkennungsrate und die Fehlalarmrate
entwickelt. Die Strategie wird als Full-Scale-Trainingsschleife bezeichnet und kann
zur Optimierung der Modellstruktur und des Modelltrainings verwendet werden.
Basierend auf der vorgeschlagenen Strategie, werden fünf herkömmliche Methoden
(HMM, Support Vector Machines (SVM), künstliche neuronale Netze (ANN), Con-
volutional Neural Network (CNN), Random Forest (RF)) und zwei neue Methoden
(FL-HMM, ML-HMM) als Beispiele zur Identifizierung des Fahrverhaltens verwen-
det.

Die Designparameter sind unbekannt und müssen vor dem Training manuell ein-
gestellt werden. Diese Parameter können verwendet werden, um die Struktur und
den Trainingsprozess des Algorithmus zu bestimmen. Zur Verbesserung der Vorher-
sageleistung der zugehörigen Modelle, werden die Designparameter geändert, um
geeignete Werte zu finden. Unter Verwendung der vorgeschlagenen Trainingsstrate-
gie können die am besten geeigneten Designparameter automatisch bestimmt wer-
den, um die Leistung der Algorithmen zu optimieren. In dieser Arbeit werden die
Designparameter in zwei Kategorien unterteilt: Hyperparameter und Vorfilter. Der
Schwerpunkt liegt auf der Demonstration der Fähigkeit der vorgeschlagenen Strate-
gien, um die Vorhersageleistung der verschiedenen Methoden zu verbessern und die
Auswirkungen von Hyperparametern und Vorfiltern zu diskutieren. Basierend auf
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den Daten von 17 Fahrern werden für jede Methode vier verschiedene Modelle en-
twickelt, um die Wirksamkeit von Hyperparametern und Vorfiltern zu validieren.
Die erhaltenen Ergebnisse zeigen, dass die Vorhersageleistung unter Verwendung
der vorgeschlagenen optimierten Trainingsstrategie verbessert werden kann.
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Abstract

In recent years, research and development of predicting driving behaviors play an
important role in the development of Advanced Driver Assistance Systems (ADAS).
For this reason, many machine learning approaches have been developed and applied
in this field. Due to the advantages of Hidden Markov Model (HMM) in dealing
with time series data as well as state transition descriptions, the HMM seems to
be a suitable algorithm in driving behavior prediction. Therefore, one of the aims
of this thesis is to analyze the current state of various driving behavior models and
related HMM-based algorithms.

Except for using a single HMM to establish a driving behavior model, two design
ideas (HMM-derived or HMM-combined approaches) can be concluded from the ex-
isting research to improve the HMM performance. Based on the two design ideas two
newly developed approaches named Fuzzy Logic-based Hidden Markov Models (FL-
HMM) and Multi-Layer HMM (ML-HMM) are designed based on HMM-combined
and HMM-derived approach in this thesis.

To determine and predict drivers behaviors in the future, the main idea is to learn
the driver’s historical behaviors. For this reason a model has to be established and
trained first. To improve the training process, in this thesis a strategy is developed
for higher reliability in terms of accuracy, detection rate, and false alarm rate. The
strategy is named full scale training loop and can be used to optimize both model
structure and model training. Based on the proposed approach, seven algorithms
including five conventional algorithms (HMM, Support Vector Machines (SVM),
Artificial Neural Networks (ANN), Convolutional Neural Network (CNN), Random
Forest (RF)) and two new approaches (FL-HMM, ML-HMM) are used as examples
to identify driving behaviors.

To improve the prediction performance of the related models, design parameters,
which are unknown and need to be set manually before training, are modified.
Using the proposed training procedure the most suitable design parameters can
be determined automatically to optimize the performance of the algorithms. In
this thesis, design parameters are divided into two categories: hyperparameters
and prefilter. The focus is to demonstrate the ability of the proposed approach to
improve the prediction performance of different algorithms, and to discuss the effects
of hyperparameters and prefilters. Based on the data achieved from 17 drivers, four
different models are designed for each algorithm to validate the effectiveness of using
hyperparameters and prefilters. The finally obtained results show that the prediction
performance can be improved using the proposed optimized training procedure.
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1 Introduction

1.1 Motivation and objectives of the work

Every year, a significant amount of people died and are injured in traffic accidents.
World health organization (WHO) provided a global status report on road safety in
2015 and showed that more than 1.2 million people are killed each year on the world’s
roads, the currently leading cause of death for people with age ranged from 15 to 29
years [Wor15]. Therefore, the driving safety problem has been paid more attention
in the past years. Some institutions collect and summarize data describing causes
of traffic accidents. Reports [Wor15] [Nat15] [Nat16a] state many different causes,
such as weather, traffic environment, driving vehicles, and factors related to the
individuality of drivers. The report conducted by National Highway Traffic Safety
Administration (NHTSA) in 2015 [Nat15] assigns the most critical reason of traffic
accidents to drivers as 94 %. Driver’s individual factors in the driving process and
road traffic accidents are mainly reflected in driver’s own behavior. Therefore, the
research of driving behavior is meaningful for traffic safety. However following gen-
eral driving rules, drivers will usually choose the most appropriate operations based
on their own driving experiences and habits. Drivers’ driving behaviors are assumed
as individual. If the driver’s current behavior can be classified and the upcoming
behavior can be correctly predicted, the driver can be better guided. Therefore, the
integration of the driver’s behaviors makes it possible, that an assistance system can
help the driver to detect the improper behaviors more specifically and to indicate
dangerous situations earlier. Driving assistance systems should be adjusted based
on the analysis of individual driving behaviors to improve traffic safety as well as
to realize intelligent driving. To establish a model, the common idea is through
learning from the given driving behaviors to detect the driving intention or fur-
thermore predict the driving behavior. When a similar driving situation occurs, a
corresponding driving behavior can be predicted.

Nowadays many institutions have conducted the research of driving behavior predic-
tion. Different machine learning algorithms like Artificial Neural Networks (ANN),
Dynamic Bayesian Networks (DBN), Support Vector Machines (SVM), Fuzzy Logic
(FL), Random Forest (RF), Convolutional neural network (CNN), and Hidden
Markov Models (HMM) are applied for learning and modeling about driver’s de-
cision.

In fact, current research proposes new methods to realize and improve driving be-
haviors prediction. However, only a few articles concern the optimization of an
established prediction model to improve the prediction efficiency. Therefore, one of
the objectives of this thesis is to propose a new training strategy named full scale
training loop to improve driving behaviors prediction model based on the known
machine learning approaches or an established model. To accomplish this task, the
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known approaches like SVM, HMM, ANN, CNN, and RF are selected as example
to study the effectiveness of the proposed training strategy.

Compared with other popular machine learning algorithms, the HMM and DBN are
designed as a probabilistic graphical model. One advantage is that it is easier for
a human to understand directly the probabilistic relationships between the nodes.
However, the DBN is more complicated than HMM in terms of network definition. In
addition, driver’s driving behaviors are based on the driver’s own experiences, habits,
and the current traffic environment. During driving, driver’s behaviors cannot be
measured directly but can be inferred by analyzing measurable parameters described
current driving situation. The upcoming behavior is stochastic and only depends on
the present state. Therefore, driving behaviors can be described as a hidden Markov
process [SBH08, JF15, JF16]. The HMM algorithm has an advantage for handling
time series data and stochastic signal process. For these reasons, the HMM algorithm
is suitably applied for driving behavior or other human behavior studies [LZT+14].
In 2016, the authors of [MT16] reviewed machine-learning techniques for statistical
analysis and modeling of driver behavior. The authors also pointed out that HMM
has been successfully applied to model driver behavior using large amounts of driving
data. Additionally, only a few HMM-based approaches are summarized in [MT16].
In the review paper [LZT+14] the authors summarized the current researches of
the identification of driver behaviors. They compared some related algorithms such
as HMM, Neural Network (NN), Fuzzy rule-based classifier, and Gaussian Mixed
Model (GMM). The authors listed the advantages and disadvantages of the four
algorithms, and pointed out that the HMM algorithm demonstrates a high accuracy
and a very good performance in real-time driving behavior prediction. However,
the authors in [LZT+14] critically pointed out the disadvantage of HMM requiring
manual definition of the sequence distribution of the current observation. To solve
this problem and to improve the performance of a single HMM, many authors pro-
posed different HMM-based approaches [NTY+12, NTH+14, TNH+16, JF15, JF16].
In general, the design ideas of these HMM-based approaches are roughly divided
into two categories: HMM-derived and HMM-combined. However, papers focusing
on introducing and comparing HMM and HMM-based methods in this field are not
available yet. Therefore, popular HMM-based approaches applied in driving behav-
ior studies will be summarized in this contribution. Based on the two design ideas,
two novel approaches are developed in this thesis.

The contributions of this thesis could be summarized as following points.

• A new training strategy named full scale training loop is proposed to improve
prediction performance of known machine learning approaches.

• Two new approaches based on HMM-derived and HMM-combined methods
are developed to improve driving behaviors prediction.

In addition, some open questions listed in section 2.4 will also be answered in this
thesis.
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1.2 Outline of the thesis

The thesis consists of 8 chapters. Some parts of this thesis are published or prepared
for journal papers [DWS19+] [DS20a] [DS20b][DS20c], or have been published in
proceedings of conferences [DWS18] [DS18] [DS19a] [DS19b].

In chapter 2 the state-of-the-art regarding driver behavior prediction [DS20a] is
presented. Nowadays many institutions have conducted the research and established
various driver behavior models for driving. Popular approaches are summarized,
especially HMM-based approaches applied to driving behavior studies. In addition,
some open questions of existing researches are summarized.

In chapter 3 the fundamentals of five known machine learning approaches including
Support Vector Machines (SVM), Artificial Neural Networks (ANN), Convolutional
neural network (CNN), Hidden Markov Models (HMM), and Random Forest (RF)
are introduced.

In chapter 4 a full scale training loop is proposed to optimize unknown parameters,
and therefore to improve the prediction performance of the known machine learning
approaches or an established model.

In chapter 5 two newly developed approaches named Fuzzy Logic-Hidden Markov
Models (FL-HMM) and Multi-Layer HMM (ML-HMM) are presented, which are
designed based on the HMM-combined / HMM-derived ideas and the proposed full
scale training loop.

In chapter 6 the experiment design for obtaining driving data is described. Based
on the data sets, the experimental results are given and the proposed approaches
are validated.

In chapter 7 the conclusions about the full scale training loop as well as the newly
developed approaches are provided.

In chapter 8 the approaches and discusses research contributions are summarized.
Limitations and further work are also presented.
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2 Literature review

This chapter consists of four sections. In section 2.1, the concept of human driver
behavior recognition / prediction, a typical driving model structure, and the ap-
plication status of driver behavior model are introduced. The state-of-the-art of
driver behavior prediction and its related approaches are reviewed in section 2.2. In
addition, the influencing factors on driving behaviors i.e. the main objects of cur-
rent researches are summarized. A discussion on the applications, advantages, and
disadvantages of the mentioned methods, limitations, as well as the development
trends of driving behavior models are addressed in section 2.3. The open research
questions are summarized in section 2.4.

The contents, figures, and tables presented in this chapter are prepared and submit-
ted for publication of [DS20b].

2.1 Background

Nowadays many institutions have conducted the research and established various
driver behavior models for driving. The studies reported that, the driver’s char-
acter, gender, age, fatigue, driving experience, etc. will mainly affect the driver’s
behavior [Wor15] [Nat16a] [Nat16b]. Some review papers summarized already the
current state of driving behavior studies with focus on the identification of driver
behavior characteristics [LZT+14] [WXC14], the prediction of tactical driving behav-
iors (intent) [DT11], the detection of driver drowsiness and distraction [KGYK15],
the analysis of driving styles [MM15] [MHW+18], and the recognition of human
behavior through visual monitoring [CSG+10] or human emotional states [DKB20].
However, these review papers only summarize and discuss specific aspects of driv-
ing behaviors, like driving styles, drowsiness, etc. In addition, the authors often
summarize popular algorithms. The derivation of popular algorithms or other ap-
proaches developed are not discussed. In [BDCK20] a taxonomy of 200 models is
constructed around different modeling tasks including state estimation, intention
estimation, trait estimation, and motion prediction. However, specific information
like model input, output, and explanation/discussion of algorithms is not presented
in this survey [BDCK20].

To study (and therefore to model) the driver’s behavior, to copy the driver’s behavior
to machines (algorithms), and then to use the driver’s model for predicting the
driver’s behavior in the future, different types of driving behavior models exist in
current studies and will be summarized in this chapter.
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2.1.1 Human driver behavior and intention

The main goal of this thesis is to study human driver behaviors. The driver behavior
model depicts a theoretical framework of human cognition, maneuver, and control
processes which plays an important role with respect to prediction, reducing driving
risk, developing intelligent vehicles, and improving driving assistance system. The
driving behavior in current research is not only a real action or a specific behavior,
but also includes the reactions when driver realizes a driving task, such as the driver’s
driving patterns, driver’s intentions, the driving maneuvers, the trajectories of the
vehicle, etc.

Generally, driver behavior is what a driver actually does, and driver intention is
what a driver intends for his/her own behavior to be. Therefore, driver behavior
prediction (i.e. driver intention recognition) model is based on the real understand-
ing of the ego-vehicle states and other events which occur in the environment, and
then the model judges and estimates what will happen in the next step. Normally,
the estimated behavior will be realized by the driver/vehicle in the next few sec-
onds/minutes/hours. This process is defined as behavior prediction.

2.1.2 Prediction and recognition of human driver behaviors

In this section the modeling basics and the typical classifications of driver behavioral
model are briefly introduced.

A driving behavior model consists of three aspects including input, information
processing process, and output. The vehicle states and variables (position, speed,
acceleration, steering wheel angle, etc.), situations of the surrounding vehicles (po-
sition, speed, acceleration, etc.), information on road conditions, traffic signals, and
traffic information are generally given as input of a driving behavior model. These
inputs will affect the driving behaviors, and change the driver’s actions (output).
In [Mic85] the author summarized types of driving behavior models, which are clas-
sified into two categories including trait models (psychological) and task analysis
(behavioral). Trait models describe the relationship between the driver’s character-
istics mainly focusing on the perspective of accident proneness. Due to physical and
psychological factors, drivers may have traffic accidents in some cases. In general,
trait models will be used to study individual differences of drivers, which include
external differences (such as driver’s driving skills, age, gender, etc.) and internal
differences (such as driver’s fatigue, attention, emotions, etc.).

General modeling ideas of nowadays driving behavior models (task analysis) will
consider specific observations as well as analysis of driving activities, which include
driver’s perception, decision making, navigation tasks, and attention regulation, etc.
These driving activities will be analyzed as different types of driving sub-tasks and
divided into different levels. Afterward the levels will be dynamically linked to a
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Figure 2.1: Three hierarchical model of driving task (modified based on [Don99])
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complete driving task as well as used to build a hierarchical structure. In hierarchical
models, task requirements, execution time, and cognitive processes at each level are
not identical.

A well-known three-level model was proposed for task modeling by Rasmussen in
1983. Rasmussen described human behavior in a human-machine system stating
three levels, which are denoted as skill-, rule-, and knowledge-based [Ras83]. In gen-
eral, the skill-based performance denotes the driver’s actions that are independent
on the person’s conscious attention. However the conscious is not the only basis
for the driver’s behavior. Sometimes the drivers drive according to the established
rules or their own experiences, i.e. the rule-based level. If no clear rules or previous
experiences can be applied in a driving situation, the driver’s behaviors will be made
based on driver’s analysis, judgment, plan, and trials, in this situation the driving
behavior is knowledge-based.

In 1985, Michon established a hierarchical model considering the problem-solving
task of driver, which is structured at three levels: strategical (planning), tactical
(maneuvering), and operational (control) [Mic85].

Ranney [Ran94] combines Michon’s hierarchical control model and Rasmussen’s
three-level model, and describes the differences between the skills of novice drivers
as well as experienced drivers, and the differences between familiar and unfamiliar
situations. For experienced drivers, skill-based, rule-based, and knowledge-based
behaviors are involved at the operational, tactical, as well as strategical level re-
spectively. However, for novice drivers or driving in unfamiliar areas the drivers
behavior may follow a different path in this model. For example, at the operational
level, experienced drivers shift gears on a skill-based level, but the driving behaviors
of novice drivers are on the knowledge-based level initially.

Donges introduced a three-level hierarchy of driving task in 1982 and delineated each
level in detail based on Rasmussen’s three-level model in 1992 [Don16] [Don99], as
shown in Figure 2.1. The first level is a skill-based behavior process (control layer).
Donges used the term “stabilization” instead of “control”, in this process drivers
use driving skills automatically. The second level describes a rule-based behavior
process (maneuvering layer), in which drivers determine the maneuvers (such as
overtaking, slowing down, changing lanes, etc.) according to the traffic rules and
the current driving situation. The third level is denoted as the knowledge-based
behavior process (strategic layer), drivers in this process make an entire driving
plan and handle emergency based on their knowledges as well as experiences.

In 2003, Hollnagel et al. [HNL03] proposed a model for Driver in-Control (DiC).
The model describes the driving tasks using four levels, which include Targeting,
Monitoring, Regulating, and Tracking. Each level has its own control objectives.
The control objective of the targeting level is the goal of a driving task, such as the
choice of the destination. In the monitoring level it mainly monitors the driving
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environment, such as the state of traffic signs and signals. The regulating level
controls the anticipatory risk and focus on the abnormal/dangerous driving. The
last level (tracking) is concerned with vehicle speed, distance from the vehicle to
front/behind vehicles, relative lateral position, etc. This model is not only used
to describe the corresponding driving tasks of each control level, but also describes
the dynamic interaction as well as the propagation of disturbances between the
different levels. It provides a reasonable explanation for the interaction between
driving behavior and traffic environment.

2.2 State-of-the-art

2.2.1 Influencing factors of driving behaviors

Driving behaviors are dynamic and individual. They are based on driver’s own char-
acters, experiences, habits, the current driving environment, etc. Driving behaviors
can be influenced by many factors, which are also the main topics of the current
research in this field. This section summarizes several common influencing factors
of driving behavior, and introduces their current corresponding research.

Driving styles

Due to the driver’s character, psychological status and other factors, driving be-
haviors could be categorized into many driving styles. Sagberg et al. [SSPE15]
state that driving style depends on the individual driver and it is a habitual driv-
ing way. The authors point out that in the existing literature labeling of driving
styles are commonly defined by common sense. In current driving style contribu-
tions [SSPE15,ZVL14,AAAD12], aggressive driving is a very common term. Aggres-
sive driving behaviors include driving without obeying the traffic rules, such as over
speed limit driving, sudden accelerating, sudden braking, abrupt lane changing, or
sharp turning. These driving behaviors will lead the driver/vehicle to risks or even
accidents. Therefore, one of the purposes of driving style studies is to sort out these
aggressive driving. It is helpful to develop ADAS, because when a dangerous driving
behavior is recognized, the driver can be warned immediately. At the same time,
the driver’s behaviors will be guided to improve traffic safety. To detect aggressive
driving behaviors, in many driving style analysis studies, normal (safe/defensive)
driving is given as a referent [ZVL14]. As explained in [SSPE15], dangerous and
safe driving styles can be divided into different levels. Several different terms are
used to label global driving styles, like calm, careful, aggressive [SSPE15]. However,
it still lacks an unified conceptual standard to clearly distinguish these styles. In
the existing contributions, the levels, the terms, and the concepts of driving styles
depend on author’s own definitions.
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Aggressive driving can be classified based on physiological signals, biometric infor-
mation, or vehicle driving state like vehicle velovity, acceleration, etc. In [DL15]
Derbel et al. propose an approach for calculation of car insurance fee through
estimating the driver aggressiveness. Using the vehicle velocity signal, vehicle accel-
eration, and vehicle jerk (i.e. derivative of acceleration) collected from a black box,
a developed Fuzzy Inference System (FIS) model was designed to improve perfor-
mance of the driving behavior recognition. By comparing the vehicle acceleration
and the vehicle’s comfort acceleration limit, the aggressiveness can be determined.
For example, the authors point out that the values of vehicle’s comfort acceleration
limit in the case of acceleration/deceleration are equal to 4 m/s2 and -3 m/s2, re-
spectively. If the value of the acceleration gets larger than 4 m/s2 or less than -3
m/s2, the driving will be considered as more aggressive. The same strategy was also
reported in this research for vehicle jerk. Finally, aggressive and normal driving can
be classified using fuzzy rules.

In [AAAD12] A. Aljaafreh et al. developed a method for detection and classifica-
tion of aggressive driving. Using fuzzy logic, driving styles are classified into below
normal (BN), normal (N), aggressive (A), and very aggressive (VA). The data were
collected from a 2-axis accelerometer which is embedded in most of the GPS tracker
devices. Longitudinal acceleration, lateral acceleration, and the speed of the vehicle
are used as inputs respectively, afterwards their corresponding logical values need
to be defined one by one. Based on fuzzy rules the output of the system is used
to classify the individual driving behaviors into the different driving styles. Aggres-
sive driving events could be detected from normal driving. In [ZVL14] aggressive
driving style is classified using 3-axis (lateral, vertical, longitudinal) accelerometer
data. The authors compare using one acceleration signal alone or combining two or
three of them to recognize driving styles. The results are shown that using longitu-
dinal acceleration signal the aggressive and safe driving style can be more effectively
classified.

In addition to judge aggressive driving, driving style analysis is also used for reducing
fuel consumption. In [BC16] Bao et al. proposed a method for predicting the driving
style to search a personalized eco-friendly style. The drivers were divided into three
classes including calm, normal, and aggressive driving based on Learning Vector
Quantization (LVQ) neural network. Based on the predicted driving style, current
traffic (congestion and average speed of each road), time, and road type, the fuel-
consumption-minimizing route could be determined.

From these studies it can be concluded that the study of driving styles/patterns
cannot only be used for warning drivers to avoid dangerous driving and related
problems, but also for calculating car insurance fees, improving fuel economy, and
other aspects. The information about driving styles is obviously helpful to develop
driving assistant systems. Based on different types of drivers these systems can give
drivers suitable suggestion to fit their driving habits.
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Fatigue driving

Fatigue driving is another important driving style leading to traffic accidents. The
drivers’ inattentiveness, tiredness, drowsiness, or sleeping during the driving process
refer to fatigue driving. The National Highway Traffic Safety Administration [Nat17]
reported that about 90000 accidents involved fatigue driving in 2015. Driver fatigue
detection research can be divided into two main categories: based on driver behavior
and on vehicle behavior.

Based on driver behavior means measuring the driver’s own characteristics, such as
physiological parameters or biometric information. The driver’s physiological pa-
rameters include electroencephalogram (EEG), electroencephalogram (EOG), elec-
trocardiogram (ECG), etc., which can indicate driver’s mental fatigue and psychical
fatigue. Therefore, in some studies these parameters are used to determine whether
drivers are fatigue. In [KKLD11] the authors propose a feature-extraction method to
extract drowsiness-related features from the EEG, EOG, and ECG signals. These
features will be used to classify the drivers fatigue into different levels. To sim-
plify the calculation process and to form suitable feature sets to the classifier, the
authors chose two dimensionality-reduction methods including spectral regression
(SR)-based linear discriminant analysis (LDA) and its kernel-based version (KSR).
The results show that the classification accuracy of using KSR is better than us-
ing SR, the percentages are 97 % and 95 % respectively. In addition, the authors
compare the differences between using only one signal or using a combination of
different signals. The conclusion of the research shows that the ideal results cannot
be obtained with ECG or EOG alone. However, a high classification accuracy can
be achieved using only EEG, or using a combination of EEG+ECG, or EEG+EOG.
Other researches concluded the same outcomes. Using ECG-based Neural Network
(NN) [PLKR11] the accuracy of the classification reaches 90 %, and using EEC- and
ECG-based Support Vector Machine (SVM) [SLZ+11] the percentage of accuracy is
larger than 87.5 %.

The other measures of driver’s characteristics are through the analysis of eyelid
blinking, eye movement, eye closure, head pose, etc. to detect fatigue driving.
In [QLH12] Qin et al. focused on the analysis of eye closure of the driver. The
authors extracted two-dimensional Discrete Cosine Transform (2D-DCT) feature of
each eye images. Two HMMs were trained based on eye opening and closure images,
respectively. The states of the two HMMs were calculated at the same time. The
recognition result with the highest likelihood is used to determine the fatigue statues
of the driver. Lee and Chung [LC12] use a dynamic Bayesian network framework
to evaluate the driver fatigue. Two sensors are used to collect data including eye
movement and photoplethysmograph (PPG) signal. If the calculated driver fatigue
reaches a defined threshold, the drivers will be warned.

In addition to the aforementioned researches based on studying the driver’s own
characteristics, analyzing the vehicle situation is also used to detect driving fatigue.
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The driver’s maneuvers could be estimated to determine whether there is fatigue
driving. Generally this method uses the current vehicle status including the dis-
tances between the ego-vehicle and other vehicles, deviations from lane position,
steering wheel angle, velocity, acceleration, as well as other controller-area-network
(CAN) signals. For example, in [CRKK16] an approach is given for detecting driver
fatigue based on HMM. Signals are processed according to three independent mod-
ules including vision, audio, and other-signals module. The inputs of vision and
audio modules are video and voice respectively. The module namely ’other-signals’
uses heart rate, steering wheel position, gas, brake, and clutch pedal positions as
inputs to detect driving fatigue. The three modules are independent from each other
and final results were fused using the output of each module.

As shown in the mentioned researches, the fatigue driving behaviors can be deter-
mined from analysis of the driver and the vehicle states. Physiological parameters or
biometric information are often used for fatigue driving detection. However, drivers
are required to wear an appropriate equipment like helmet to collect data. It is
impractical for drivers in real driving. To avoid this, possible solutions are through
analyzing the state of the human eyes and the state of vehicle. In this case, drivers
are not required to wear equipment, the data can be collected by eye trackers, cam-
era, or the vehicle CAN bus. This can be achieved in driving assistance systems.

Drunk driving

The National Highway Traffic Safety Administration (NHTSA) reported that in
2014 the accidents due to drunk driving accounted for 31% of the total accidents in
the United States [Nat16b]. Therefore, drunken driving is one of the major causes
of traffic accidents. Therefore, the research of drunken driving is helpful for traffic
safety.

A drunk driving recognition model based on Dynamic Bayesian Network (DBN) is
proposed in [WY10]. The integrating multi-hysiological variables such as blood alco-
hol concentration, eye movement, and head movement are selected as inputs, which
are collected by drunken breath analyzer and image capture devices. The authors
proposed a simple graphical model integrating all the information to recognize the
abnormal driving behaviors. The results show that the fatigue and drunk driving be-
havior can be detected in a simulated environment. In addition to the driver state,
the vehicle state is also often used to determine drunk driving. In [MAA17] the
authors select CAN bus data such as GPS, torque, engine RPM, vehicle speed, ac-
celeration, etc. to detect drunk driving patterns. Using machine learning algorithm
(Logistic Regression) the drunk driving patterns can be classified with an accuracy
of 82 %. Dai et al. [DTB+10] proposed a system for detecting drunk driving only
using a smart phone. Using smart phone the orientation angles and accelerations of
the mobile phone are collected to determine the lateral and longitudinal acceleration
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of the vehicle. Through the both accelerations two behavioral clues including lane
changing (drifting, swerving, etc.) and speed changing (suddenly accelerating and
braking) can be detected. Finally, by considering these two information the model
based on pattern matching techniques can judge whether the driver is a drunk driver.
In [ASABZ13] the authors proposed a context-aware driver behavior system for de-
tection of different behaviors, which include normal, drunk, reckless, and fatigue
driving. By collecting contextual information about the driving environment, the
abnormal behavior could be detected, in the meanwhile other vehicles on the road
will be warned to avoid traffic accidents.

The recognition of drunk driving is similar to fatigue driving, which can be analyzed
through the driver’s and vehicle’s state. The difference is that physiological param-
eters of drunk driving recognition is based on blood alcohol concentration instead
of using EEG, EOG, etc.

Driving skill

The researchers in [Nat15] state that most accidents are caused by driver errors.
Therefore, a large amount of researches are studying the driver’s driving behaviors
with the goal of sending early warnings to the driver and assisting the human driver.

In general, driving skills can be defined as the drivers’ actions that are independent
on the drivers’ conscious attention [Ras83]. Driving skills are reflected by human
drivers manually controlling vehicles to achieve specific driving tasks, such as speed
changing, steering, gear shifting, etc. However, each driver has own individual
driving skills. To realize intelligent driving and improve driver assistance systems,
it seems to be helpful to analyze these individual characteristics of driver. The
main idea of driving skill prediction is that by learning a driver’s historical driving
behavior, to determine and to predict the behavior of the driver in the future for
different driving situations. Before the driver is making decisions, advice will be
given or the driver will be warned early enough before a risky action is taken.

In [DWWB13] C. Ding et al. focused on the prediction of lane-changing trajectory
based on Back-Propagation (BP) neural network. One advantage of this BP neural
networks is that the network learns the relationship of inputs and outputs through
adapting its free parameters. This ability to learn the uncertainties of driver’s driv-
ing behaviors by trained BP neural network could be adjusted to accommodate any
driving. The inputs of this model consist of the prior position, velocity, acceleration,
and time headway of the ego-vehicle. The effectiveness of BP neural network for
predicting lane-changing trajectories is proven in [DWWB13]. To explore how long
the predicted time is suitable, the authors selected 1 s and 2 s as examples. The
result with 1 s prediction time is more accurate than with 2 s prediction time.

In [JF15] [JF16], a prediction method of vehicle speed was presented. By using
neural network (NN) models the average traffic speeds will be predicted based on
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current and historical traffic data. However, the individual vehicle speeds are not
only limited by traffic speed, but also influenced by other factors, such as vehicle
type, road type, and lane change, etc. Using the average traffic speeds obtained
by NN, the prediction of individual vehicle speeds were realized based on HMM.
Kumagai et al. [KSOA03] focused on the prediction of driver intension of stopping
the vehicle at an intersection with their current and historical maneuvers based on
a simple DBN.

The goal of driving skill and behavior research in this section is mainly to predict the
driver’s next actions and also to avoid misoperations of the driver or give suggestion
for the next step. However, the main purpose of driving styles/patterns, fatigue
driving, and drunk driving research is to identify whether there is an abnormal
drive. Thus, the driver will be suggested to change the driving style or to stop
driving.

Traffic environment

Another important factor affecting driver behavior is related to different driving
scenes, such as highway and inner-city scenarios. For different driving environ-
ments, driving behaviors are also different. There are relevant studies of driving
behaviors for some typical traffic environment. The main cause of accidents in high-
way are speed and lane changes. The authors of [ANN12] [BWKS14] [KPLL13]
focus on lane-change or speed-change [JF15] [JF16] [LKO14]prediction in high-
way scenarios. Another highway scenario discussed is at highway lane drops, such
as in [XLW+14] [DYF16] the authors studied driving behaviors entering a high-
way. The driving behaviors in these scenarios are mainly considered whether the
drivers need to change lane, i.e. merge and non-merge behaviors. Other studies
like [AH16] [KKS15] discuss the behaviors at an intersection inner-city. The driving
behaviors in the inner-city are complex, they mainly include acceleration, deceler-
ation stopping, turning, driving through the intersections with or without traffic
signals.

2.2.2 Machine learning based human driving behavior recognition and
prediction

In this section popular algorithms evaluating and classifying driving behaviors will be
discussed and summarized. The main focus is on HMM and other related algorithms
based on combinations using HMM.
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Popular algorithms

Establishing driving behavioral models, several approaches have been applied. Dif-
ferent kinds of machine learning algorithms like Artificial Neural Networks (ANN),
Dynamic Bayesian Networks (DBN), Support Vector Machines (SVM), Fuzzy Logic
(FL), Random Forest (RF), Convolutional neural network (CNN), and Hidden
Markov Models (HMM) are used to establish driving behavioral models and there-
fore will be introduced here.

Artificial Neural Network (ANN), which is also called Neural Network (NN), is a
computational model used in machine learning, and imitates of biological neural
network work. The trained ANN is presented as a dataset. The goal of the ANN
is to obtain a desired output according to the corresponding inputs. As a common
machine learning algorithm, the ANN approach is usually applied in fields of human
driving behavior problems. For example, ANN-based models have been used in
predicting the acceleration distribution for vehicle following on highways [CAFH13],
for lane changing prediction [DWWB13], vehicle speed prediction [JF15] [JF16], and
drowsiness detection [DHB+11].

Bayesian Networks (BN) are a probabilistic model which graphically represents a set
of random variables and their conditional dependencies. In [GSZ+17] a framework
based on BN for estimation of driver’s drowsiness is proposed. The framework
combines different information, such as weather, sleep time, eye movement, vehicle
movement, yawning position, head tilt, etc. to infer driver fatigue. The result of
this research shows that, if only one certain factor is considered in this framework,
the percentage of eyelid closure could be used to obtain the best inferring result.
If the framework combines three features, the inferred probability is always greater
than 95 %. However in a regular BN, a node representing a driving state influences
other state without considering the change of time. The driver fatigue as well as the
other driving behaviors are time-dependent. Therefore, Dynamic Bayesian Network
(DBN) is applied more often to human behavior recognition and prediction.

The DBN algorithm is derived from BN and is designed to consider dynamic re-
quirements. It describes that, the value of a variable of a BN at time point t can
be calculated from the values at time point t − 1. In [GBD13] DBN is used for
estimation and prediction the acceleration as well as turn-rate for car-following and
lane-change of a 4-way intersection. The algorithm of DBN was used in [LC12] for
driver fatigue evaluation. Al-Sultan et al. [ASABZ13] proposed a method based on
a combination of DBN and a five-layer context-aware architecture to detect four
different driving styles, which include normal, drunk, reckless, and fatigue.

Support Vector Machine (SVM) is a supervised machine learning method and pri-
mary a binary class classifier developed by Vapnik in 1979 [Vap95] [Bur98]. It is a
margin-based classifier to transform the data to a high dimensional space to separate
data using a hyperplane. The process of SVM learning is trying to find an optimal
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hyperplane between data points of different classes to generate a maximal geometric
margin [Vap95] [Bur98]. Kumar [KPLL13] focused on the prediction of lane change
intention based on a combination of a multi-class support vector machine (SVM)
classifiers and Bayesian filtering. In [PLCY14] Pan et al. used SVM to establish
a driving behavior model based on multiple information (eg. steering wheel, brake
throttle, and road conditions) to determine whether the current driving behavior
belongs to good (safe) driving. In [WWW+14] SVM is applied for fatigue driving
detection, the authors concluded that SVM performs well using the driver’s EEG
signal, the results show an accuracy rate of 88.62 %.

Fuzzy rule-based classifier is one of the most popular approaches used in classification
problems. The structure of this model is easy to interpret by using IF-THEN rules.
Fuzzy Logic (FL) approach is considered as an extension of Boolean logic. It is based
on fuzzy sets and allows to model the truth of statements continuously between true
(one) and false (zero) using membership functions. Common fuzzy sets are based on
triangular, trapezoidal, or Gaussian membership functions [ZB02]. Therefore, the
inside view of this model is comprehensible and its logic could be easily understood.
The authors of [HWJ+12] used a FL model for prediction of driver behaviors of
stopping the vehicle at an intersection, when the traffic signal turns yellow. Distance
from the current vehicle position to the stop line will be categorized as close, medium,
and far distance. Close and far distance respectively indicate possibility to go as well
as possible to stop. Medium distance contains the largest uncertainty. Using the
defined membership functions at different distances the drivers stopping probability
could be calculated.

Other popular algorithms such as Random Forest (RF) is used in [CLZ+17], seven
basic driving behaviors are recognized based on a 3-axis accelerometer with a high
accuracy of 98.1 %, and the robustness of RF is verified. In recent years, many
works have been published to implement deep learning in the field of computer
vision, document/handwriting recognition, and also driving behaviors recognition
tasks [GMZ18] [LKMH17]. In recent years, many works have been published to
implement Convolutional neural network (CNN) in the field of driving behaviors
recognition tasks. For example, in [GMZ18] physiological signals are used to predict
lane change behaviors based on a novel Group-wise CNN. The authors of [LKMH17]
proposed using CNN and images from radar and camera sensors to predict lane
changing intention.

To evaluate popular algorithms, some studies use same datasets and select different
algorithms to establish models and evaluate performance of different algorithms. For
example, in [DWH+20] a driving behavior prediction system is accomplished based
on HMM, SVM, CNN, and RF. In addition, eye-tracking information is integrated.
The results show that the performance of RF algorithm is the best of all four al-
gorithms tested. Especially combining environmental and eye-tracking data the RF
algorithm achieved the best results with an accuracy more than 99 %. The authors
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in [DS19a] proposed a strategy for improved training of conventional algorithms.
Four algorithms (SVM, ANN, HMM, and RF) are used as examples. The authors
point out that usually a set of unknown parameters are needed to be set manually
before training, when a conventional algorithm is used alone. With the proposed
training procedure, the most suitable values of these unknown parameters are de-
termined automatically to optimize the performance of the conventional algorithms.
The authors compared the reliability of the algorithms with respect to the relevant
accuracy, detection, and fault alarm parameters. The results show that, for the four
conventional algorithms, RF and ANN have better prediction performance than
HMM and SVM. Using the introduced training procedure in [DS19a], the prediction
performance of the conventional algorithms is (partly strongly) improved.

HMM and HMM-derived approach

In the review paper [LZT+14] the authors compare some related algorithms such
as HMM, Neural Network (NN), Fuzzy rule-based classifier, and Gaussian Mixed
Model (GMM). The authors listed the advantages and disadvantages of the four
algorithms considered, and pointed out that the HMM algorithm demonstrates a
high accuracy and a very good performance in real-time driving behavior prediction.
Compared with other popular algorithms, the HMM and DBN are designed as a
probabilistic graphical model. One advantage is that it is easier for a human to
understand directly the probabilistic relationships between the nodes. However, the
DBN is more complicated than HMM in terms of network definition. In addition,
driver’s driving behaviors are based on the driver’s own experiences, habits, and the
current traffic environment. During driving, driver’s behaviors cannot be measured
directly but can be inferred by analyzing measurable parameters described current
driving situation. The upcoming behavior is stochastic and only depends on the
present state. Therefore, driving behaviors can be described as a hidden Markov
process [SBH08, JF15, JF16]. The HMM algorithm has an advantage for handling
time series data and stochastic signal process. For these reasons, the HMM algorithm
is suitably applied for driving behavior or other human behavior studies [LZT+14].
In 2016, the authors of [MT16] reviewed machine-learning techniques for statistical
analysis and modeling of driver behavior. The authors also pointed out that HMM
has been successfully applied to model driver behavior using large amounts of driving
data. Additionally, only a few HMM-based approaches are summarized in [MT16].

Nowadays, there are a large number of driving behavior researches developed by
HMM-based approaches. In general, the design ideas of these HMM-based ap-
proaches are roughly divided into two categories: HMM-derived and HMM-combined.
However, review papers focusing on introducing and surveying HMM and HMM-
based methods in this field are not available yet. Therefore, this section aims to
summarize popular HMM-based approaches applied in driving behavior studies.
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• Hidden Markov Model

Hidden Markov Model (HMM) is applied for estimation of unmeasured states,
therefore, it is widely applied in fields of driving behavior estimation. The focus
of this section is to summarize the driving behaviors recognition and prediction
approaches using HMM and HMM-derived approaches. In addition, there are
some algorithms based on HMM combined with many other algorithms like
neural networks, SVM, etc. also mentioned in this subsection.

In [TSLL15], the authors propose to use HMM in determining driver inten-
tion for a variety of vehicle maneuvers including stop/non-stop, change lane
left/right and turn left/right. To predict a trajectory of a lane changing, Liu et
al. [LKO14] established two HMMs including normal lane change model and
dangerous change model, which were trained based on normal sample data
and crash data respectively.

In [DWS18], the HMM algorithm was applied for driving behaviors prediction,
where a prefilter was used to process and combine signals to form features
for the HMM recognition process. Three different driving intentions namely:
lane change left, lane change right, and lane keeping are modeled as hidden
states for the HMM. The results show that the evaluation metrics including all
accuracy (ACC), detection rate (DR), and one minus false alarm rate (1-FAR)
values are larger than 80 %.

• Hierarchical HMM

The hierarchical HMM (HHMM) is a multi-level HMM derived from HMM
[FST98]. Like HMM, the HHMM algorithm contains a set of hidden states
and a set of observations. The difference from HMM is that the states of
HHMM contains three different kinds including root states, internal states,
and the production states. Root and production states indicate states of the
highest and lowest levels HMM respectively. Only production states contain
an observation probability distribution matrix, i.e. observations are generated
directly from production states. Each state of high-level HMMs (root and
internal states) could be considered as a low-level HMM, that means each root
and internal state serves as a probabilistic model [FST98]. Therefore, HHMM
can be used to describe the relationships between each HMMs.

In [GKKO11] the authors proposed a system for estimation and prediction
of driver/vehicle behaviors in autonomous vehicles. Four different HMMs are
trained according to four different scenarios, which include turning left/right,
going straight, and stopping at an intersection. The results show that us-
ing this method driver behaviors can be successfully predicted. The authors
presented an extension through using HHMM for prediction process. The
driver states are the low-level HMMs, so the relationship between them could
be estimated by the high-level HMMs. In [ZKZ+15] an HHMM approach is
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used to develop a rollover warning system of heavy duty vehicle. The authors
pointed out that using lateral acceleration and roll angle the lateral slip and
rollover behaviors of heavy duty vehicle can successfully be detected with a
high accuracy of 99.7 %.

Unlike common HHMM, in [DS19b] a Multi-Layer (3-layer) HMM approach
is proposed and developed for predicting lane changing behaviors. The ap-
proach is based on situation-specific HMMs combined with thresholds, for
which related parameters are adapted during a training phase. The first layer
is considered to predict the driving behaviors using only one signal as input.
The inferential results from the first layer are given to the second layer, and the
second layer only considers some selected information, such as all velocities, all
distances, etc. Only the third layer considers all information. All sub HMMs
of each layer are calculated in parallel and all of them can be used to predict
driving behaviors. The results show that the accuracies of lane changing to
right and lane changing to left are more than 90 %.

• Bayesian Nonparametric HMM:
Hierarchical Dirichlet Process (HDP)-HMM

One main issue in HMM is that the number of assortment of hidden states must
be set before training, so each hidden state must be defined before modeling. If
the assortment of hidden states increases, the model complexity also increases.
If any of the assortments of the hidden states has not been defined during the
training phase, consequently the whole model is incomplete and incorrect. To
solve this problem, Hierarchical Dirichlet Process (HDP)-HMM was proposed
by [BGR01] [TJBB06]. As a Bayesian non-parametric alternative for standard
HMM, it is used without fixing the number of assortments of hidden states. In
2007 Fox et al. [FSJS07] proposed a Sticky HDP-HMM, which is an extension
of HDP-HMM. It’s frequency of transition between hidden states is reduced
compared to the HDP-HMM model.

In [NTY+12] [NTH+14] [TNH+16] the authors assumed that contextual in-
formation of driving behavior has a double articulation structure, which is
similar to language, i.e., the driving behavior is a sequence of “driving words”.
A “driving word” is a sequence of “driving letters”. In [TNH+16] steering
angle, brake pressure, and accelerator signals are selected as input. Differ-
ent segments of input signals are generated as “driving letters”, which are
considered as short-term behavior unit. A long meaningful behavior unit is
named as a “driving word”, such as “start”, “turning right”, “following a lead-
ing vehicle”, etc. Here, the sticky HDP-HMM was used to find meaningful
segmentations (“driving letters”) from driving behavior. Nested Pitman-Yor
language model (NPYLM) [MYU09] was used to combine and sequence mean-
ingful chunks (“driving word”). Based on these chunks the driver’s intention
can be estimated. It is worth to mention that sticky HDP-HMM with NPYLM
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is a development of an unsupervised learning method, i.e. “driving letters”
and “driving words” are unknown before training. Therefore, the evaluation
method is different from common methods that use accuracy or detection rate
to evaluate the prediction performance. In [TNH+16] three experiments are
used to verify the model performance. The results of the first experiment indi-
cate that more than two next “driving letters” are correctly predicted using a
developed NPYLM with sticky HDP-HMM method. The results of the second
and third experiments show that the average prediction time are 17 s and 8.9
s respectively.

The sticky HDP-HMM approach is also used to develop a general framework
to learn and recognize lane-change interactions of the ego-vehicle with its sur-
rounding vehicles on highways [ZZWX20].

In [WXZ18a] a new framework for driving style analysis is developed by com-
bining Hierarchical Dirichlet Process and Hidden Semi-Markov Model (HDP-
HSMM) derived from HDP-HMM. After comparing with HDP-HMM and
sticky HDP-HMM, the authors in [WXZ18a] find that HDP-HSMM is able
to segment driving patterns as expected, but HDP-HMM cannot learn driv-
ing patterns as expected, and the sticky HDP-HMM method is sensitive to
data fluctuation. According to [WXZ18a], HDP-HSMM performs best among
them.

• Auto-Regressive HMM (AR-HMM) and Beta Process (BP)-AR-
HMM

Auto-Regressive HMM (AR-HMM) is similar to standard HMM, but it has
one more weight matrix W which consists of probabilities of moving from one
observation to another. Abe et al. [AMO07] applied AR-HMM for modeling
and predicting driving trajectory behaviors. Different driving behavior models
could be switched by analyzing gas pedal stroke and brake pedal stroke.

Similar to an HMM, the AR-HMM needs to determine the number of choos-
ing hidden states (driving behaviors), i.e. the number of classes. To avoid
this problem, Fox et al. [FSJW09] proposed the Beta Process AR-HMM (BP-
AR-HMM), which combines the nonparametric Bayesian technique and AR-
HMM. Therefore, this BP-AR-HMM model can produce infinite state. The
total number of states can be determined in theory, but cannot be defined
before training. In [HKI+16] the author applied BP-AR-HMM to predict the
driving behavior, historical driving behaviors will be segmented into discrete
states, which are produced by BP-AR-HMM. Each discrete state corresponds
to an AR model. The observations in [HKI+16] consider accelerator opening
rate, brake pressure, and the steering angle signals. Using the BP-AR-HMM,
driving behaviors including brake pressure and steering angle are predicted.
The results show that, compared with HMM, AR-HMM, and HDP-HMM, the
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BP-AR-HMM has the smallest mean absolute error (MAE) which is about
0.05-0.2 MPa between the measured and predicted brake pressure values.

• Summary

It can be concluded that the approaches derived from HMM are based on sim-
ilar ideas, the HMM’s characteristic of time series is mainly considered and
used in these algorithms. Driving behaviors will be decomposed into multiple
layers tasks. The lowest level task is to recognize each specific operation, such
as acceleration, deceleration, and steering wheel signals. Obtained results of
the lowest level will be given as inputs to higher level to identify driving be-
haviors like go straight, turn left/right. It is worth pointing out that these
methods are proven to be effective in predicting driving behaviors. One possi-
ble reason is that signals and driving behaviors change always over time, and
the current driving behavior is always affected by the previous one.

HMM-combined approach

Except for using HMM-derived approaches, HMM is often combined with other algo-
rithms to improve the performance. Usually in this case, HMM and other algorithms
are used to complete different tasks respectively.

• Artificial neural network (ANN)-HMM

In addition, HMM is often combined with other algorithms. Different from
HMM’s derivative algorithm, in combination methods, HMM and other algo-
rithms are used to complete different tasks respectively.

For example in [AK07] Boyraz et al. proposed a method to determine a driv-
ing maneuver in an urban road scenario. An ANN was used to recognize
and classify driving maneuvers based on different signals, such as steering
wheel angle and speed. These labels were classified by ANN and then used
to train the HMM. In the final phase, driving maneuvers of Right Turn, Left
Turn, UTurn, Roundabout, Emergency Brake, and Reversing could be pre-
dicted based on HMM. In addition driver performance is also classified from
1 (best) to 8 (worst) using HMM. In [JF15] [JF16], a prediction method of
vehicle speed was presented. By using neural network (NN) models the av-
erage traffic speeds can be predicted, afterwards the estimated traffic speeds
are given as inputs to predict individual vehicle speeds based on HMM. Zhang
et al. [ZWL15] proposed a deep neural networks (DNN)-HMM approach. Ac-
celeration data are collected as inputs. The DNN approach is used to extract
features from the row sensor data, by solving the observation probability dis-
tribution of HMM can be modeled automatically. This solves a disadvantage
of HMM that the observations need to be defined manually relying on the
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experience of researchers. In [ZWYY09] an approach combining HMM and
ANN is constructed to identify driving intention and to predict maneuvering
behaviors on cornering, where HMM is used to predict three driving behav-
iors including emergency steering, normal cornering, and straight line driving.
Then HMM prediction results are used as a guideline to train ANN, so specific
steering angle is obtained by ANN. This solves a disadvantage of ANN which
needs a lot of training samples. The results show that the steering angle can
be successfully predicted, where the result has a low absolute deviation of real
and predicted steering angles.

• Support Vector Machine (SVM)-HMM

As a two-class classifier, a SVM is a supervised machine learning method.
As known the approach is transforming data into a suitable space divided by
hyperplanes. It’s pattern classification is based on current observations, but
not on context. If the current analyzed observations are interference signals,
wrong results will be obtained. In addition, driving behaviors are dynamic, the
decisions of the drivers at each time point will be affected by driving behaviors
at the last time point. The HMM approach has an advantage of being able to
analyze dynamic data and the temporal evolution of states. Due to the driv-
ing behaviors in different driving styles are not the same, in the same driving
environment different drivers make different decisions. Using one HMM it is
difficult to classify these driving behaviors of different drivers. Also here HMM
results are depending on which hidden state has the largest output probability,
i.e. the maximum log-likelihood. However, when the input features are not
obvious, it may lead to small differences between the log-likelihoods. There-
fore, it is difficult to distinguish some easily confused driving behaviors using
HMM. To avoid this problem, a SVM-HMM approach is proposed in current
research. For example in [TSL14], the SVM is used to distinguish different
driving styles like normal and fatigue driving styles. For each driving style a
corresponding HMM is used representing the upcoming driving behaviors.

The SVM-HMM based model is usually applied to predict or recognize the
driving behavior of different driving types/patterns. The general flowchart of
the system based on SVM-HMM is shown in Figure 2.2. Here a SVM is used
to distinguish different driving patterns. For each driving pattern a corre-
sponding HMM is trained with respective observation sequences (i.e. training
samples). The whole model including SVM and all HMMs is trained and saved
in training phase. In test/application phase, the SVM can determine which
driving pattern a test data set belongs to, and then switch to the corresponding
HMM.

In [TSL14] the authors choose SVM-HMM for detection of driver drowsiness.
Here two different HMMs were trained for drowsy or non-drowsy. The SVM is
used for determining which HMM should be used. Similarly, Aoude [ADSH12]
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Figure 2.2: Flowchart using SVM-HMM [DS20b]

applied SVM-HMM for estimating driver behavior at intersections. The drivers
were classified into compliant or violating type. In [XCL17] the authors pro-
posed a framework to predict accident of vehicle collision on a straight two-lane
highway. The SVM was used to classify a Leaving Lane scene (LL) and a Re-
maining in Lane scene (RL) based on the vehicle’s trajectory. The HMMs were
trained for each lane scene respectively and predicting whether the driver will
have an accident.

• Fuzzy logic (FL)-HMM Fuzzy logic (FL) is an extension of Boolean logic
(classical logic), in which the degrees of truth may be any real number between
zero and one defined by related membership functions labeled and denoted
with linguistic variables. The approach is used to present vague estimations
and verbal descriptions, based on experiences. For this reason, in [DDWL14]
Ding et al. introduced a lane-change intention recognition method based on
FL and HMM. Here a Comprehensive Decision Index (CDI) is designed using
FL to represent the driver’s estimations about the current surrounding traf-
fic. The CDI is calculated through three parameters, which include the ratio
of the average traffic speed of original lane and target lane, Enhanced-Time-
to-Collision, and the ratio of the real as well as the ideal distance from the
ego-vehicle to the vehicle in front. Afterward, estimated CDI values can be
used as input to train HMM. Finally, driver’s intention including lane keeping,
transition state, and lane change can be recognized through the trained HMM.
By analyzing the test data sets including 69 lane change intention, in total 65
intentions are correctly identified with a short delay gap about 1.67 s. The
authors in [DS18] proposed a newly developed approach Fuzzy Logic-based
Hidden Markov Models (FL-HMM). The FL approach is used for additional
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distinction of driving scenes into very safe, safe, and dangerous driving sce-
narios. Afterwards, a corresponding HMM is trained for each driving scenes
respectively and predicting the driving behaviors. Three different driving be-
haviors including left/right lane change and lane keeping are modeled as hidden
states for these HMMs. High accuracies of 93 % and 91 % for lane changing to
right and lane changing to left are observed respectively. Therefore, the design
idea of FL-HMM can be categorized into two common forms. One of them is
that the obtained outputs of FL (HMM) are given as the input to train HMM
(FL) [DDWL14]. The other design idea is using FL to distinguish different
driving scenes, to determine which driving scenes a data set belongs to, and
then to decide and switch to the corresponding HMM [DS18].

• Gaussian Mixture Model (GMM)-HMM

In [WXZ18b] a Gaussian mixture model (GMM) combined with HMM (GMM-
HMM) is proposed to predict drivers braking behaviors. The GMM is used to
model stochastic relationships between driving situations and braking actions.
After learning the GMM parameters, HMM is applied to estimate drivers
braking behaviors based on the mixture components of GMM. The obtained
results show that the accuracy, sensitivity, and specificity reach 89.41 %, 83.42
%, and 97.41 % respectively. Lefevre et al. [LCG+15] develop a driver model
based on GMM-HMM and its two application examples. One is used to pre-
dict lane departures on the highway and the other is to predict acceleration
while lane keeping. The obtained results show that the proposed driver model
can successfully predict and therefore avoid all 65 lane departure instances.
In addition, the acceleration is also estimated correctly. By comparing the re-
sults of predicted acceleration, the author pointed out that the performance of
a personalized/individualized model is always better than an average/general
model. Similarly, in [WZHX18] Gaussian mixture regression (GMR)-HMM
is applied to develop a lane-departure warning system. For each driver, an
individualized model is established to predict the upcoming lateral vehicle
trajectory. The authors also discussed some influencing factors, some of them
depend on the design of the system and can be tuned according to differ-
ent design requirements. Other factors like vehicle dynamics, road curvature,
and driver state depend on the design of experiments and the states of vehi-
cles/drivers, which do not affect the algorithm/system. Based on [WZHX18],
the authors further propose a new Bounded Generalized GMM-HMM method
derived from GMM-HMM [WXH19], which performs better than GMM-HMM.
However, the authors point out that the structure of the Bounded Generalized
GMM-HMM is more complex and it causes more computational costs than
GMM-HMM.

• Summary The modeling ideas of HMM combined with other algorithms
can be concluded using three common forms. First, the classification re-
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sult of HMM (/other algorithms) can be used as input of other algorithms
(/HMM), such as in [ZWYY09] results of HMM are guiding to train ANN,
and in [DDWL14] results of FL are given as inputs to HMM. Second, pa-
rameters like observation probability distribution of HMM can be modeled by
other algorithm [ZWL15] [LCG+15]. Third, other algorithms are used to dis-
tinguish different driving styles/patterns/scenarios, then HMMs are trained
and used to recognize driving behaviors for different situations [XCL17]. Us-
ing the combined approaches, it is possible to utilize both of the advantages of
HMM and the respective other algorithms. In [ZWL15] [DS18], it was proven
that the HMM combined with other algorithms have better performance than
a common HMM or a conventional algorithm used alone.

2.3 Summary and discussion

In this contribution different types of driving behavioral research and related typical
research objects are introduced. In existing studies, the various algorithms were
proposed to recognize and predict human driving behaviors. Popular algorithms are
briefly summarized in this contribution.

2.3.1 Comparison of popular algorithms

Each algorithm has its characteristics and therefore advantages and disadvantages.
They may perform differently in diverse domains or using different data sets.. In this
section, a brief comparison between different algorithms is given to explain which
algorithm is suitable in which context.

Application

In Table 2.1 the major application fields of HMM and other algorithms based on
combinations with HMM are shown. It can be seen that HMM and methods based
on combinations with HMM are used in various areas related to driving behavior
mentioned in this article.

Related features as well as the application fields and a brief comparison of the data
collection approaches are summarized in Table 2.2. According to the summary
in this table, conventional machine learning algorithms like ANN, SVM, FL, RF,
HMM are used in recent years for research related to driving behavior recognition
and prediction. As the most popular method for deep learning, the CNN algorithm
is not commonly used for this field because in most of the cases the inputs for
CNN are images. It’s worth mentioning that DBN and HMM are capable to handle
temporal data. In comparison to HMM, DBN requires complex definition of the
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network, and perform poorly on high dimensional inputs. However HMM is not
able to utilize raw data directly and requires data processing upfront. The detailed
strength and weakness of all algorithms are discussed in the below subsection.

Advantages and disadvantages

It was proved that ANN can handle the classification of the signals with large vari-
ants, and in many cases using ANN models the result can reach a high accuracy,
e.g. in [ZSF14] the prediction results are about 99 %, 94 %, and 74 % for non,
left, and right lane-changing respectively. Similarly, the ANN model in [DYF16]
was used to predict whether the driver merges to left lane at highway lane drops,
the prediction accuracy for merge and non-merge behaviors is 85 % and 89 % re-
spectively. In [DHS11] the authors proposed a fatigue (drowsiness) detection model
based on ANN in simulative environment, and a high detection rate at 98.65 %
was obtained. In addition, the ANN algorithm has a self-learning ability, it can be
quickly adjusted to accommodate new problems. Another advantage of this algo-
rithm is that the predefined assumptions for problem solving are not needed. As
described in [DHS11], the temporal aspects are not concerned in the ANN model.
The authors suggest to use HMM or DBN. According to the principle of ANN, this
algorithm has some known disadvantages which are also proved by many studies.
For example, the training time is too long, training data are relatively large. Besides,
the deviation between the calculated and the desired result depends strongly on the
weights. Therefore, the weights need to be adjusted to minimize the difference.

Actually, the application of SVM algorithm also shows a high accuracy in many
linear/non-linear cases. For linear cases, data is classified by a linear hyperplane.
For non-linear cases, kernels are applied to convert non-separable data into separa-
ble data and then hyperplane can be used to divide different classes. For example,
in [DYF16] a high accuracy for merge (91 %) and non-merge cases (84 %) at high-
way lane drops can also be achieved using SVM. The SVM algorithm generates a
linear hyperplane and divides the two classes with the maximal margin between
the two categories within this hyperplane. Through selection of an appropriate ker-
nel, SVM can be used in nonlinear separated problems and it could work well. As
mentioned in [LRL07], the SVM method has two main advantages. First, only few
samples are needed for training of SVM in high-dimensional spaces. Second, it can
minimize upper bound of the generalization errors rather than training errors. For
this reason, over-fitting is avoided and model performance is improved. However,
several binary classifiers of SVM are required to analyze multiclass problems. There-
fore, the computational complexity of SVM increases while the number of classes
increases [HL02].

One advantage of FL is that it’s easier to understand the internal learning process
and the logic of FL, which could be interpreted by using IF-THEN rules. The FL
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approach has the ability to deal with nonlinearities and uncertainties. As described
in [MLP12], the presented model based on FL and NN is able to classify different
driving patterns like aggressive and moderate driving behaviors. It has a high re-
liability and feasibility with simulated data. In [BNKZ11] it can be seen that a
high accuracy (83 %) of driving style recognition can also be obtained using FL.
The authors propose a model to determine the individual driving styles from ag-
gressive, anxious, economical, keen, and sedate driving. The authors pointed out
that this approach is valuable for future driving assistant system for each individual
driver. The disadvantage of FL is that it requires high computation time and easily
over-fitting to the traininig data.

As a probabilistic and graphical model, one advantage of DBN is that it is also
easier for a human to understand directly the probabilistic relationships between
the nodes [ASABZ13]. As stated in [LC12] the DBN algorithm has the ability
to integrate different categories of parameters, even the collection or measurement
methods of these parameters are different.

The CNN approach is widely used in computer vision and pattern classification
tasks [GMZ18] [LKMH17]. In terms of performance, CNNs typically outperform
artificial neural networks. The approach can extract relevant features from images
and videos in a more detailed manner. However, it requires more training data and
it may lead to over-fitting imbalanced class labels.

In comparison to other algorithms like ANN, HMM, CNN, SVM, etc. RF uses
multiple models at the same time to calculate the results. Each tree is trained by
a subset of features, which are selected randomly. The results (predictions) of all
the trees combine into a final result, which is obtained through the majority voting
result. This means that avoiding over-fitting is possible. the tree-like structure of
RF, the RF algorithm is a suitable solution for multi-class classification.

As HMM is designed as a probabilistic graphical model, one advantage of HMM is
that it is easier to understand directly the probabilistic relationships between the
nodes. Based on the principle of HMM, the current state also depends on the state at
the previous moment [LZT+14]. Therefore, another advantage of HMM compared
to SVM and RF is that it has the ability to handle dynamic data and temporal
pattern recognition. Using HMM the class label is determined by calculating the
probability, rather than obvious boundaries. In addition, through the summarization
and comparison of various studies, the authors in [LZT+14] conclude that the HMM
algorithm has a high accuracy and a very good performance in real-time driving
behavior prediction. It was also proven in other studies, eg. in [TSLL15] that high
accuracies between 82-90 % can be achieved when predicting lane changing, turning,
and stopping behaviors. The major disadvantages of HMM are that the number of
assortment of hidden states must be known before training, therefore this algorithm
is not suitable for long-term forecasting systems [LZT+14]. However, some studies
have shown that HMM-derived algorithms could effectively solve these problems,
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such as Sticky HDP-HMM [FSJS07] [TNH+16] and BP-AR-HMM [FSJW09]. Other
algorithms [JF15] [JF16] [TSL14] [XCL17] [DDWL14] based on a combination with
HMM were proposed to improve the performance of driving behavior model, such
as NN-HMM, SVM-HMM, FL-HMM, and other similar algorithms.

2.3.2 Data collection and variable selection

As mentioned, modeling of regular driving behavior includes input, information
processing, and output processes. Information processing (using various algorithms)
and output (the different research objectives) have already been summarized in
section 2.2. Another important aspect is about collection of input data including
the selection of suitable features. The major research objectives, data collection
methods, and the corresponding variables in the fields of driving styles/patterns,
fatigue/drunk driving, and driving behavior recognition are listed in Table 2.3 to
Table 2.5 respectively.

Data collection

Three major options to collect the data for modeling processes can be distinguished:

• Simulate all scenarios in the driving environments using driving simulator.
Various software are available to run a driving simulation. During the driving
the related data can also be collected and saved [TSLL15] [AK07] [BNKZ11]
[HES12] .

• While driving in the real world, related data (signals) can be collected by
various hardwares/sensors. These hardwares/sensors are used to analyze the
movement of the vehicle and infer the driving behavior accordingly. In general,
the sensors can be divided into two types.

The first class of sensors are directly installed on the vehicle, which can be
further divided according to the integration level to the vehicle, and it usually
contains two kinds. One kind of sensors is fully embedded with the vehicle and
uses CAN Bus to process collected data (eg. vehicle speed, strokes, and press of
acceleration/brake pedals) [CRKK16] [MAA17] [LMT13] [GKO14]. Another
kind of sensors is installed extra on the vehicle to measure the data. For
example, like the sensor used to measure the distance between the vehicles, the
cameras use to record eye/face activities [QLH12] [LC12] [WY10] [ASABZ13].

A second class of sensors are installed on the side of a road and can be used
to record the information of driving environment [HWJ+12].
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• Integrated sensors on mobiles also allow collecting data. Multiple sensors of
the smartphone including GPS, accelerometer, gyroscope, and magnetometer
can be directly used to detect the current position, speed, acceleration in 2
or 3 dimensions [DTB+10] [EMAY12] [KB14]. One of the main advantages of
using smartphone to collect data is that they are ubiquitous and convenient.

Variable selection

As shown in Table 2.3, driving styles/patterns recognition model is mainly used to
recognize the normal (safe) and abnormal (aggressive, risky, anxious, etc.) driving
styles. The most commonly selected variables for driving styles recognition are
vehicle speed, acceleration, engine speed (RPM), stock of pedal, and press of pedal
[AAAD12] [DL15] [BC16] [ASABZ13] [BNKZ11] [EMAY12].

The typically used variables to analyze whether drivers are fatigue or drunken are
shown in Table 2.4, it can be summarized into three major categories:

• Using a bio-signal sensor the physiological variables can be measured to recog-
nize the fatigue/drunken driving behavior, eg. EEG, ECG [PLKR11] [SLZ+11],
blood alcohol concentration [WY10].

• Images of face/eye, movement trajectory of eye, and blinking frequency recorded
by camera or eye tracker are usually given as input data [QLH12] [LC12].

• Through analyzing lateral movement (drifting and swerving) and longitudi-
nal movement (suddenly accelerating and braking) of vehicles, the fatigue and
drunkenness of driver can be detected. The relevant variables could be col-
lected by CAN bus [CRKK16] [MAA17] and smartphone [DTB+10].

As shown in Table 2.5, the driving skill research mainly includes the recognition
and prediction of lane-changing and speed-changing behaviors in highway [LKO14]
[CAFH13] [HES12] and urban environment [DWWB13] [KSOA03] [AK07]. The
lane-changing behaviors consists of three aspects: merge and non-merge behaviors
at highway lane drops [XLW+14] [DYF16] [HES12], turning behavior at an inter-
section [KPLL13] [KKS15] [GKKO11] [LMT13], performing overtaking maneuver
in highway or urban city [BWKS14] [LKO14] [HES12]. The speed-changing behav-
iors mainly include stop/non-stop at an intersection and acceleration/deceleration
in highway or urban city [LMT13]. The input data differs according to the research
objectives, but they are mainly used to describe the vehicle movement and can be
collected by driving simulator, sensors, and smartphone. Listed examples are given
in Table 2.5.
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Table 2.6: Common variables for driving behavior research

Feature Prediction and recognition of driving skill Driving styles,
fatigue driving,
and drunk
driving

Lane change,
turn, brake,
stop

Prediction of
vehicle speed

Prediction of
trajectory

Environmental (ENV) information - State of ego-vehicle or surrounding vehicles
Vehicle speed 1,2,3 2 1,2 1,2,3
Acceleration 1,2,3 2 1,2,3 1,2,3
Jerk - - 2 -
Yaw angle 1,2 - 2 -
Deflection angle - 1 1 2,3
Vehicle position 1,2,3 2 1,2 2,3
Relative distance 1,2 2 2 2
Relative speed 1,2 2 - -
Vehicle trajectory data - - 1,2 -
Vehicle gap 1,2 - - -
Distance to the end of the merge lane 1,2 - - -
Time to collision (TTC) 1,2 - 2 -
Time headway - - 2 -
Road condition 2 2 - -
Weather condition - 2 - -

Environmental (ENV) information - Driver’s operation information
Engine speed (RPM) - - - 1,2
Steering wheel angle 1,2 - - 1,2
Indicator 1,2 - - -
Brake light 1,2 - - -
Stoke, force, or position of acceleration
/ brake pedal

1,2 2 - -

Gearbox 1 - - -
Eye-tracking (ET) information

Eye movement 2 - - 2
Eye blinking frequency 2 - - 2
Eye image 2 - - 2
Saccade 2 - - 2

Physiological information
EEG - - - 2
ECG - - - 2
EOG - - - 2
Alcohol in blood - - - 2
Photoplethysmography (PPG) - - - 2
Heart movement - - - 2
Sample references [AK07,

LMT13,
CAFH13,
KSOA03,
BWKS14,
KPLL13,
TSLL15,
XCL17,
XLW+14,
DYF16,
ADSH12,
DWH+20,
DSTS20]

[JF15,
MPG+14,
CCJJ17, JF16,
ZGL+17,
LM15]

[LKO14,
HES12,
DWWB13,
LKO14,
YZBZ13]

[AAAD12,
ASABZ13,
EMAY12,
BC16, DL15,
BNKZ11,
SLZ+11,
PLKR11,
QLH12, LC12,
CRKK16,
WY10,
MAA17,
DTB+10]

Data collected using:
1. Driving simulator
2. Real vehicle with sensors
3. Smartphone
-: Not selected
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Some popular selected features for driving behavior models and their collecting
methods are shown in Table 2.6. The input features are divided into three categories
including physiological, eye-tracking (ET), and environmental (ENV) information.
In addition, environmental information contains two variable types state of ego-
vehicle / surrounding vehicles and driver’s operation information. It could be found
that, speed, acceleration, and position data can be collected by smartphone. Using
these variables it is sufficient to infer the lateral and longitudinal movement of the
vehicle. Different sensors are used to record different categories of variables such as
signal data (CAN bus), image (camera), video (video sensor), as well as physiological
signal (bio-signal sensor).

2.4 Open research questions

As introduced in the previous sections, several different machine learning approaches
that can be used to establish driving behaviors model and furthermore to assist
the drivers to increase driving efficiency. Each of them has its own strengths and
weaknesses. According to the ‘No Free Lunch’ (NFL) theorem [WM97], no single
machine learning algorithm is suitable in every situation. To build a suitable system
(model) for driving behavior prediction, the below questions are summarized and
will be answered in this thesis.

• In fact, current research proposes new methods to realize and improve driving
behaviors prediction. However, only a few articles concern the optimization
of an established prediction model to improve the recognition efficiency. Is
there an approach that can be used directly to improve the performance of the
known machine learning approaches or an established model?

• Many known machine learning approaches are applied in the field of human
behaviors prediction. Which known approach performs better? Which pa-
rameters affect the performance of a known algorithms? How can they be
optimized?

• Many authors suggested that HMM has an advantage for handling time se-
ries data, and it is suitably applied for driving behavior or other human be-
havior studies. In the existing research, different HMM-based approaches
are proposed. In general, the design ideas of these HMM-based approaches
are roughly divided into two categories: HMM-derived and HMM-combined.
What are the differences, advantages, and disadvantages between the two de-
sign ideas?

The HMM is commonly combined with other algorithms or derived into new
approaches to improve and to achieve the desired performance of the driving
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behavior model. However, it would cause an increased complexity and com-
putational cost of the model. Therefore, the reduction of model complexity
need to be considered before the design.

• Input parameter can be roughly divided into environmental information in-
cluding situation of ego-vehicle and the surrounding vehicles, physiological
information, and eye-tracking information. What are their respective effects
on model performance? Which parameters are suitable for selection as input?

• The aim of this thesis is to predict human driving behavior, so the driving
behaviors should be predicted before the actual actions. To train a model,
training data need to be labeled and defined as driving behaviors. Is the
prediction time influenced by the definition of driving behaviors? How to
determine a suitable definition of driving behavior?

• Each driver has own individual characteristics. The development of the driving
behavior model for unique driver is helpful for the vehicle to become more hu-
man friendly. However, datasets performed by different drivers require models
with different predefined parameters (design parameters). Manually setting
the values of these parameters with better performance will be very tedious.
Therefore, it is necessary to find an effective way to determine these design
parameters.

• Hyperparameters defined structure of HMM-based or other ML-based model
need to be preset, e.g. the number of hidden states of conventional HMM, the
number of hidden layers of HHMM, etc. In addition, for Bayesian Nonpara-
metric HMM, the number of assortment of hidden states depends on the size
of the training data. How to adjust these parameters will be discussed in this
work.
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3 Fundamentals - Known machine learning ap-

proaches

Currently there is an abundance of machine learning algorithms and they have
been used extensively in the field of classifying human behaviors. Different kinds of
machine learning algorithms like Hidden Markov Models (HMM), Support Vector
Machines (SVM), Artificial Neural Network (ANN), Convolutional neural network
(CNN), Fuzzy Logic (FL), and Random Forest (RF) are popularly used to establish
human behavioral models and therefore will be introduced in this chapter.

Assuming a set of training data is given as {(X1, y1), (X2, y2), ..., (XT , yT )}, where
X ∈ Rn with n as the number of the selected input variables, y ∈ {Class1, Class2, ...,
Classl} indicate in total l different class labels, and T is the length of the train-
ing data set. Through a classification model, the current input Xt is mapped to a
predefined class label yt, where t ∈ T .

The contents and figures presented in this chapter are modified after previous publi-
cations [DWS18][DSW+19][DS19a]. Part of the contents are prepared for publication
of [DS20c].

3.1 Hidden Markov Model

An HMM describes the relationship between two stochastic processes [Rab89]. One
consists of a set of unobserved (hidden) states Q = {Q1, Q2, ...QN}, with N as the
number of hidden state which cannot be measured directly. The other stochastic
process is denoted by a set of M observable symbols V = {V1, V2, ...VM}. The
hidden state and observation symbol at time t are defined as St and Ot respectively,
that means St = Qi, i ∈ [1, N ] and Ot = Vl, l ∈ [1,M ]. Thus a hidden state
sequence is S = {S1, S2, ...ST} and an observation sequence is O = {O1, O2, ...OT},
where T is the length of the sequence. Usually the sample time t is considered
as discrete time. The notation time step t is given according to [RJ86]. It is
identical to the event discrete step k, usually used in event discrete notations. In each
step, a hidden state can be switched to another with a state transition probability
aij = P (St = Qj | St−1 = Qi), i, j ∈ [1, N ] which means the probability of moving
from one state Qi to another state Qj. All transition probabilities can constitute a
state transition probability matrix

AN∗N = {aij}, i, j ∈ [1, N ]. (3.1)

An observation probability bj(l) defines the probability of an observation Vl being
generated from a state Qj at time t, that means bj(l) = P (Ot = Vl | St = Qj). The
corresponding observation probability distribution matrix is denoted as

BN∗M = {bj(l)}, j ∈ [1, N ] and l ∈ [1,M ]. (3.2)
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To describe an HMM it is necessary to use an initial probability distribution

π1∗N = {πi} = P (S1 = Qi), i ∈ [1, N ], (3.3)

which indicates the probability of starting in state Qi. Using above definitions, a
complete HMM is generally defined by λ = (AN∗N , BN∗M , π1∗N). However, an HMM
needs to determine the number of classes N and the number of assorted observations
M in advance. The larger the value of N or M , the more complicated the model.

Figure 3.1: Structure of HMM with 3 states (N = 3, M = number of observation
options) [DWS18]

To apply HMM-based human driver behaviors recognition first the model has to
be defined by training. Using the model the most probable state sequence can
be estimated. To train HMM the Baum-Welch algorithm (also called expectation
maximization) [Rab89] [Moo96] can be used to estimate the maximum likelihood
model parameters λ = (AN∗N , BN∗M , π1∗N). So from a given observation sequence
O and its corresponding hidden state sequence S, the parameters of the HMM λ
can be computed and adjusted to best fit the both sequences. Based on the saved
HMM λ, the most probable sequence of driver’s behaviors which has the highest
probability, can be calculated by using Viterbi algorithm. Here the hidden state
sequence and the observation sequence are expressed as a function of simulated
time. That is, at time t an hidden state Qt is equal to yt and an observation Ot is
a vector consisting of observation variables Xt, where y and X are explained at the
beginning of this chapter.

3.2 Support Vector Machine

Support Vector Machine (SVM) as a supervised machine learning method is a promi-
nent binary class classifier developed by Vapnik [Bur98]. As known the approach is
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transforming input data X into a suitable space divided by hyperplane. The process
of SVM learning is trying to find an optimal hyperplane w ∗ X + b = 0 between
data points of different classes to generate a maximal geometric margin 2

‖w‖ [Bur98],
where w is the normal vector to a hyperplane. As shown in Figure 3.2, in which
the hyperplane is represented as a separation line, and category label contains only
Class1 and Class2.

Figure 3.2: Margin of decision boundaries using SVM

According to [SS02], the SVM can be basically divided into two cases: linear and
nonlinear SVM. For the linearly separable case, a linear classifier is supposed to
make all the training data to satisfy the constraints:{

w ∗Xt ≥ 1, if yt = Class1,

w ∗Xt ≤ −1, if yt = Class2, t ∈ T.
(3.4)

As explained in [SS02], an optimal hyperplane is placed in a position, for which
it has the largest distance to the nearest points of the classes to be distinguished.
Finding an optimal hyperplane is to determine a maximum value of margin 2

‖w‖ ,
which can be written to solve an optimization problem{

min 1
2
∗ ‖ w ‖2,

s.t. yt ∗ (w ∗Xt + b) ≥ 1, t ∈ T.
(3.5)

However, when the training dataset is non-separable data, direct usage of the above
algorithm is not feasible. In this case, some of the training points are not satisfy
yt ∗ (w ∗ Xt + b) ≥ 1. Therefore, the slack variable ξt ≥ 1 is introduced for each
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training sample point (Xt, yt) (Figure 3.3). Combining the slack variables [SS02],
the objective function and the margin constraints can be rewritten as{

min 1
2
∗ ‖ w ‖2 + C ∗

∑T
t=1 ξt, C > 0,

s.t. yt ∗ (w ∗Xt + b) ≥ 1− ξt, t ∈ T.
(3.6)

Figure 3.3: Slack variables

As shown in Figure 3.3, there are two cases.

• If 0 ≤ ξt ≤ 1, the classification is correct, e.g. points X1 and X2 are inside the
margin.

• If ξt < 1, the point Xt is misclassified, such as X3.

Therefore, the value of
∑T

t=1 ξt indicates an upper bound on the number of training

errors. The smaller the value
∑T

t=1 ξt, the better the classification of the training
data. Parameter C named as cost parameter controls the tolerate on the misclassified
points and it is chosen by the user.

• When C tends to positive infinity, the SVM classifier does not allow misclas-
sified samples, which may lead to over-fitting.

• When C tends to 0, the SVM classifier only requires that the geometric margin
is as large as possible, which will cause some classification errors.
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In cases where the given data is nonlinearly separable, the linearization of the hyper-
plane requires a transformation of the input data into a higher dimensional space
where they could be separated linearly. This transformation can be achieved by
using the kernel functions, such as the Gaussian kernel function, sigmoidal, RBF
mappings [SS02]. During the linearization of the hyperplane, it is additionally en-
sured to find the maximum margin. After these steps, a linear optimal separating
hyperplane will be found.

However, the SVM was originally designed only for two classes. To analyze multiclass
problems, several binary classifiers of SVM are required. The most popular solutions
of multiclass SVM are presented in [SS02] like one-against-all and one-against-one.

3.3 Artificial neural network

As a common machine learning approach, Artificial Neural Network (ANN) is a
computational approach used in machine learning. The idea is inspired from the
animal’s central nervous systems and applied in fields of human behavior studies.
An ANN model is composed of many artificial neurons linked together.

Figure 3.4: Mathematical model of neuron

Each Neuron receives inputs x from many other neurons, then it changes its internal
state which is calculated by a weighted sum of its inputs

∑n
t=1wi ∗ xi and further

adds a threshold (bias) θ. An activation function is used to decide whether a neuron
should be activated or not. When the value of the weighted sum exceeds a given
threshold, a neuron is activated and then sends one output signal to other neurons.
Nowadays, many different activation functions are developed in ANN, such as sig-
moid, tanh, ReLU, etc. [Gur]. As shown in Figure 3.4 the output of ANN can be
expressed as

y = F (
n∑

i=1

wi ∗ xi + θ), (3.7)
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where F denotes a selected activation function.

The trained ANN network is presented as a dataset. The goal of the ANN is to obtain
a desired output according to the corresponding inputs. Typically, ANN contains
many layers, the first and the last layers are the input and output respectively.
Signals travel from the first to the last layer in the ANN network. Layers between
input and output layer are called hidden layers. The number of hidden layers and
the number of nodes in each hidden layer are hyperparameters of ANN.

3.4 Convolutional Neural Network

Deep learning is a machine learning technique inspired by the human brain. Con-
volutional Neural Network (CNN) [Fuk80] is a specialized type of artificial neural
network and belongs to the subgroup of deep learning techniques. The algorithm
CNN is generally used as feature learning and extraction of various types of data.
In recent years, many works have been published to implement CNN in the field
of computer vision, document/handwriting recognition, and also driving behaviors
recognition tasks [LKMH17] [GMZ18].

The authors in [LBH15] stated that four key ideas behind CNN are local connections,
shared weights, pooling, and the use of multiple layers. A typical CNN architecture is
formed by a series of different layers including multiple convolutional layers, multiple
pooling layers, one or multiple fully-connected layers, and one output layer. The
convolutional layer and the pooling layer are stacked together in an alternating mode
to form the first stages, i.e. a convolutional layer is connected to a pooling layer,
and then this pooling layer is connected to a new convolutional layer, and so on.

A convolutional layer transforms its inputs to multiple feature maps and pass its
result to the next layer. This transformation is performed by sliding a window over
the input and calculating its output by convolving the local input region with the
filter bank of the feature map. The filter in CNN refers to a vector of weights and a
bias, which are applied in the equation 3.7 (explained in section 3.3) to determine
an output value of a neuron in ANN. Unlike the ANN approach, a distinguishing
feature of CNNs is that many neurons can share the same filter. A pooling layer
was first introduced in [LGN09] and it is applied to reduce the dimensions of the
input data of the next layer, in which the outputs of neuron clusters at one layer are
combined into a single neuron in the next layer. Typically there are the maximum
pooling and average pooling using the maximum/average value from each neuron
cluster at the prior layer respectively. Finally, one or multiple fully connected layers
accepts all inputs from the previous layer, and its output is an N -dimensional vector,
where N is the total number of all possible classes.

The algorithm CNN is mainly used in image processing applications. For example,
the authors of [LKMH17] proposed using CNN and images from radar and camera



3.5 Random Forest 43

sensors to predict lane changing intention. In [GMZ18] physiological signals are used
to predict lane change behaviors based on a novel Group-wise CNN. However, CNN
has not been used to train signals, such as velocities, accelerations, distances, etc.
Therefore, in this work it will be demonstrated whether CNN is suitable for identify-
ing driving behavior with these variables. However, inputs for a CNN typically need
to be the same size. As assumed at the beginning of chapter 2, a training dataset
{X1, X2, ..., XT} contains T samples, and each sample Xt is a vector including all
the selected input variables. According to the principle of CNN, the training dataset
should be formed into 3-dimensional array, each array is composed by all the ele-
ments of a vector and transformed into a same-sized matrix, as shown in Figure 3.5.
Input variables in the vector are put into a same-sized matrix in sequence, and the
remaining vacancies in the matrix are set to zero.

Figure 3.5: Collected variable transformed into CNN inputs [DSW+19]

3.5 Random Forest

Random Forest (RF) was firstly proposed by Breiman [Bre01]. As an extension
of decision tree it is used to solve classification or regression problems. A decision
tree poses a series of selection problems, and each final answer to these questions
is represented by leaves. Each leaf corresponds to a category in the classification
problem.

The structure of a decision tree is divided into several stages. Each non-leaf node
represents a question that needs to be answered by making a decision between two
or more selections. After each selection, the question of the next node becomes
more specific. This process is considered as feature extraction, which are evaluated
by each node and passed to one branch until finally the level is reached and thus a
classification is determined.
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Figure 3.6: Random forest [DSW+19]

The algorithm RF includes two aspects: ”random” and ”forest”. The term ”forest”
denotes a combination of a set of randomized decision trees, here each decision tree
is independent from others. ”Random” means the random selection of Bootstrap
samples [Bre96], which is generated from the training data set with replacement.
The procedure is illustrated in Figure 3.6. First, the number of decision trees to
construct NTree should be defined. For each tree a new bootstrap sample will be
selected from training data set. A corresponding decision tree is grown on each
bootstrap by recursively repeating the following steps:

(a) At each internal node, selecting m groups of variables at random from the
variables X, where X ∈ Rn and m < n

(b) Determining the best split-point among each group of variables

(c) Splitting the node into two or more daughter nodes
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After theseNTree decision trees are generated, the output result of the RF is obtained
through the voting results of these decision trees. This procedure is called random
forest.

3.6 Comparison of algorithms

Each algorithm has its characteristics and therefore advantages and disadvantages.
In this section, a brief comparison among different algorithms is given to further
understand and analyze the mentioned machine learning methods.

The SVM algorithm generates a linear hyperplane and divides the two classes with
the maximal margin between the two categories within this hyperplane. As men-
tioned in [LRL07], the SVM method has two main advantages. First, only few
samples are needed for training of SVM in high-dimensional spaces. Second, it can
minimize upper bound of the generalization errors rather than training errors. For
this reason, over-fitting is avoided and model performance is improved. However,
the accuracy of SVMs results decreases while the number of classes increases. Thus,
the SVM is not suitable to solve the classification problem with a larger number of
variant classes.

As HMM is designed as a probabilistic graphical model, one advantage of HMM is
that it is easier to understand directly the probabilistic relationships between the
nodes. Based on the principle of HMM, the current state also depends on the state at
the previous moment [LZT+14]. Therefore, another advantage of HMM compared
to SVM and RF is that it has the ability to handle dynamic data and temporal
pattern recognition. Using HMM the class label is determined by calculating the
probability, rather than obvious boundaries.

It was proved that ANN can handle the classification of the signals with large vari-
ants, and in many cases using ANN models the result can reach a high accuracy,
e.g. in [ZSF14] the prediction results are about 99 %, 94 %, and 74 % for non, left,
and right lane-changing respectively. As described in [DHS11], the temporal aspects
are not concerned in the ANN model. The authors suggest to use HMM or DBN.
According to the principle of ANN, this algorithm has some known advantages and
disadvantages which are also proved by many studies. For example, the ANN al-
gorithm has a self-learning ability, it can be quickly adjusted to accommodate new
problems. However, the training time is too long, training data are relatively large.

The CNN approach is widely used in computer vision and pattern classification
tasks [GMZ18] [LKMH17]. In terms of performance, CNNs typically outperform
artificial neural networks. It can extract relevant features from images and videos
in a more detailed manner. However, it requires more training data and it may lead
to over-fitting due to imbalanced class labels.
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Similarly, the RF can be applied for human behavior classification. In comparison
to HMM, CNN, and SVM, RF uses multiple models at the same time to calculate
the results. Each tree is trained by a subset of features, which are selected randomly.
The results (predictions) of all the trees are combined into a final result, which is
obtained through the majority voting result. This means that avoiding over-fitting is
possible. Due to the tree-like structure of RF, the RF algorithm is a suitable solution
for multi-class object classification. It works well with large training datasets rather
than small training sets.
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4 Improved known machine learning approaches

by introducing full scale training loop

To improve the performance of driving behaviors prediction using single known ma-
chine learning algorithm, many approaches have been proposed. In general, two
approaches are introduced: one is defining suitable input features, another is opti-
mizing hyperparameters of known machine learning approaches.

To define suitable input features, a prefilter is proposed to process and combine sig-
nals to form features in this work. However, different datasets require model with
different prefilters and hyperparameters. Manually setting prefilters and hyperpa-
rameters values with better performance manually will be very tedious. Therefore,
an optimized training procedure named a full scale training loop is proposed in this
work, in which all the unknown parameters including prefilter and some hyperpa-
rameters are denoted as design parameters, and the most suitable design parameters
can be determined automatically.

The contents, figures, and tables presented in this chapter are modified after previous
publications [DWS18][DS19a]. Part of the contents, figures, and tables are prepared
for publication of [DS20c].

4.1 Full scale training loop

Optimization means finding a suitable solution by maximizing or minimizing ob-
jective functions. As shown in Figure 4.1, the design of the full scale training loop
consists of two important parts including result computation (driving behavior pre-
diction) and model optimization, which are described in the following sub-sections.

4.1.1 Driving behavior prediction model

The driving behavior prediction model and related training are shown in Figure 4.1.
During driving, all input parameters are assumed as measurable. Signals are dy-
namic and therefore changing over time. To transform signals into an input vector
and thus forming features for model training, a prefilter is applied in this contribu-
tion, which is typical within the automotive field using related electronic equipment
with limited accuracy. For each signal, a set of thresholds is used to divide related
signal into different segments containing certain information. These segments will
replace specific values of the signal and be used to form a new input vector, i.e. sig-
nals are quantized and combined. Therefore, the thresholds’ values are important
to define the input features and to affect the model performance. The proposed
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Figure 4.1: Illustration of a full scale training loop

prefilter is composed of all thresholds. Suitable thresholds’ values for each input are
determined automatically during the training process.

The core of prediction process is realized by a machine learning approach. After se-
lecting a set of design parameters, driving behavior prediction model can be trained
using a given input dataset and its corresponding class labels. With this saved
model the driving behaviors can be calculated. In the next step, the actual mea-
sured driving behaviors from the training data, and the driving behaviors which are
calculated by the model will be compared to check the model effectiveness.

4.1.2 Optimization

As shown in Figure 4.1, the second step is to determine the most suitable design
parameters. To achieve this, Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [DPAM02] is used. The NSGA-II is derived from the NSGA and used to solve
Multi-objective Optimization problems (MOPs). With NSGA-II, the most suitable
design parameters can be determined to minimize the objective functions which
describe the targets of the optimization. Considering possible values of design pa-
rameters, each design parameter changes from the minimum to the maximum value
of this parameter. Finally, a set of optimal design parameters is determined to
minimize the objective functions.

To evaluate the performance of classifiers, accuracy is one of the most commonly
used metric due to its simplicity [HS15], however using accuracy is not enough to
identify performance of a classifier when dealing with unbalanced data. As explained
in [HS15], a high accuracy can be achieved by correctly classifying the majority class
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while neglecting the minority class. To avoid this issue, three evaluation metrics
in cluding Accuracy (ACC), detection rate (DR), and false alarm rate (FAR) are
selected, which are widely used for evaluating classifiers [Chu99]. They are calculated
based on True Positive (TP), False Positives (FP), True Negative (TN), as well as
False Negative (FN) numbers. For explanation a confusion matrix is illustrated
(Figure 4.2) as example to describe the parameters for changing lane to the right.
True Positive (TP) denotes the number of the events when the estimated maneuver is

Figure 4.2: Explanation of confusion matrix [Lane changing to right] (modified after
[DWS18])

positive (changing lane to the right) and the actual one is also positive, contrastively
False Positive (FP) denotes the number of the events when the estimated maneuver
is positive and the actual value not, similarly for True and False Negatives (TN/FN).
By comparing the degree of coincidence between the actual state and the estimated
state at each moment, the values of ACC, DR, and FAR can be calculated for the
complete driving sequence applying the well-known formulas (cf. [Chu99]).

ACC =
TP + TN

TP + TN + FP + FN
(4.1)

DR =
TP

TP + FN
(4.2)

FAR =
FP

TN + FP
(4.3)

As previously discussed, the design parameters determine the model training, and
thus affect the estimated results. The values of TP, FP, TN, and FN will be defined
by the estimated results and finally affect the ACC, DR, and FAR values. In this
contribution the design parameters will be selected with respect to the improvement
of the aforementioned ACC, DR, and FAR parameters.
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As described in [HS15], a combination of ACC, DR, and FAR can be selected for
dealing with imbalanced classes, where DR and FAR measures are used to stabilize
and optimize ACC performance. To discriminate an optimal solution from various
generated solutions, the objective functions in this work are designed and expressed
by

f1−3 = (1− ACC) + (1−DR) + FAR, and (4.4)

f4 = abs(NEst −NAct), (4.5)

where NEst and NAct denote number of estimated and actually measured lane change
maneuvers respectively, i.e. the equation (4.5) determines the number of miscalcu-
lated driving maneuvers. The f1−3 represents equation (4.4) for different predic-
tions including left/right lane change and lane keeping. In this equation, values of
1 − ACC, 1 − DR, and FAR are combined symmetrically, which means the opti-
mal result will be determined by simultaneously selecting the minimum 1 − ACC,
1−DR, and FAR of each driving behavior.

4.2 Improved approaches

In this contribution, five known machine learning approaches introduced in chapter
3 are selected to verify the performance of the proposed full scale training loop.
The selected algorithms combined with the proposed training loop are named as
improved models.

The proposed full scale training loop can be used to optimize both model structure
and model training. However, the respective effects of prefilter and hyperparameters
are not in-depth discussed in the existing researches. This issue will be further
discussed and analyzed in this contribution. Therefore, each selected algorithm will
be trained with default / optimized prefilters and hyperparameters respectively. As
shown in Table 4.1, it can be divided into four groups. Model group M1 is used as a

Table 4.1: Description of model group for driving behavior prediction [DS20c]

Model group Hyperparameter Prefilter

M1 (Baseline) default without / default

M2 default optimized

M3 optimized without / default

M4 optimized optimized
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reference, which is trained by default parameters and raw data. Group M2 also uses
default hyperparameters, but prefilter is optimized. Contrastively M3 and M4 are
trained with optimized hyperparameters and with (/without) optimized prefilter. It
is worth noting that HMM needs data processing to generate sequences. Therefore,
a default prefilter is used for models HMM-M1 and HMM-M3, and the related
sequence process method is referred to the previous work [DS19a]. In contrast to
HMM, other mentioned algorithms of model group M1 and M3 are trained with raw
data.

Figure 4.3: Illustration of optimized training procedure [DS20c]

It can be summarized that group M1 is the reference, group M2, M3, and M4 are
different improved models. For each algorithm, four different models will be trained
to evaluate their prediction performance. Therefore, 20 models are established for
known ML approaches. The driving behavior prediction model and related training
are shown in Figure 4.3.

4.2.1 Improved Support Vector Machine

In this work different classes refer to different driving behaviors. Driving behaviors
are classified by transforming input variables into an input vector and thus forming a
distribution in a high dimensional space. The observation vectors of different classes
are on different sides of the hyperplane. Using a number of different hyperplanes
the training sample can be completely separated.

Obviously, the driving behaviors prediction model in this work is a multiclass prob-
lem (LK, LCL, LCR). For this reason a multiclass model has to be chosen. As
explained in section 3.2, the most popular solutions of multiclass SVM are one-
against-all and one-against-one. Several binary classifiers of SVM are required to
analyze multiclass problems. In this work the second one-against-one approach is
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used to establish the model. For every two classes out of m classes, one binary clas-
sifier is trained, so the total number of classifiers is m(m − 1)/2. Therefore, three
classifiers are required for the driving behaviors prediction model. They are used to
distinguish every two driving behaviors, such as LK-against-LCL, LK-against-LCR,
and LCR-against-LCL. After the three classifiers are trained, they are all applied to
classify the driving behaviors for each input data. The final class label is determined
by the voting results of these three classifiers.

As summarized in [DKP03], the SVM hyperparameters include regularization pa-
rameter (i.e. Cost parameter) C and parameter of kernel function. To simplify
the modeling process, linear kernel (without any parameters) is considered in this
contribution. Therefore, only one hyperparameter C needs to be optimized. As
introduced in section 3.2, hyperparameter C is used to trade off between minimizing
training error and minimizing model complexity. The larger the value of C, the less
the classifier make classification errors, which may lead to over-fitting. The smaller
the value of C, the worse the classification performance. Therefore, hyperparameter
C has to be chosen carefully to obtain a good performance.

4.2.2 Improved Hidden Markov Model

As an alternative algorithm Hidden Markov Model (HMM) is used to predict human
driver behaviors in this work. The model based on HMM can be defined as a system
in which a driving behavior is switched to another with a state transition probability.
The driving behaviors performed are the hidden states including LK, LCL, and LCR,
so N = 3. Thus, the sizes of π and matrix A are 1× 3 and 3× 3 respectively. The
size of the matrix B depends on the number of observation vector choices M , which
is unknown and needs to be defined in advance. A prefilter applied in a previous
study [DWS18] is used to process and combine the observation variables (signals)
to form features. If all observation variables are considered as inputs in an HMM,
and each variable is divided into Ml segments. The total number of input variables
is denoted as Ninput, the value of M can be calculated by

M =

Ninput∏
l=1

Ml, l ∈ [1, Ninput]. (4.6)

A larger number of Ninput will lead to higher value of M and increase the complexity
of the observation probability matrix B (with size N ×M) and the HMM. To avoid
this problem and to simplify the modeling process, in the previous work [DWS18]
two different types of input (driving environment information and operation signal)
were proposed to train two sub HMMs, and final results were fused using the results
obtained by the sub HMMs. In this work, similar idea is applied, where four different
sub HMMs are trained. Each type of input is used to train a sub HMM, i.e. HMM1
(with all velocities), HMM2 (with all distances), HMM3 (with all TTC values),
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and HMM4 (with all operation signals and lane number). For the next step the
probabilities Pi of the four sub HMMs are calculated, the final probability is fused
using the weights wi, expressed as

P =
4∑

i=1

wi ∗ Pi, i ∈ [1, 4],
4∑

i=1

wi = 1. (4.7)

The hidden state with the highest final probability is predicted as next driving
behavior.

4.2.3 Improved Artificial Neural Networks

Typically, ANN contains many layers, the first and the last layers are the input and
output respectively. Signals travel from the first to the last layer in the ANN net-
work. Layers between input and output layer are called hidden layers. The number
of hidden layers and the number of nodes in each hidden layer are hyperparameters
of ANN. In [AYKG14] the authors point out that ANN with high neuron numbers
will take considerable time and may lead over-fitting.

In addition, the output node of ANN is a decimal value, i.e. if the trained labels
are 0 and 1, the calculated label values are a decimal value between 0 and 1. To
determine final results, usually a cut-off threshold is used to distinguish the decimal
values into two classes. For example, if the result value is more than 0.5, then
it belongs to label 1. Since three labels are used in this contribution, two cut-off
thresholds (x1 and x2) will be defined.

4.2.4 Improved Convolutional Neural Network

In [AD19] hyperparameters of CNN is optimized using Genetic Algorithms, and the
authors summarize CNN hyperparameter contains two types, one type determines
the network structure, such as kernel size and number of hidden layer. The other de-
termines the network training, such as learning rate, number of epochs, and batch
size. The author designed several possible combinations of hyperparameters and
analyzed their impact on CNN. In contrast, in this contribution possible combina-
tions of hyperparameters will not be set in advance, but suitable hyperparameter
combinations will be automatically defined through training loop.

In this work, the proposed CNN architecture consists of 6 layers including 1 normal-
ization layer, 2 convolutional layers, 2 pooling layers, and 1 fully connected layer.
Hyperparameters like kernel size of each layer, learning rate, number of epochs, and
batch size are considered as design parameters.
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4.2.5 Improved Random Forest

The algorithm RF contains a set of randomized decision trees, all the decision trees
are independent from others. Each decision tree is trained by a randomly selected
Bootstrap sample [Bre96], which is generated from the training data set with re-
placement. The total number of decision trees NTree should be defined before the
training process. After these NTree decision trees are generated, the output result
of the RF is obtained through the voting results of all relevant decision trees. This
procedure is called random forest.

It is important that the number of NTree is unknown. In [OPB12], the authors
discussed the effect of the number of random forest trees. It can be concluded that,
the prediction performance increases when more trees are used in the model until
a certain point is reached, afterwards the result from learning more trees decreases.
Therefore, the value of NTree is also worth optimizing.

4.3 Summary

As previously described, design parameters are a set of unknown parameters needed
to be set manually before training. To get a model with better results, a full scale
training loop is proposed to automatically determine the most suitable design pa-
rameters and then to optimize the performance of the known machine learning
approaches. In this work, design parameters consists of two important parts includ-
ing hyperparameters and a prefilter (Figure 4.3), which effect model structure and
model training respectively.

The proposed prefilter is defined by thresholds of each input variable. Based on
the prefilter thresholds, signal data will be divided into segments containing certain
information. Obviously, threshold parameters are very important, defining implicitly
the features for model training and finally affecting the accuracy.

Hyperparameters are parameters whose values need to be set manually prior to
the training and usually using default values. It has been proved in [AD19] that
optimizing hyperparameters is useful to improve model performance. According to
the principles of each algorithm, the hyperparameters of each algorithm are different.

• SVM: Hyperparameters of SVM include cost parameter C and parameter of
kernel function. Since linear kernel (without any parameters) is considered in
this contribution, only parameter C is considered as hyperparameter and its
default value is 1.
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Table 4.2: Descriptions of design parameters of different models based on known
approaches (modified after [DS20c])

Approach Design parameters M1 M2 M3 M4

SVM

Prefilter thresholds - -
√ √

Hyperparameter:
-

√
-

√
cost parameter C

HMM

Prefilter thresholds - -
√ √

Hyperparameter:
-

√
-

√
weights [w1...w4]

ANN

Prefilter thresholds - -
√ √

Hyperparameter:

-
√

-
√

- number of hidden nodes

- cut-off thresholds [x1 x2]

CNN

Prefilter thresholds - -
√ √

Hyperparameter:

-
√

-
√- kernel size

- learning rate

- epochs

- batch size

RF

Prefilter thresholds - -
√ √

Hyperparameter:
-

√
-

√
number of decision trees
NTree√

: Selected

- : Not selected as design parameters

M1 - M4: Described in Table 4.1

• HMM: Due to the reason explained in section 4.2.1, four different sub HMMs
are trained in this work. The values of wi represent the impacts of each HMM
and affect the final results, so they are all considered as hyperparameter of
HMM. The default values of wi are all set to 0.25.

• ANN: The number of hidden layers and the number of nodes in each hidden
layer are hyperparameters of ANN. This contribution is carried out using Mat-
lab and the default hidden layer is only one layer. To simplify the complexity
of comparison, the same hidden layer as the default ANN is considered and
the focus is on comparing the impact of different hidden nodes. According to
the setting of Matlab, the default number of nodes is 10. In addition to the
number of hidden notes, the cut-off thresholds also affect the prediction accu-
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racy of ANN. Thus, the prefilter parameters and two cut-off thresholds (x1,
x2) are also considered as hyperparameters of ANN. As previously described,
the middle value of the values of labels will be selected as the default value
(i.e. 1.5 and 2.5).

• CNN: In this contribution, the CNN architecture including one normalization
layer, two convolutional layers, two pooling layers, and one fully connected
layer. Kernel size of each layer, learning rate, number of epochs, and batch
size are unknown and are considered as hyperparameters. The default hy-
perparameters of CNN are not set in Matlab. Normally, researchers in dif-
ferent studies designed a suitable set of hyperparameters manually, and this
process is a tedious problem for many researchers. Similarly, through experi-
ence a set of CNN hyperparameters was configured manually in the previous
work [DWH+20], and it is implemented as default values in this contribution.

• RF: According to the conclusion of [OPB12], the number of trees NTree plays
an important role on the prediction performance of RF. Therefore, the hy-
perparameter of RF is NTree in this contribution. The default number of
trees is 30, The default tree number is 30, which is referred to the previous
work [DS19a].

In Table 4.2 design parameters of each approach are shown in details. In this
contribution, the number of design parameters is fixed for the training.
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5 A new approach: Fuzzy Logic (FL)-HMM - a

new multi model based machine learning ap-

proach

As previously introduced in chapter 2, compared with other machine learning ap-
proaches, the approach HMM has an advantage for handling time series data, and
it is suitably applied for driving behavior or other human behavior studies. The
authors in [LZT+14] pointed out that the HMM algorithm demonstrates a high ac-
curacy and a very good performance in real-time driving behavior prediction. How-
ever, the HMM approach requires manual definition of the sequence distribution of
the current observation. To solve this problem and to improve the performance of
a single HMM, many authors proposed different HMM-based approaches. In gen-
eral, the design ideas of these HMM-based approaches are roughly divided into two
categories: HMM-derived and HMM-combined. According to the two design ideas
and the introduced full scale training loop, two new approaches named Fuzzy Logic-
based Hidden Markov Models (FL-HMM) and Multi-Layer HMM (ML-HMM) are
developed in this thesis.

The contents, figures, and tables presented in this chapter are modified after previous
publications [DS18][DS19b]. Part of the contents, figures, and tables are prepared
for publication of [DS20a][DS20c].

5.1 Fuzzy Logic (FL)-HMM based on HMM-combined ap-
proach

A newly developed Fuzzy Logic-based Hidden Markov Models (FL-HMM) approach
is proposed in the previous publication [DS18]. The design idea is similar to some
HMM-combined approaches like SVM-HMM [XCL17], in which SVM is used to
distinguish different driving scenarios (leaving lane and remaining in lane scene). In
the previous publication [DS18] Fuzzy Logic (FL) is used for additional distinction
of driving scenes into Very Safe (VS), Safe (S), and Dangerous (D) driving scenarios.
This is based on the assumption that different driving scenarios will affect driver
behaviors. For example, the drivers need to take a long/short time to change lanes
in relatively safe/dangerous driving scenes. Afterwards, a corresponding HMM is
trained for each driving scenes respectively and predicting the driving behaviors.

The driving behaviors prediction model based on FL-HMM is shown in Figure 5.1.
It is realized in four steps described in the following sub-sections.
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Figure 5.1: Illustration of FL-HMM-based driving behaviors prediction model (mod-
ified after [DS18])

5.1.1 Prediction based on driving scenes

Driving on the highway, the relationships between the ego-vehicle and the other
surrounding vehicles are the main influences affecting the driver making decisions.
In this step, the current driving situation will be mainly discussed.

Fuzzy Logic (FL) is a popular approach used for modeling vagueness introducing
many-valued logic. Based on this a classification task can also be realized. It does
not require to model all classifications mathematically. The structure of FL is easy to
interpret by using IF-THEN rules. The logic of FL-based model can be easily imple-
mented. The FL approach is considered as an extension of Boolean logic, it is based
on fuzzy sets and allows to model the truth of statements continuously between true
(one) and false (zero) using membership functions [HWJ+12]. Common fuzzy sets
are based on triangular, trapezoidal, or Gaussian membership functions [ZB02]. In
this contribution, trapezoidal membership function will be used to describe different
driving situations.

Figure 5.2: Trapezoidal membership function [DS18]

As shown in Figure 5.2, x as input variable so µexample(x) denotes the degree of mem-
bership. A trapezoidal membership function can be described by four parameters
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a1, a2, a3, and a4 as

µexample(x) =



0, x < a1

(x− a1)/(a2 − a1), a1 ≤ x < a2

1, a2 ≤ x < a3

(a4 − x)/(a4 − a3), a3 ≤ x < a4

0, x ≥ a4

(5.1)

These parameters a1, a2, a3, and a4 are four threshold values for the input variable.

Driving in large, middle, and small distance respectively indicates very safe, safe, as
well as dangerous scenes for lane change scenario. In addition a Time to Collision
(TTC) statement first suggested by Hayward in 1972 [Hay72] is used to determine
the safety of lane changes. The value of TTC refers to the time for two vehicles to
collide on the same path. Lower TTC values correspond to higher dangerous levels.
In the design of Driver Assistance Systems, the use of TTC values for classifying
the safety of lane changing maneuvers strongly depends on the speed of the vehicle.
In [Win16] TTC values were calculated to prevent forward collisions and reduce the
damage caused by the crash. It shows that when the speed is around 130 km/h,
the drivers will be warned if the TTC value is less than 3 s, and the drivers need to
fully brake if the value under 2 s. However, in reality the drivers often successfully
change lanes with low TTC values. In [CKG15], the authors analyzed the TTC
values for lane change based on data from the “100-Car naturalistic driving study”
collected by Virginia Tech Transportation Institute (VTTI). The results show that
the minimum TTC value for lane change is between 2.1-2.7 s, when the speed is
ranged from 70-90 mph (i.e. 113-145 km/h). A smaller TTC value denotes that
the drivers are in a dangerous scene and need to change lanes as soon as possible
if they want to overtake. Therefore, these two variables including the TTC and
distance to vehicle in front will be considered as inputs for classification of driving
scenes. The first input is the distance to vehicle in front. The corresponding fuzzy
values are close, middle, and far. Similarly, the value of TTC to the vehicle in front
will be considered as a second input, and the corresponding fuzzy values are low,
middle, and high. Finally the output of the fuzzy model are three different driving
evaluations denoted as Very Safe (VS), Safe (S), and Dangerous (D). The fuzzy rules
are summarized in Table 5.1. In very safe scenes, the drivers possibly take a long
time for changing lanes. However, in dangerous scenes the drivers will change lane
in a short time or hard brake. Safe scenes contains the largest uncertainty.

The trained FL can determine which driving scene the current situation belongs to,
and then switch to a corresponding model of the scene. For each driving scenes
a corresponding HMM (HMM VS, HMM S,or HMM D (in Figure 5.1)) will be
used to represent the upcoming driving behaviors. To improve the performance of
HMM, a prefilter proposed in [DWS18] is used to process and combine signals to
form features for the HMM recognition process. The application of this prefilter can
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Table 5.1: Fuzzy rules used in driving situation recognition [DS18]

Distance

TTC
Low Middle High

Close D D S

Middle D S VS

Far S VS VS

effectively improve the performance of HMM, and this has been confirmed in the
previous publications [DS19a] [DWS18]. To simplify the modeling process, in this
contribution a prefilter using five different thresholds is defined. Each observation
variable is divided into six segments. However, these thresholds are unknown, so
they are also defined as design parameters.

5.1.2 Prediction based on drivers operation

Normal driving behaviors can be predicted through the driving environment. How-
ever, sometimes the drivers may make exceptional decisions like changing lanes with
sudden acceleration or keeping lane during deceleration. As a supplement to the
model based on the driving environment, another HMM will be established based
on the driver’s operation signals to predict these exceptional driving behaviors.

Therefore, the indicator signal, the steering wheel angle, the accelerator pedal po-
sition, and the brake pedal pressure are selected as observation variables of HMM-
operation (in Figure 5.1). Similarly, the corresponding prefilter of this HMM is
defined by using two different thresholds for each observation variable.

5.1.3 Fusion

As previously mentioned both methods are combined in this work. One model con-
siders the relationships with other vehicles (driving scene), and the other considers
the driver’s operation. As shown in Figure 5.1, using the two models the probabili-
ties of the next driving behaviors are calculated separately. The final probabilities
are fused using the weight w, expressed as

P = w ∗ Pscene + (1− w) ∗ Poperation, w ∈ [0, 1]. (5.2)

Finally, the hidden state with the highest probability is predicted as next driving
behaviors.
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5.1.4 Optimization

The last part of the modeling is related to the definition of parameters, here con-
nected with optimization. As previously described, the thresholds of FL, the pre-
filters of HMMs and w are defined as design parameters affecting the prediction
capability:

• FL thresholds definition (prediction of driving scene, selecting HMM and pre-
filter)

• Prefilter tresholds (defining observation sequence)

• w (affecting driving scene prediction)

To define the best fitting model parameters during the optimization process, suitable
objective functions (equations 4.4 and 4.5) introduced in section 4.1 have to be
chosen.

5.2 Multi-Layer (ML)-HMM based on HMM-derived ap-
proach

The second new approach is denoted as Multi-Layer HMM (ML-HMM) as proposed
in [DS19b] and based on the idea of HMM-derived approaches. One of the inspira-
tions comes from an Embedded HMM derived from hierarchical HMM in [QLH12].
The method is used to analyze the eye closure of drivers. The author divided each
eye image into three parts, for each part a corresponding HMM is trained as sub-
HMM. The obtained results of sub-HMMs are given as inputs to train the major
HMM and to estimate the final results.

The second inspiration comes from the RF approach, in which each tree is trained by
a subset of features selected randomly. Results of the all trees are combined into a
final result, which is obtained through a majority voting result. The effectiveness of
the RF approach has been successfully proved in the previous publication [DWH+20]
stating that the performance of RF algorithm is the best comparing with ANN,
SVM, CNN, and HMM.

The important ideas from the Embedded HMM and RF can be concluded as:

• Not all the features are necessary to be considered as inputs in each single
model.

• Each single model is considered to recognize behaviors only for a particular
working case.
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Figure 5.3: Illustration of ML-HMM-based driving behaviors prediction model
(modified after [DS19b])

• Results of the all sub-models are combined into a final result.

Based on these ideas, a 3-layer ML-HMM approach is developed for predicting lane
changing behaviors [DS19b]. As shown in Figure 5.3, ML-HMM consists of three
important processes, which are described in the following sub-sections.

5.2.1 Data preprocessing based on prefilter

Similar to FL-HMM, a prefilter [DWS18] is applied for each observation variable
(O1-ONinput). However, the prefilters (P1-PNinput) are not only used to grade the
variable O, but also to classify the derivative of this variable Ȯ. That means, the
value and the trend of the variable are considered at the same time. For example, if
an input is given as velocity, the segment of the current velocity and the segment of
the current acceleration/deceleration should be distinguished by using the prefilter.

To simplify the modeling process, for each observation variable a prefilter is defined
by using 20 different thresholds for each O and 5 different thresholds for each Ȯ.
Similarly, these thresholds are unknown and defined as design parameters.

5.2.2 Prediction based on Multi-Layer HMMs

However, if all observation variables are considered as inputs in an HMM, and
each variable is divided into Ml segments. These segments are combined to form
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observation vectors which represent different driving situations. If the total number
of observation variables (inputs) is denoted as Ninput, the number of observation
vector choices M can be calculated by

M =

Ninput∏
l=1

Ml, l ∈ [1, Ninput]. (4)

If the values of Ninput increase, the value of M becomes large, and finally the ob-
servation probability matrix B (with size N ×M) becomes complicated. This will
affect the calculation speed of HMM. Therefore, only one observation variable is
considered as the input of the first layer HMM. Then outputs of first layer HMMs
are combined into different models containing different information in the second
and third layers. As shown in Figure 5.3, the driving behaviors prediction model is
realized in three layers.

• First layer HMMs: each HMM is considered to predict the driving behaviors in
certain single working cases. Only one observation variable is given as input,
and this makes it possible to add more inputs in the model. All HMMs are
calculated in parallel, and this helps to reduce the complexity of the second
inputs. The obtained results from the first layer are given to the second layer.

• Second layer HMMs: each HMM is established for combined working cases but
only selected information is considered. Environmental information and ego-
vehicle state are roughly divided into several categories, such as information
about all operational signals of ego-vehicle, information about all velocities,
all distances, or all TTC values of ego and surrounding vehicles, information
about front, behind, left front/behind, or right front/behind driving environ-
ment, etc. The results of the first layer HMMs constituting the corresponding
information will be used to train a second layer HMM. For example, if a second
layer HMM consists the information about all distances, its inputs should be
all results of the first layer HMMs using distance.

• Third layer HMMs: similarly, the inputs of the third layer are the inferential
results from the second layer. Each third layer HMM represents driving be-
havior in a combined working case and all information is considered. That is,
it combines several second layer results that contain different information, and
ultimately results are obtained considering all observable variables.

It is important to know that all sub HMMs of each layer are calculated in parallel
and all of them can be used to predict driving behavior. As mentioned in the second
section, if the outputs of each layer are used as the inputs to the next layer, this
can significantly reduce the value of M for each HMM and simplify observation
probability matrix B. This makes the approach being simpler and faster.
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5.2.3 Fusion

As shown in Figure 5.3, all trained HMMs from the previous step are saved, and for
each HMM a respective result will be calculated. The results from all HMMs will
be compared with the actual behavior, and by doing that, the performance of all
HMMs are evaluated, then the best performed n HMMs (Mx1-Mxn) will be sorted
out, where the subscripts x1-xn indicate the serial numbers of top n HMMs, i.e.
xi ∈ [1, Nmodel] and i ∈ [1, n].

For the next step the probabilities of all n HMMs are calculated, the final probability
is fused using the weights w, expressed as

P =
n∑

i=1

wi · Pxi, i ∈ [1, n], (5.3)

where wi represents the impact of each n top HMM to the driving behavior predic-
tion. Finally, the hidden state with the highest final probability is predicted as next
driving behavior.

5.2.4 Optimization

Similar to FL-HMM, the proposed full scale training loop is applied in ML-HMM to
define the suitable design parameters, and therefore to optimize the performance of
driving behaviors prediction. As previously described, the prefilters of HMMs, the
number of the best performed HMMs n, and the weights w are unknown and affect
the prediction capability:

• Prefilters thresholds (i.e. thresholds of observation segment) define the obser-
vation sequence and finally affect the prediction performance of each HMM.

• Value of n determines how many HMMs are selected to calculate the final
result.

• Values of w represent the impacts of each top HMM and affect the final results.

Therefore, these parameters are defined as design parameters of ML-HMM. By using
NSGA-II the most suitable design parameters will be determined to minimize the
objective functions (equations 4.4 and 4.5 introduced in section 4.1) which describe
the targets of the optimization.



5.3 Summary 65

5.3 Summary

Except for using a single HMM to establish a driving behavior model, two design
ideas (HMM-derived or HMM-combined approaches) can be concluded from the
existing researches to improve the HMM performance. Based on the two design ideas
two newly developed approaches (FL-HMM and ML-HMM) are considered. Using
the proposed full scale training loop introduced in chapter 4, the two considered
approaches are trained to establish driving behaviors prediction models.

To discuss the effects of hyperparameters and prefilters, for each approach four
different models are established. The detailed explanation of the four model group
are listed in Table 4.1 of chapter 4. Design parameters of each model group of
FL-HMM and ML-HMM are shown in Table 5.2.

Table 5.2: Descriptions of design parameters of FL-HMM and ML-HMM (modified
after [DS20b])

Approach Design parameters M1 M2 M3 M4

FL-HMM

Prefilter thresholds - -
√ √

Hyperparameter:
-

√
-

√
- FL thresholds

- Weights [wscene woperation]

ML-HMM

Prefilter thresholds - -
√ √

Hyperparameter:
-

√
-

√
- Number of the best performed HMMs n

- Weights [w1 ... wn]√
: Selected

- : Not selected as design parameters

M1 - M4: Described in Table 4.1

• FL-HMM: As introduced in [DS18], hyperparameters of FLHMM are the
thresholds of FL and the weights w. The default value of w is defined as
[0.5, 0.5].

• ML-HMM: Similarly, the related hyperparameters of MLHMM are summa-
rized as the number of the best performed HMMs n, and the weights w [DS19b].
The default values are n = 10 and w = [1/4, 1/4, 1/4, 1/4].
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6 Experimental results

This chapter presents the experimental results of the driving behavior prediction
model based on different approaches introduced in chapter 3, 4, and 5. First the
experiment setup is described. Then, training and test as well as the suitable NSGA-
II design parameters are used to develop the models. Finally experimental results
will be presented.

The contents, figures, and tables presented in this chapter are modified after previous
publications [DS18a][DS19a][DS19b][DSW+19]. Part of the contents, figures, and
tables are prepared for publication of [DS20a][DS20c].

6.1 Experimental design

As concluded in chapter 2, machine learning algorithms can used to establish driving
behaviors model and furthermore to assist the drivers to increase driving efficiency.
However, there are two questions about how to build a suitable system (model).

• Input parameter can be roughly divided into three categories including physio-
logical, eye-tracking, and environmental information. As summarized in chap-
ter 2, physiological data are usually used to predict fatigue or drunk driving,
but not to predict driving behaviors. Environmental (ENV) data is widely
used in the field of driving behavior prediction. In contrast, only a few studies
consider eye-tracking (ET) data as input. Therefore, in the first experiment
ENV and ET data are selected as input to discuss what are the roles of using
ENV data and ET data?

• Which algorithm performs better and should be selected?

To answer the above questions, first an experiment abbreviated as ”E1” is designed.
Only the five mentioned known machine learning algorithms including SVM, HMM,
ANN, CNN, and RF are used. Furthermore, the performance of these algorithms
will also be evaluated, the role of using eye-tracking (ET) data and the definition of
lane changing behavior will be discussed. The conclusion of the first experiment (E1)
including input and algorithm selection will be applied to the second experiment.

The second experiment (E2) consists of three steps, with which the following ques-
tions will be discussed and answered.

• Can the proposed training loop be used to improve the performance of the
known machine learning approaches? (Section 6.3.2)
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• Can the newly developed HMM-based approaches (FL-HMM and ML-HMM)
successfully predict driver behaviors? (Section 6.3.3)

• The design parameters include hyperparameters and prefilters, what are their
respective effects for improving model performance? Which approach performs
best among all considered approaches? (Section 6.3.4)

In the E2 experiment, all the mentioned approaches in this thesis will be used to
establish driving behaviors models. The impact of the proposed training process on
each approach will be discussed.

6.1.1 Laboratory configuration

Driving simulator is a dedicated engineering tool developed to accurately reproduce
the driving scenario in a virtual environment. A driving simulator provides a realistic
environment and different situations in which allows people to drive without the risks
and restrictions in real life. A professional driving simulator SCANeRTMstudio as
shown in Figure 6.1 is applied at the Chair of Dynamics and Control (SRS) to
perform driving simulation for training and test of the proposed approaches. The
simulator is equipped with five monitors with 180 degree field of view, base-fixed
driver seat, steering wheel, and pedals. The three rear-view mirrors, which are
essential for a driver to decide to change lane, are displayed on the corresponding
positions of the monitors. The data acquiring frequency of the driving simulator is
20 Hz.

Figure 6.1: Driving simulator, Chair Dynamics and Control, U DuE
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To understand what the simulated world looks like, the simulator also provides
virtual sensors to collect data, such as camera, radar, lasers, and GPS. Therefore,
a comprehensive understanding of the vehicle’s environment can be built based on
these collected data. As shown in Figure 6.2, a driving environment will be created
by using function scenario of SCANeRTMstudio. While the simulation is running,
the signals will be collected by different sensors. For example, radar sensor can detect
targets such as other vehicle’s type, name, absolute and relative positions, speed, etc.
With GPS sensor, position of a vehicle is observed and transformed as coordinates.
Vehicles can use camera images to find information about the road markings such
as lane lines, or track other vehicles on the road. Like how humans see the world,
computer vision is necessary for vehicles provided by the simulator to recognize
the traffic lights and signs. With all the information collected, a driving assistant
system (human behavior prediction model) can be established and simulated in
Matlab, and finally suggestions/warnings are given to driver to control the vehicle’s
direction, speed and so on.

Figure 6.2: Illustration of Working Structure

6.1.2 First experiment (E1) - Experimental design to find out suitable
definition

The driving simulator can be additionally coupled with an Eye-Tracker. The Eye-
Tracker is placed between the screens and the driver’s seat and faces to the driver’s
face. The cameras of the Eye-Tracker determine the driver’s facial features position-
ing, so the head rotation and the direction of gaze can be determined.
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Data collection

A highway with six lanes for two directions as well as simulated traffic environment
is used for the experiment. During driving, the participant could perform overtaking
maneuver when the preceding vehicle drives slowly. After overtaking the participant
could also drive back to the initial lane. The time points of changing lane to left
and right were decided by the participant. Following the german traffic rules, it is
only allowed to overtake on the left lane. In total 10 participants were recruited.
They all held valid driving licenses. The original training dataset is related to each
participant performing a 30 minutes drive. Data from another 10 minutes drive are
used for test.

In this experiment, the continuous environmental (ENV) and eye-tracking (ET)
data collected from SCANeRTMstudio and faceLAB consist of 51 variables, each
variable denotes one feature of the recorded data. To simplify the modeling process,
only a part of the variables need to be taken into consideration of the prediction
model. Based on experience, the ENV data available for observations in Table 6.1
are considered to describe the current driving situation. The selected variables from

Table 6.1: Descriptions of selected input variables (E1) [DSW+19]

Data collection Symbol Definition

v Velocity of ego-vehicle

df Distance to vehicle in front

dfl Distance to vehicle in left-front

dfr Distance to vehicle in right-front

Environmental data dbl Distance to vehicle left-behind

(ENV) dbr Distance to vehicle right-behind

TTC Time to Collision: df/(v − vf ),

where vf denotes velocity of vehicle in front

α Heading angle of ego-vehicle

i Number of the current lane

Saccade Saccade

Blink Blink

Eye-tracking data FBlink Blink frequency

(ET) NScreen Screen number

x Screen coordinate (x-axis)

y Screen coordinate (y-axis)

ET are used to detect the saccadic eye movements of the driver. Details of all the
selected variables are given in Table 6.1. In the real world, these variables will
be taken from different sensors, such as camera, radar, and lidar [VB15] [Fle08].
In [FWL+18] the authors introduced to use a front RGB camera of a smartphone to
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capture eye and face images. This can solve the problem of integrating Eye-Tracker
hardware into the existing on-vehicle systems.

The purpose of this contribution is not only to analyze the performance of different
classification methods, but also to evaluate the influence of ET data for driving
behavior prediction. For one driver, one original dataset will be processed into three
different training datasets:

• Case 1: Only ET data (6 inputs)

• Case 2: Only ENV data (9 inputs)

• Case 3: Combination of ET+ENV data (15 inputs)

For each algorithm, the three different training datasets are used to train three
different models to evaluate their prediction performance.

Data processing

During driving simulation, the current lane i can be determined using the vehicles
center point. Therefore, by comparing the value of lane i at different times, the lane
changing of the vehicle can be determined at time tlane (Figure 6.3).

Figure 6.3: Illustration of lane changing behavior (E1)

In the experiment, the driver is expected to activate turn indicator before lane
changing. The moment of turning on lights indicates the starting time of the lane
changing intention and therefore it is defined as the latest moment in time when the
driver intends to pass the lane.

The interval from the beginning of lane changing tindicator to the completion of lane
changing tlane is the total required time for the lane changing behavior. It can be
expressed as tchange = tlane− tindicator. However, the driver sometimes changed lanes
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Figure 6.4: Starting time of the lane changing behavior of driver #1 defined by
tindicator (E1) [DSW+19]

and forgot to turn on the light. In this case, the average value of tchange is set as
the time, at which the driver decided to change the lane. For example, the time of
lane changing behavior of driver #1 is recorded in Figure 6.4. The x-axis and y-axis
represent the samples of lane changing behaviors and the time required (tchange) for
each lane change respectively. It can be clearly seen that the time of driver #1
deciding to change the lane is always between 2 s and 3 s before the lane change is
completed. The average value of tchange of driver #1 is 2.609 s. Thus, the decision
time of lane changing of the driver #1 will be considered as 2.609 s before the action
when the lane changing behavior is made without turning on the signal.

6.1.3 Second experiment (E2) - Experimental design to study the strat-
egy of full scale training loop

Similar to the first experimental setup, while driving the driver is interacting with
a simulated traffic environment. Following the german traffic rules, the participants
could decide to change driving behaviors according to their own willingness. The
differences are in total 17 participants were recruited to take part in the study.
They all held valid driving licenses. In addition, the driving scenario for 9 drivers is
a highway with four lanes in two directions. Another 8 drivers drove on a six-lane
highway driving scene. The original training dataset is related to each participant
performing a 30-40 minutes drive. Data from another 10-15 minutes drive are used
for test.

Data collection

Driver’s driving behaviors depend on the current environment conditions and the
individual driver’s characteristics. On the highway, the relationships between the
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Table 6.2: Descriptions of selected input variables (E2)

Input Definition Range Unit Data type

Environmental information

vego Velocity of ego-vehicle [0 220] km/h Real

vf Velocity of vehicle in front [0 220] km/h Real

vfl Velocity of vehicle in left-front [0 220] km/h Real

vfr Velocity of vehicle in right-front [0 220] km/h Real

vbl Velocity of vehicle left-behind [0 220] km/h Real

vbr Velocity of vehicle right-behind [0 220] km/h Real

vb Velocity of vehicle behind [0 220] km/h Real

df Distance to vehicle in front [0 250] m Real

dfl Distance to vehicle in left-front [0 250] m Real

dfr Distance to vehicle in right-front [0 250] m Real

dbl Distance to vehicle left-behind [0 250] m Real

dbr Distance to vehicle right-behind [0 250] m Real

db Distance to vehicle behind [0 250] m Real

TTCf TTC to vehicle in front [0 12] s Real

TTCfl TTC to vehicle in left-front [0 12] s Real

TTCfr TTC to vehicle in right-front [0 12] s Real

TTCbl TTC to vehicle left-behind [0 12] s Real

TTCbr TTC to vehicle right-behind [0 12] s Real

TTCb TTC to vehicle behind [0 12] s Real

Drivers operation information

α Heading angle of ego-vehicle [-3.14 3.14] rad Real

S Steering wheel angle [-3.14 3.14] rad Real

Pa Accelerator pedal position [0 1] - Real

Pb Brake pedal pressure [0 400] N Real

Ln Current lane number [1, 2] - Integer

I Indicator [0, 1, 2, 3] - Integer

G Gearbox [1, ...5] - Integer

ego-vehicle and other surrounding vehicles are the main factors effecting the decision
making of the driver. In this contribution, the feasibility of data collection must be
considered while defining input parameters. As shown in Table 6.2, in total 26
observation variables are selected as input, which belong to two aspects including
information about surrounding vehicles and states of the ego-vehicle. All input
variables are assumed to be measurable (for example by driving simulator). In the
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real world, data of these parameters will be collected through different sensors, such
as camera, radar, and lidar [VB15].

Data processing

To label the data as driving behaviors, the signal data need to be classified and pro-
cessed. As explained in section 6.1.1, the current lane i can be determined through
the position of the vehicle’s center point in the driving simulation. Therefore, the
lane changing behavior at time tlane can be recognized when the value of lane i is
changed. However, the drivers sometimes changed lanes and forgot to turn on the
light in the experiment. To accurately define lane changing behavior, as shown in
Figure 6.5 the starting time of the lane changing behavior can be determined by
detecting the last significant change of steering wheel angle at time tangle. The time
interval in between tangle and tlane is defined as lane changing behavior.

Table 6.3: Average tindicator and tangle (E2)

Driver Average tindicator [s] Average tangle [s] Difference [s]

1 2.77 2.57 0.19

2 2.35 2.00 0.35

3 2.87 1.91 0.96

4 2.53 2.40 0.13

5 2.70 2.00 0.70

6 2.36 1.99 0.37

7 2.63 2.00 0.63

The time of lane changing behavior of driver #1 defined by tangle is recorded in
Figure 6.6. It can be seen that the time when drivers change the lane is always
between 1 s and 2.5 s before the lane change is completed. As mentioned in Fig-
ure 6.4 (E1), most of the lane changing intentions occurred within 3.5 s, i.e. 1 s
earlier than 2.5 s (max. lane changing time in Figure 6.6). To further determine
the driving intention, the average tangle and tindicator of #1−#7 drivers are listed in
Table 6.3. It can be found that the difference between the tangle and tindicator is no
more than 1 s, which means that the driving intentions occur within 1 s before the
driving behavior. Therefore, the lane changing intentions in E2 are considered oc-
curring 1 s before the behaviors, i.e. the time interval in between tangle− 1 and tlane
(Figure 6.5). To evaluate the prediction performance of the proposed approaches,
the class labels of training data and test data are defined using driving intention
and driving behavior (real action) respectively.
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Figure 6.5: Illustration of lane changing behavior and intention (E2)

Figure 6.6: Starting time of the lane changing behavior of driver #1 defined by tangle
(E2)
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6.2 Training and test procedures

6.2.1 Training phase

The main goal of the training phase is to establish driving behavior prediction models
based on related approaches.

E1 - Training

The purpose of the first experiment is to discuss and analyze the impact of input pa-
rameters (ENV and ET data) and effectiveness of different known machine learning
approaches. In the training phase, not only the proposed models are established, but
also the correctness and the performance of the models are evaluated. Therefore the
training phase contains model training and model validation. The training and test

Figure 6.7: Illustration of training and test phase (E1)

phase of E1 are illustrated in Figure 6.7. To verify selected model type, data used
for training and for validation should be different and both datasets must contain
different lane changing behaviors. Therefore, the 10-fold-Cross-Validation [BD15]
technique is applied. This method divides a dataset into 10 sub-datasets. For each
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time one sub-dataset will be selected for validation, and other sub-datasets for sub-
model training. This process will be repeated 10 times until all the sub-dataset have
been selected for validation.

E2 - Training

The purpose of the second experiment is to establish the proposed models and then
to predict the driving behaviors in real time. In the training phase, for each driver a
training dataset is given as input and the output is a trained model for individualized
driver. As described in section 4.2, for each selected algorithm, four different models
(M1-M4) will be established, which are trained with default / optimized prefilters
and hyperparameters respectively. As shown in Figure 6.8, the proposed improved
models are trained through the following steps.

Figure 6.8: Illustration of optimized model and design parameter definition

(a) According to the principle of NSGA-II methodology, first a set of design pa-
rameters is generated randomly by NSGA-II.

(b) Using the defined design parameters a training data set is processed and com-
bined to form observation sequence. Then the observation sequence and its
actual labels can be used to estimate each HMM parameter, with these HMMs
the hidden state could be calculated.

(c) The actual hidden state sequence and the hidden state sequence calculated by
the proposed models will be compared to check the values of the corresponding
ACC, DR, and FAR. Afterwards, the objective functions 4.4 and 4.5 in section
4.1.2 could be calculated.

(d) Process is repeated from (a) to (d) until convergence.

(e) Through the comparison of the objective functions results for each model, the
optimal design parameters are found.
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6.2.2 Test phase

The proposed model (based on driver-specific parameters) is applied for driver be-
haviors prediction. The predicted behaviors and the real behaviors can be compared
for evaluation.

E1 - Test

The test phase of E1 is shown in Figure 6.7. After training data collection and model
training, the drivers were required to drive again for each on-line model separately,
each time is about 10 minutes and and was realized in a driving scenario different
from the training scenario. The estimated behaviors will be calculated and saved
in real time. Through the comparison between the estimated driving behaviors and
the actual driving behaviors, the veracity of the prediction could be evaluated.

E2 - Test

The models based on known approaches or the improved models with the corre-
sponding optimized design paramters for each test data set are already calculated
in the training phase (Figure 6.9). Because for each driver there are 7*4=28 (7
approaches and 4 model types) different models, on-line test is not applied for each
driver like E1. Instead, the test data set from each driver are saved for models’
test and evaluation. Based on these established models, the driving behaviors in
the upcoming driving processes could be determined. The measured and estimated
driving behaviors are compared to check the correspondence.

6.3 Evaluation results

To verify the effectiveness of the models the actual and estimated driving behaviors
are compared, and the values of ACC, DR, and FAR are calculated for the complete
driving sequence. The calculation equations are expressed as equation 4.1 - 4.3 in
section 4.1.2 .

6.3.1 Known machine learning approaches (E1)

As mentioned previously, the first experiment is designed to find the answers of the
following questions:

• What are the roles of using ENV data and ET data?

• Which algorithm performs best and should be selected?
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Figure 6.9: Illustration of training and test phase (E2)

Off-line validation

The prediction models are established by using SVM, HMM, ANN, CNN, and RF.
For each algorithm three models will be built up based on the ET data, the ENV
data, as well as the ET+ENV data. Therefore, fifteen models are established in the
experiment, details are shown in Table 6.4.

The aim of off-line training is to select suitable model type according to input
and approach selection. To verify the models, 10-cross-validation is used in this
experiment. After training, the fifteen models are established for driving behavior
prediction. Based on the established models, the driving behaviors in the upcoming
driving processes could be determined. The measured driving behaviors and the
estimated driving behaviors which are calculated by the model will be compared
to check the correspondence. Then, the ACC, DR, and FAR of each model for
each driver are calculated. Finally, the average ACC, DR, and FAR from all the
ten drivers for each model are calculated. Finally, the average ACC, DR, and FAR
from all the ten drivers for each model are calculated. The results of the ACC from
different models are shown in Figure 6.10. The following conclusions can be made
according to the results.
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Table 6.4: Driving behavior prediction models (E1)

Model number Algorithm Training data

1 ET data

2 SVM ENV data

3 ET+ENV data

4 ET data

5 HMM ENV data

6 ET+ENV data

7 ET data

8 ANN ENV data

9 ET+ENV data

10 ET data

11 CNN ENV data

12 ET+ENV data

13 ET data

14 RF ENV data

15 ET+ENV data

(a) Using only ET data all models show the worse results (the ACC values of
LK using different algorithms are 56.60 % (SVM), 52.01 % (HMM), 79.29 %
(CNN), and 90.75 % (RF)). Compared to the result using ET data, the ACC
values of HMM using the ENV data are increased from 52.01 % (LK), 67.63
% (LCL), and 75.20 % (LCR) to 90.76 % (LK), 94.76 % (LCL), and 95.47 %
(LCR) respectively. Similarly, using the ENV data the ACC of SVM, ANN,
CNN, and RF algorithms are higher than using the ET data. The reason is
that the driving environment information is predominating drivers decision
making, and it is not able to be collected through eye-tracker.

(b) Using ET+ENV the results of HMM, ANN, CNN, and RF can be marginally
improved in comparison to the results using ENV alone. The ET data can
help the machine to learn the sight focus (gaze) of the driver. However, the
result of SVM algorithm shows that, the ET+ENV data is worse than ENV
data. For example, using SVM the ACC of ENV data is better than using
the ET+ENV data (about 20 % higher). Therefore, introducing ET data will
not certainly improve the prediction performance. As known from classifier
and fusion research [RS16], classifiers combined with a lower accuracy classifier
may provide worse results than the mean results of individual classifier. This
is the possible reason why ET data does not lead to an improvement of the
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Figure 6.10: Average ACC of 10-cross-validation achieved by known ML models
(E1)

prediction results for SVM. Of course this theoretically may also be caused by
non-suitable choice of classifiers.

(c) The models based on RF have the highest ACC values compared to the models
that use the same data type but different algorithms. It can be concluded
from the results that RF algorithm in this case provides better performance
than SVM, HMM, and CNN algorithms. Among the three models using RF
algorithm, the ET+ENV data achieved the best result in the experiment, in
which all ACC values are larger than 99 %.

To further evaluate the performance of driving behaviors prediction, the Receiver
Operating Characteristic (ROC) results are shown in Figure 6.11. To compare the
average DR and FAR values for each model, the ROC graph is used instead of
the ROC curve. From the obtained results it could be detected, that four of the
fifteen models show good performance: HMM (with ENV), HMM (with ET+ENV),
RF (with ENV), and RF (with ET+ENV). Their DR values are higher than 85 %
and FAR values are lower than 10 %. The other eleven models have unsatisfactory
ACC or FAR values, which are the models SVM, HMM, ANN, and RF (only using
ET), SVM (with ENV, ET+ENV), as well as CNN (with ET, ENV, ET+ENV).
The reason for worst performance of CNN is due to the imbalance within training
labels. Based on normal driving conditions, the number of LK behaviors are more
than the number of lane changing behaviors. Data augmentation (DA) is often used
for images and videos to solve this problem. However, the prediction of driving
behaviors with ENV and ET features is different from computer vision. Therefore,
in the future new DA algorithms should be considered to process EVN and ET data.
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Figure 6.11: ROC graph for different models based on known ML approaches (off-
line)

Table 6.5: Training time of five known ML approaches [Training dataset #1] (E1)

Data type Driving duration [s] Number of data Algorithm Training time [s]

SVM 777.240
HMM 62.010

ENV 1829.9 36598 ANN 52.934
CNN 177.756
RF 11.989
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The required training times of the four algorithms for the same training data are
recorded (Table 6.5). The training data are obtained by a 1829.9 s drive and only
ENV data are selected. It can be observed that, for HMM, ANN, and RF, the
training can be completed in a few seconds about 62 s, 53 s and 12 s respectively.
In contrast, the training for CNN and SVM model requires long time (more than
177 s and 777 s respectively).

From the results it can also be concluded that using the RF / HMM (with ENV) and
RF / HMM (with ET+ENV) the ACC and DR values are higher, in the meanwhile
the FAR values are lower than other approaches. Thus, the RF and HMM have
better performance within all models. In addition, the RF and HMM algorithms
require shorter training time than other approaches. However, since the principle of
the RF approach is random selection of inputs and decision trees, even if the same
training dataset is used, the RF model obtained every time is different. In contrast,
the HMM approach can get a stable model.

In this section two RF-based behavior prediction models using the ENV and ET+ENV
data, are developed. Each driver specific test dataset must be related to the data,
which are used in training. The task of on-line test is to implement prediction on-line
and evaluate the performance of the driving behaviors prediction. The prediction
ability of the model can be demonstrated in terms of prediction time and some eval-
uation metrics like ACC, DR, etc. In the following sub-sections, the experimental
results will be described.

Prediction time

An ideal model should be able to predict the driving behaviors before the actual
lane change. As described in section “Data processing”, the lane changing as the
driving behavior is considered starting from tindicator to tlane. The total required
time is defined as tchange. When the drivers change the lane without turning signals
while lane changing, the average value of all tchange will be used to determine the
lane changing behavior. However, the following two points should be discussed:

(a) Whether the prediction time is influenced by this preset time tchange?

(b) How to determine the value of tchange?

As mentioned in Figure 6.4 the collected value of tchange in this experiment is always
between 2 s and 3 s. Therefore, 2 s, 2.5 s, and 3 s are selected as the preset tchange
to analyze the impact on the behavior prediction. From the training results, the
performance of model based on RF using ENV data and using the ET+ENV data
has been successfully proven. For the two models, the mentioned three preset tchange
are used respectively. Thus, there are six different models. The details and the
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results of the six models are given in Table 6.6. The total number of lane changing
maneuver is 28. Among the six models, the correct number of maneuver predictions
for Model #3 is highest in all models. However, three wrong predictions can still be
found.

Table 6.6: On-line prediction results of RF [Test dataset #1] (E1) [DSW+19]

Model number #1 #2 #3 #4 #5 #6

Preset tchange [s] 2 2.5 3 2 2.5 3

Training data ENV ET+ENV

Number of Lane changing maneuver 28 28

Number of correctly prediction 20 24 27 20 24 25

Number of incorrectly prediction 1 3 3 0 3 3

Figure 6.12: Average on-line prediction times of different models [Test Dataset #1]
(E1) [DSW+19]

In addition, the average time of predicted lane changing for different models are
shown in Figure 6.12, Here, the value of the starting time of the lane changing
tindicator is defined as 0. As mentioned, the average value of lane changing time
is tchange = 2.609 s for driver #1. Therefore, the blue box indicates the duration
of lane changing behavior. It is clear that, when the value of t is less than 0,
the estimated behavior of the model occurs before the drivers turn on the signal. In
contrast, when the value of t is larger than 0, the estimated behavior occurs after the
indicator signal. It is also obvious from Figure 6.12, that the predicted lane changing
behaviors of all models can be realized before the drivers lane changing behavior
occurs (tlane). Three of them are prior than the time when the drivers turn signal
tindicator, and the earliest lane changing is predicted by model #3 (about 1.825 s
before tindicator). The same comparison is made in the other test datasets. The
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results are confirmed that with model #3 the best results can be obtained. Model
#3 is based on the RF algorithm using ENV data with preset time (tchange = 3 s).
Due to the delay in data transition from the Eye-Tracker sensor to the program in
the on-line test, the results of the model using ET+ENV data are not as good as
in the off-line training. Therefore, the model RF (with ENV data) is considered for
driving behavior prediction of a real on-line test, here 3 s is chosen as preset time.

On-line evaluation

The RF (ENV data) models for each test dataset are already calculated and saved
in the previous section. The driving behaviors will be determined by using corre-
sponding models. Through the comparison between calculated and actual driving
behaviors, accuracy can be evaluated.

Figure 6.13: Average ACC achieved by different models for 10 on-line test datasets

To verify the effectiveness of the model in terms of driving behaviors prediction,
other related known approaches are used for comparison. The percentage of ACC
for each group is shown in Figure 6.13. Based on the average value of DR and
FAR calculated by different models for ten test datasets, the ROC graph could be
drawn, which is shown in Figure 6.14. Similarly, RF and HMM show the more stable
capability for driving behavior prediction. As conclusion based on the analysis from
Figure 6.13 and Figure 6.14, the ACC value and the ROC result of RF and HMM are
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Figure 6.14: ROC graph for different models based on known ML approaches (on-
line)

significantly better than the other three algorithms. In addition, the model based
on SVM has the worst performance among these five algorithms.

The conclusion can answer the questions raised at the beginning of this section.
The prediction performance using ET+ENV data depends on the applied algo-
rithm. Better results can be observed using HMM, ANN, CNN, and RF. For SVM,
better performance can be obtained when only ENV data is used. Therefore, the
integration of ET data will not necessarily improve the prediction performance. In
the following experiment, only ENV data will be selected. Among all prediction
results for all algorithms, the RF and HMM algorithms using ENV data present
better performance. Considering that using HMM can get a stable model, the new
approaches will be developed based on HMM in this thesis.

6.3.2 Known machine learning approaches with improved training loop
(E2)

The first step of the E2 experiment is designed to answer the question:
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• Can the proposed training loop be used to improve the performance of the
known machine learning approaches?

Therefore, the known machine learning approaches with the default and optimized
design parameters will be compared in this section, i.e. known machine learning
approaches based on M1 (baseline: default prefilter and hyperparameter) and M4
(optimized prefilter and hyperparameter) are compared (cf. section 4.1).

As described in chapter 4, five conventional and extensively used known approaches
(SVM, HMM, ANN, CNN, and RF) are selected to verify the performance of the pro-
posed training strategy. For model group M1, the related sequence process method
of conventional HMM is referred to the previous publication [DWS18]. Other ap-
proaches using M1 model are trained with raw data. The hyperparameters that
need to be set are selected as default values summarized in section 5.2. For im-
proved model M4, using the proposed training procedure the most suitable design
parameters can be determined automatically to optimize the performance of the
known approaches. All mentioned models use the same observation variables (total
26 inputs) mentioned in section 6.1.3.

The average values of evaluation metrics (ACC, DR, 1-FAR) of each group are shown
in Figure 6.15 to Figure 6.19. The following conclusions can be made according to
the results.

(a) The difference value greater than 0 means that using the M4 model can get
better results. It can be found that the results for all algorithms using M4
model are better than using M1 model. The overall ACC values using M1
model are 73.52 % (SVM), 74.97 % (HMM), 83.26 % (ANN), 83.54 % (ANN),
and 88.23 % (RF) respectively. The overall ACC results of SVM-M4, HMM-
M4, ANN-M4, CNN-M4, and RF-M4 are increased to 88.42 %, 85.46 %, 84.09
%, 89.12 %, and 88.44 %. .

(b) The improvement (positive value of difference) greater than 5 % denote as
significant improvement. The results of SVM-M4, HMM-M4, ANN-M4, and
CNN-M4 are significantly improved in comparison to the results using M1
model. For example, the DR value of LCL using CNN-M4 is increased from
32.41 % to 67.98 % (about 35 % higher). The maximum increase of HMM-M4
and ANN-M4 are also the DR value of LCL, which are improved by 13 %
and 10 % respectively. The DR of LCR is the most improved using SVM-M4,
which achieves 38 % increment.

(c) for the algorithm ANN, CNN, and RF, some exceptions can still be found. For
example the 1-FAR value of LCR (using ANN-M4) is worse than the DR value
using ANN-M1 (about 0.42% lower). However, these values are marginally
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Figure 6.15: Evaluation metrics of conventional SVM (M1) and improved SVM (M4)

Figure 6.16: Evaluation metrics of conventional HMM (M1) and improved HMM
(M4)
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Figure 6.17: Evaluation metrics of conventional ANN (M1) and improved ANN
(M4)

Figure 6.18: Evaluation metrics of conventional CNN (M1) and improved CNN (M4)
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Figure 6.19: Evaluation metrics of conventional RF (M1) and improved RF (M4)

reduced and the overall result considering all situations are still improved using
M4 model.

(d) For RF-M4 the results are marginally improved in comparison to the results
using RF-M1. The models based on RF-M1 have the highest ACC values
among all the M1 models.

It can be concluded that the prediction performance of the algorithms considered is
(partly marginally) improved by the introduced approach.

To further evaluate the performance of the improved models, two methods proposed
in [DYF16] are used as reference. The authors design two combined ANN and SVM
methods named ANN-SVM (Conservative / Aggressive), and the results show that
the stability and accuracy of the combined methods are better than default ANN
and SVM.

The evaluation metrics are shown in Figure 6.20. It can be found that, the im-
proved models perform better considering all situations in comparison with ANN-
SVM. Except for three cases including DR of LCR, DR of LCL, and 1-FAR of LK,
the performance of the improved models at other (seven of ten) evaluation metrics
are greater than 80 %. In addition, the conventional algorithm SVM, HMM, and
CNN present weaker performance than conventional ANN and RF, and have been
improved significantly (over 10 %) through the proposed training procedure. The
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proposed full scale training loop is able to strongly improve the algorithms with
poor prediction performance.

Figure 6.20: Evaluation metrics of different models for 17 test datasets

6.3.3 FL-HMM and ML-HMM approach (E2)

The second step of the second experiment (E2) is to answer the question

• Can the newly developed HMM-based approaches (FL-HMM and ML-HMM)
successfully predict driver behaviors?

Therefore, the two newly developed approaches trained by the full scale training
loop will be verified in this experiment. For comparison alternative advanced clas-
sification algorithms (SVM, NN, CNN, HMM, and RF) are applied. All mentioned
models use the same observation variables (total 26 inputs). Based on these models,
the driving behaviors in the upcoming driving processes could be determined. The
measured and estimated driving behaviors are compared to check the correspon-
dence.

To verify the effectiveness of the models in terms of driving behaviors prediction,
the actual driving behaviors are compared to the estimated driving behaviors for all
data sets. The percentage of the ACC, DR, and FAR for each group is calculated.
Finally, the average evaluation metrics by using different models are shown in a
boxplot Figure 6.21. Each box displays a distribution of a metric from 17 drivers.
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The line and insert the symbol x in the middle of each box represent the median and
average value respectively. From the obtained results it is clear that, FL-HMM and
ML-HMM are relatively better than other methods to identify the driving behaviors.
In most cases, the FL-HMM and ML-HMM approaches have a high ACC (larger
than 90 %), a high DR (larger than 80 %), and a low FAR (less than 12 %). In
addition, the median line and average value of ML-HMM are marginally better than
FL-HMM.

The aim of this contribution is to predict driving behavior, so the driving behaviors
should be predicted before the actual actions. The numbers of behaviors correctly
predicted by using different algorithms are summarized in Table 6.7. In comparison
to other machine learning approaches, FL-HMM and ML-HMM can correctly predict
more upcoming behaviors, the numbers are 206/203 and 200/201 for LCL/LCR out
of 218/213 real maneuvers respectively.

Figure 6.21: Boxplot of ACC, DR, and FAR for 17 test datasets

To further evaluate the performance of driving behaviors prediction, a method
[ADS19] is used in this contribution. Here, each lane change maneuver is defined
as a separate event, and DR is used to evaluate the classifiers. As shown in Fig-
ure 6.22, the x-axis refers to lane change time, and the black dotted curve indicates
the actual time of all lane change maneuvers. It can be seen that more than 60 %
maneuvers start to change lanes from 2.5 s, and 100 % maneuvers change lanes at
0 s. Therefore, the value of 0 s represents the time for all the actual lane change
time. From 5 s before actual lane change, up to the time of actual lane change a
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(a) DR of LCL maneuver

(b) DR of LCR maneuver

Figure 6.22: Prediction results of different models for 17 test datasets
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Table 6.7: Number of correct predicted maneuver of different algorithms [Test
datasets #1 - #17] (E2)

Number of maneuver

LCL LCR

Real 218 213

Approach Number of correct predicted maneuver

SVM 175 169

NN 188 194

CNN 151 168

HMM 178 197

RF 189 199

FL-HMM 206 203

ML-HMM 200 201

DR value will be calculated for performance evaluation. The time interval is divided
into 100 time points, i.e. every 0.05 s, these time points are defined as ”recognition
time points”, and for each time point a DR value will be calculated for performance
evaluation. The earlier recognition time point reaches, the higher DR and the bet-
ter the performance. The results (Figure 6.22) state that FL-HMM and ML-HMM
can predict the upcoming maneuver with a high DR (larger than 95 %) about 1.6
s (LCL) and 1.2 s (LCR) before actually changing lanes. For other algorithms, the
time are less than 1 s, or even less than 0.6 s.

Therefore, it can be concluded that FL-HMM and ML-HMM perform better than
the conventional known approaches. In addition, the average training times of the
seven approaches for the same training data are recorded in Table 6.8, the training
of ML-HMM can be completed in a few seconds about 16.077 s, which is faster than
FL-HMM.

6.3.4 Overall comparison (E2)

It is proved that model performance can be improved by using the proposed full
scale training loop in the previous section. However, respective effects of prefilter
and hyperparameters are not discussed in detail. Therefore, this issue will be further
discussed and analyzed in this section. The third step of the second experiment is
designed to answer the following two questions:

• What are the respective effects of hyperparameters and prefilter for improving
model performance?
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Table 6.8: Average training time of different algorithms [Training datasets #1 -
#17] (E2)

Driver Average data size Algorithm Average training time [s]

#1-#17 29012

SVM 835.687

HMM 46.075

ANN 40.387

CNN 22.265

RF 6.225

FL-HMM 148.569

ML-HMM 16.077

• Which approach performs best among all considered approaches?

Based on the proposed full scale training loop, seven algorithms including five con-
ventional algorithms (SVM, HMM, ANN, CNN, RF) and two new approaches (FL-
HMM, ML-HMM) are used to develop driving behaviors prediction models. As
mentioned in section 4.1, for each algorithm four different models (M1-M4) will be
trained to evaluate their prediction performance. Therefore, in total 7*4*17=476
models are established based on the data achieved from 17 drivers.

The actual driving behaviors are compared to the estimated driving behaviors for all
models. The percentages of the ACC, DR, and FAR for each group are calculated.
Finally, the average evaluation metrics by using different models are shown in box-
plot figures Figure 6.23 to Figure 6.25, each box displays a distribution of a metric
for 17 drivers. In addition, the purpose of this contribution is not only to discuss
the effectivenesses of the mentioned algorithms, but also to discuss the influence of
the prefilter and hyperparameter respectively. Therefore, different algorithms and
model groups will be compared separately. To clearly observe the influences of pre-
filter and hyperparameter, the differences between the average metrics of different
groups are listed in Table 6.9. The following conclusions can be made according to
the results from Figure 6.23 to Figure 6.25 and Table 6.9.

(a) Effect of overall optimization (M4 vs. M1 & M2 & M3):
For all algorithms, the M4 models have the best prediction performance among
all model groups. Except algorithm RF, the M4 models of other algorithms are
significantly improved. For example in Figure 6.23, the median ACC values
using CNN are 84.8 % (M1), 83.6 % (M2), and 90.6 % (M3) respectively. The
median ACC value of HMM-M4 is increased to 91.0 %. Among the four model
groups, HMM-M4 has the highest DR value and the lowest FAR value. The
same conclusion can be obtained for other algorithms. However, the improve-
ment is not obvious for some evaluation metrics. For example, in Figure 6.24,
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the DR median value of SVM-M4 is even lower than SVM-M2. However, when
comparing the variance of DR or comparing the lowest DR value, SVM-M4
is better than SVM-M1, SVM-M2, and SVM-M3. Therefore, the general con-
clusion can be stated that the use of optimized prefilter and hyperparameters
(i.e. M4 models) can improve the performance of all mentioned algorithms.

(b) Effect of prefilter (M1 vs. M2, M3 vs. M4):
Similar to M1 and M2, the difference between M3 and M4 is whether using
the optimized prefilter or not. The related hyperparameters are identical.
Therefore, the effect of prefilter on the algorithms can be found by comparing
the two pairs of models. As shown in Figure 6.23 to Figure 6.25, all the
algorithms have better results after using optimized prefilters. This can also be
concluded from Table 6.9 that the performance of most of the algorithms (such
as SVM, HMM, CNN, FL-HMM, ML-HMM) has been significantly improved.
The bold numbers in Table IV indicate a model with worse performance after
using a prefilter. Some exceptions can still be found from the results, for
example, the DR value of RF-M4 (using optimized prefilter) is worse than
the ACC value of RF-M2 (about 0.73 % lower). However, these values are
marginally reduced and the overall result considering all situations are still
improved using optimized prefilter.

Figure 6.23: Boxplot of averange ACC achieved by 476 models

(c) Effect of hyperparameter (M1 vs. M3, M2 vs. M4):
The difference in the two groups is using different hyperparameters to es-
tablish driving behaviors models. Similar to the previous conclusion (b), the
model performance can be improved by using optimized hyperparameters (Fig-
ure 6.24). As shown in Table 6.9, the prediction ability for some algorithms
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Figure 6.24: Boxplot of averange DR achieved by 476 models

Figure 6.25: Boxplot of averange FAR achieved by 476 models
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is significantly improved, such as the DR values using CNN-M3, CNN-M4,
FL-HMM-M4, and ML-HMM-M4 are increased by 17.53 %, 6.25 % , 9.27 %,
and 6.71 %.

(d) Hyperparameter vs. prefilter (M2 vs. M3):
The influences of using prefilter or using hyperparameter are not the same for
different algorithms. As shown in Table 6.9, for CNN and FL-HMM, hyper-
parameters are more decisive than prefilters. In contrast, prefilters are more
advantageous for SVM, ANN, and ML-HMM. However, for other algorithms
the difference is not obvious.

(e) Algorithms:
As shown in Figure 6.23 to Figure 6.25, consider the case of conventional
algorithms, algorithm CNN-M4 is better than other conventional algorithms.
In most cases, the ACC and DR values of CNN-M4 are larger than 90.0 % and
75.0 %̃, in the meanwhile the FAR values are lower than 15.0 %. Compared
with all the models and all situations, the new approaches FL-HMM and ML-
HMM are the best models to identify the driving behaviors. Their median
ACC, DR, and FAR values are 91.0 %, 83.7 %, 8.9 %, and 93.5 %, 85.9 %,
8.4 % respectively.

6.4 Impact of input parameters

It can be seen from the conclusion in the previous section, by selecting suitable
prefilters the prediction performance of SVM are significantly improved. among
the five known ML approaches, the difference of all the evaluation measurements of
(SVM-M2 - SVM-M1) and (SVM-M4 - SVM-M3) are higher than 5 %. The possible
reason could be the great impact of input paramters to the SVM model, appropriate

Figure 6.26: Average ACC, DR, and FAR achieved by different models for 7 test
data sets [DS19b]
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input features may lead to better prediction performance. This was also confirmed
in the previous publication [DS19b].

As a single model, SVM and ANN with only 12 inputs are considered as reference,
here related input variables [DS18] are used. The obtained resutls are shown in
Figure 6.26. It can be observed that, using more inputs the results of ANN has
not been improved significantly, but the performance of SVM has been significantly
reduced. For example, the DR of LCR is decreased from 63.2% (SVM with 12
inputs) to 13.1% (SVM with 26 inputs). It can be concluded that in the case of a
single model, using more inputs does not improve the performance. Similarly, from
the obtained results it is clear that, FL-HMM and ML-HMM are good to identify
the driving behaviors.

It can be concluded that, input selection plays an important role in some known ML
approach like SVM and ANN. The reasons why the new FL-HMM and ML-HMM
approaches developed in this thesis can get better results may be

• both FL-HMM and ML-HMM consist of different sub-models, and

• the final results are fused using the weights w.

This idea is similar to choosing a more suitable input parameter set from the all
input parameters to calculate the final result.
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7 Conclusion - What can be learned to realize

improved machine learning approaches

The open research questions from chapter 2 are answered in the conclusion of this
thesis.

A new training strategy named full scale training loop is proposed which can be used
directly to improve the performance of the known machine learning approaches or
an established model. In the training loop, all unknown parameters are denoted
as design parameters, and the most suitable design parameters can be determined
automatically. The parameters which are important to affect the model performance
should be set as design parameters.

To simplify the modeling process, a prefilter is originally designed to process and
combine signals to describe observations for the HMM prediction process. The finally
obtained results show that, through selecting optimal prefilter parameters the ability
of the HMM to predict driver behaviors is significantly improved. Therefore, the
proposed prefilter is applied to the full scale training loop to define suitable input
features.

Hyperparameters are parameters whose values need to be set manually prior to
the training and usually using default values. To get a better model, optimizing
hyperparameters is proven to be useful in improving model performance. Therefore,
prefilter and hyperparameters are considered as design parameter in this thesis. The
chapter 4 and chapter 5 list the design parameters of each approach in detail.

According to the open research questions described in section 2.4, two experiments
are designed and described in chapter 6. The purpose of the first experiment is to
explore which known approach performs better and should be selected. The purpose
of the second experiment is to prove that the proposed training loop can be used
to improve the performance of the known approaches, and discuss the effects of
prefilter and hyperparameters respectively. The results can be concluded as the
following points.

• Among all prediction results from all algorithms, the RF and HMM algorithms
presents the best performance. However, the principle of the RF approach
is random selection of inputs and decision trees. Even if the same training
dataset is used, the RF model obtained every time is different. In contrast, a
stable model can be generated by using HMM approach. For this reason, the
approach HMM is selected to develop new approaches in this thesis.

• Existing researches based on HMM are roughly divided into two categories:
HMM-derived and HMM-combined approaches. Based on the two modeling
ideas two new approaches (FL-HMM and ML-HMM) are developed. The
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finally obtained results show that the prediction performance of FL-HMM
and ML-HMM are significantly better than other common machine learning
approaches.

• Based on the proposed training loop, seven algorithms including five known ap-
proaches (SVM, HMM, ANN, CNN, RF) and two new approaches (FLHMM,
MLHMM) are used to develop driving behaviors prediction models. For each
approach, four different models (M1 - M4) are trained to evaluate their pre-
diction performance. The finally obtained results prove the optimization and
selection of prefilter and hyperparameters can significantly improve the per-
formance of the driving behavior prediction models. The group with the best
performance in the contribution is M4 group which selects both optimized pre-
filter and hyperparameters. The influences of using prefilter or using hyperpa-
rameter are not the same for different algorithms. For CNN, hyperparameters
are more decisive than prefilters. In contrast, prefilters are more advantageous
for FL-HMM and ML-HMM. However, for other algorithms the difference is
not obvious.

In addition, the impact of input parameters are discussed in chapter 6. It can be
concluded that the integration of ET data will not necessarily improve the prediction
performance. The prediction performance of using ET+ENV data depends on the
selected algorithm. For HMM, ANN, CNN, and RF better results can be observed.
For SVM using the ENV data alone shows the better performance. In the case of a
single model, using more inputs does not improve the performance. Input selection
plays an important role in some single known approach like SVM and ANN. The
reasons why the new FL-HMM and ML-HMM approaches developed in this thesis
can get better results may be

• both FL-HMM and ML-HMM consist of different sub-models, and

• the final results are fused using the weights w.

Finally, all points that can be learned from the thesis are summarized as below:

• The proposed full scale training loop can be applied to improve model perfor-
mance.

• The proposed prefilter can effectively extract signal features and therefore to
improve the performance of the approaches.

• The hyperparameters affecting model performance should be set as design
parameters. Their suitable values can be determined through the training
loop.
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learning approaches

• There are two approaches (HMM-derived and HMM-combined approaches) for
designing a new HMM-based model. Both of them provide improved prediction
results.

• Not all the available variables are necessary to be considered as inputs in a
single model. Using more inputs do not improve the performance.

• To get better prediction performance, a model can consist of different sub-
models. Each sub-model is considered to predict human behaviors only for a
particular working case. Results of the all sub-models can be combined into a
final result.
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8 Summary and outlook

8.1 Summary

Due to the importance of driving safety and efficiency, the research of human driving
behaviors prediction has been focused in recent years. In this thesis a new strategy
named full scale training loop is proposed for training improvement of existing classi-
fiers. Based on the proposed approach, seven algorithms including five conventional
algorithms (SVM, HMM, ANN, CNN, RF) and two new approaches (FLHMM,
MLHMM) are used to develop driving behaviors prediction models. The focus is
to demonstrate the ability of the proposed approach to improve the prediction per-
formance of different algorithms, and to discuss the effects of hyperparameters and
prefilters.

Three lane changing behaviors (LCR, LK, LCL) are modeled as classifications. A
highway scenario with traffic designed to enable overtaking maneuvers is realized in
a driving simulator to collect driving data for training and testing the models. The
prediction performance of improved models by finding optimal design parameters
are considered and improved. Based on data achieved from 17 different drivers the
proposed approaches are validated. For each algorithm, four different models are
trained to evaluate their prediction performance.

The finally obtained results prove the optimization and selection of prefilter and
hyperparameters can significantly improve the performance of the driving behavior
prediction models. The group with the best performance in the contribution is M4
group which applies both optimized prefilter and hyperparameters. The influences
of using prefilter or using hyperparameters are not the same for different algorithms.
For CNN, hyperparameters are more decisive than prefilters. In contrast, prefilters
are more advantageous for FL-HMM and ML-HMM. However, for other algorithms
the difference is not obvious.

Furthermore, compared with all the mentioned algorithms, FL-HMM and ML-HMM
demonstrate better results in this contribution. The upcoming maneuver can be
predicted with a high DR (larger than 95 %) about 1.6 s (LCL) and 1.2 s (LCR)
before actual lane change actions.

8.2 Outlook

The human behaviors discussed in this thesis are lane changing behaviors. In future
work, other human behaviors can be used to test and validate the proposed approach.

The driving scenarios are built based on the driving process on a highway. Other
driving environment or complex real-world applications can be considered in the
future.
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In addition to the prediction of ego-vehicle behavior (a single driver behavior), the
prediction and recognition of multi-vehicle interaction is also an important topic of
current researches. Reliable predicting the movement of surrounding vehicles plays
an important role in the development of autonomous vehicles. This thesis does not
detail this point which can be considered as a relevant influencing factor in future
work.

In the full scale training loop, a quantized prefilter is applied for mapping the vehicles
environment to quantized states. Thus, other different types of prefilters can be
studied in future work.
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[DS19b] Deng, Q.; Söffker, D.: Modeling and Prediction of Human Behaviors
based on Driving Data using Multi-Layer HMMs. IEEE Transac-
tions on Intelligent Transportation Systems Conference (ITSC 2019),
Auckland, New Zealand, 2019, pp. 2014-2019.



120 BIBLIOGRAPHY

Workshop presentations
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