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Kurzfassung

Fortschritte in Wissenschaft und Technik haben zur Entwicklung komplexer, sicher-
heitskritischer und kapitalintensiver Systeme und Prozesse geführt. Die Gewährleis-
tung eines optimalen und sicheren Betriebs dieser technischen Systeme und Prozesse
erfordert die Entwicklung von Konzepten zur Qualitätsüberwachung und Kontrolle.
Die während der Überwachung und Aufsicht gewonnenen Daten können zur Di-
agnose des Systemzustands ausgewertet werden. Die Auswahl eines Evaluierungs-
ansatzes für eine Anwendung kann eine Leistungsbewertung erfordern. In dieser
Arbeit wird ein neuer Evaluierungsansatz entwickelt, der auf dem Zuverlässigkeits-
maß Probability of Detection (POD) basiert. Die POD ist eine probabilistische
Methode zur Quantifizierung der Zuverlässigkeit eines Verfahrens unter Berücksich-
tigung der statistischen Variabilität der Sensor- und Messeigenschaften. Das a90/95-
Kriterium, das die Wahrscheinlichkeit einer Erkennung von 90 % bei einem Kon-
fidenzniveau von 95 % darstellt, wird mit Messungen und den damit verbundenen
Ergebnissen untersucht. Die Verallgemeinerungsfähigkeit des entwickelten Ansatzes
wird in multidisziplinären Bereichen demonstriert: schwingungsbasiertes Structural
Health Monitoring (SHM), Maschinelles Lernen (ML) und Computer Vision (CV)
Klassifizierungsansätze.

Structural Health Monitoring-Systeme basieren auf geeigneten Sensortechniken, die
eine Online- und Offline-Überwachung von technischen Systemen ermöglichen. Für
schwingungsbasierte Überwachungsansätze kann der POD-Ansatz nicht in ähnlicher
Weise angewendet werden. Dies resultiert hauptsächlich aus der Komplexität des
dynamischen Verhaltens der überwachten Systeme in Bezug auf Fehler, Sensor-
position (Beobachtbarkeit) und der damit verbundenen Merkmalsextraktion oder
Überwachungsaufgabe. In dieser Forschungsarbeit wird die POD-Bewertung der
schwingungsbasierten Fehlererkennung von zu überwachenden elastisch mechanis-
chen Strukturen entwickelt. Neben einer grundsätzlichen Diskussion des Prob-
lems, die als Einführung dient, wird ein Beispiel mit verschiedenen Sensortypen in
Kombination mit mechanischen Modifikationen eines elastischen Balkens vorgestellt.
Basierend auf der Analyse eines geeignet gewählten Merkmals und in Abhängigkeit
von den betrachteten mechanischen Moden wird die Effizienz und der Mangel der
verschiedenen Kombinationen aufgezeigt. Auf der Grundlage des vorgeschlagenen
Ansatzes wird ein neuer Einblick in die Nützlichkeit verschiedener Kombinatio-
nen von Sensortyp und Fehlerposition möglich. Zur Verbesserung der Detektion-
squalität werden geeignete Annahmen in Kombination mit der Sensor/Informations-
fusion auf die merkmalsbasierte Analyse als Detektionsaufgabe mittels Schwingungs-
messungen angewendet. Mit Hilfe der Rauschanalyse kann ein Kompromiss zwis-
chen der Fehlalarmrate (PFP) und der mit einem Zuverlässigkeitswert von a90/95 zu
detektierenden Fehlergröe erreicht werden.

Ansätze des Maschinellen Lernens (ML) bieten die Möglichkeit, automatisch aus
Erfahrungen zu lernen und sich zu verbessern. Die ML-Ansätze sind funktionale
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Werkzeuge, die Klassifizierungsfähigkeiten ermöglichen. In diesem Sinn ist auch die
auf Maschinellem Lernen basierende Erkennung komplexer Fahrsituationen sowohl
für automatisierte Fahrzeuge als auch für menschliche Fahrer von zunehmendem In-
teresse. In diesem Bereich müssen auf der Basis technischer Sensoren ein komplexes
Szenario und die damit verbundenen dynamischen Veränderungen interpretiert und
klassifiziert werden. Die Bewertung dieser Klassifikatoren spielt eine entscheidende
Rolle bei der Auswahl für eine bestimmte Aufgabe. In dieser Arbeit wird ein
neuer Ansatz entwickelt, der einen neuen Bewertungsmastab für ML-Ansätze, die
als Klassifikatoren verwendet werden, ermöglicht. Gegenwärtige Methoden verwen-
den Maße wie die Receiver Operating Characteristic (ROC)-Kurve, die visuell und
grafisch die Leistung von Klassifikatoren darstellt. Neben dem Verhältnis von Erken-
nungsrate und Fehlalarmrate (kombiniert als ROC-Kurve) werden andere Eigen-
schaften, die sich auf Prozessparameter beziehen, nicht in den Evaluierungsprozess
integriert. In dieser Forschung wird eine neue Evaluierungsmethode entwickelt,
die auf dem Zuverlässigkeitsmaß Probability of Detection (POD) basiert und den
Einfluss weiterer Prozessparameter auf die Klassifikationsergebnisse integriert und
diskutiert. Als Beispiel zur Veranschaulichung wird der Vergleich von Klassifika-
toren, die auf das Vorhersageverhalten von Fahrern angewendet werden, herangezo-
gen. Der zeitliche Abstand der Entscheidungsmomente zum Zeitpunkt der Entschei-
dung selbst wird als Prozessparameter für den Klassifizierungsprozess verwendet.
Der vorgeschlagene Ansatz erlaubt den Vergleich der Eignung von Künstlichen Neu-
ronalen Netzen, Hidden-Markov-Modellen, Random Forest, Support Vector Ma-
chines und verbesserten Versionen dieser Klassifikatoren im Hinblick auf die Zu-
verlässigkeit der zugehörigen Klassifikation bevorstehender Ereignisse vor den realen
Ereignissen, hier: menschliche Entscheidungen auf der Grundlage des visuellen Ein-
drucks von Veränderungen innerhalb der Umgebung. Folglich können auf der Grund-
lage der POD-bezogenen Auswertung die verschiedenen Klassifikatoren hinsichtlich
ihrer Fähigkeit, das richtige Verhalten als Funktion der Zeit vor dem Ereignis selbst
vorherzusagen, klar unterschieden werden.

Bei Computer Vision-Systemen ist die Bildklassifizierung und erkennung eine wichtige
Aufgabe. Deep Convolutional Neural Network (CNN) ist einer der vielversprechen-
den Klassifikatoren fr die groß flächige Bildklassifikation. Es ist bekannt, dass die
Leistung der Bildklassifikation stark von den Problemeigenschaften und den Prozess-
parametern abhängt. Diese Arbeit konzentriert sich auf die explizite und genaue
Bewertung von CNN-Klassifikatoren bei der Bilderkennung. Lösungsvorschlag ist
die Implementierung des POD-Ansatzes, der die Auswertung weiterer Bildparame-
ter erlaubt, die die Klassifikationsergebnisse beeinflussen, und damit auch den Ver-
gleich von Klassifikatoren, die sich je nach Klassifikationsaufgabe auf den gleichen
Parameter beziehen. Die vorgeschlagene Evaluierungsmethode wird an einer Reihe
von Klassifikatoren implementiert und Vergleiche von Parametern mit den besten
Detektionsfähigkeiten werden durchgeführt.
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Abstract

Advancements in science and technology has led to development of complex, safety-
critical, and capital-intensive systems and processes. To ensure optimal and safe
operations of these technical systems and processes requires the development of
quality monitoring and supervision approaches. Data obtained during monitoring
and supervision can be evaluated for state-of-health diagnosis. The selection of an
evaluation approach for an application may require performance assessment. In
this thesis a new evaluation approach based on the Probability of Detection (POD)
reliability measure is developed. The POD is a probabilistic method to quantify
the reliability of a procedure taking into account statistical variability of sensor
and measurements properties. The a90/95-criteria representing probability of 90 %
detection at a confidence level of 95 % is examined to the measurements and related
outcomes. The generalizable capability of the developed approach is demonstrated
in multidisciplinary fields: vibration-based Structural Health Monitoring (SHM),
Machine Learning (ML), and Computer Vision (CV) classification approaches.

Structural Health Monitoring systems are based on suitable sensor techniques al-
lowing online and offline supervision of technical systems. The quantification of
sensors/measurement devices is a key issue for qualifying their effectiveness and ef-
ficiency. For vibration-based supervision approaches the POD approach can not be
applied similarly. This results mainly from the complexity of the dynamical behav-
ior of systems monitored in relation to faults, sensors position (observability), and
the related feature extraction or monitoring task. In this research, POD evaluation
of vibration-based fault detection of elastic mechanical structures to be monitored
is developed. Beside a principal discussion of the problem serving as introduction,
an example using different sensor types in combination with mechanical modifica-
tions of an elastic beam is presented. Based on the analysis of a suitably chosen
feature and dependent on the mechanical modes considered, the efficiency and de-
ficiency of the different combinations are shown. Based on the proposed approach,
a new insight to the usefulness of different sensor types and fault position combi-
nation becomes possible. To improve the detection quality, suitable assumptions
in combination with sensor/information fusion are applied to feature-based analysis
as detection task using vibration measurements. Dependent on noise analysis, a
trade-off between flaw size detection and probability of falsely characterizing a fault
with a90/95 reliability level can be attained.

Machine learning approaches provide the ability to automatically learn and improve
from experiences. These ML approaches are functional tools that allow classification
abilities. In this sense also the machine learning-based recognition of complex driv-
ing situations for automated vehicles as well as for human drivers is of increasing
interest. In this field based on technical sensors a complex scenario and related dy-
namical changes have to be interpreted and classified. Evaluation of these classifiers
plays a crucial role in their selection for a specific task. In this thesis a new approach
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is established permitting a new evaluation measure to ML approaches used as clas-
sifiers. Current methods utilize measures like the receiver operating characteristic
(ROC) providing visually and graphically the performance of classifiers. Beside the
ratio of detection rate and false alarm rate (combined as ROC), other properties
related to process parameters are not integrated in the evaluation process. In this
research, a new evaluation method based on the Probability of detection (POD) re-
liability measure is developed integrating and discussing the effect of further process
parameters on the classification results. As an example for illustration the com-
parison of classifiers applied to driver prediction behavior is used. The temporal
distance of decisions moments to the instant of decision itself is used as process pa-
rameter for the classification process. The proposed approach is used to compare the
suitability of Artificial Neural Networks, Hidden Markov Models, Random Forest,
Support Vector Machines, and improved versions of these classifiers with respect to
the reliability of related classification of upcoming events prior to the real ones, here:
human decisions based on the visual impression of changes within the environment.
Consequently, based on the POD-related evaluation the different classifiers can be
clearly distinguished with respect to their ability to predict the correct behavior as
a function of time prior to the event itself.

In Computer Vision systems, image classification and detection is an important task.
Deep Convolutional Neural Network (CNN) is a suitable classifier for large-scale im-
age classification. It is well-known that image classification performance strongly
depends on problem characteristics and vary with process parameters. This work
focuses on explicit and accurate evaluation of CNN classifiers in image detection.
The POD approach is implemented allowing the evaluation of further image parame-
ters affecting the classification results and subsequently the comparison of classifiers
related to the same parameter depending on classification task. The proposed eval-
uation method is implemented on a number of classifiers and comparisons made on
parameters with the best detection capabilities.
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1 Introduction

1.1 Motivation and problem statement

Faults, defects, and local changes present in components and systems may affect its
structural and functional integrity. From this, it can be concluded that the struc-
tural/functional integrity and the quality of detection and diagnosis approaches are
connected. Ensuring structural and functional safety guarantee optimal function-
ing. The aim of Fault Detection and Isolation (FDI) techniques and Structural
Health Monitoring (SHM) approaches are to ensure optimal system performance.
Fault Detection and Isolation methods can primarily be grouped into four categories:
signal-based, model-based, data driven, and hybrid approaches. Structural health
monitoring on the other hand is the process of implementing a damage detection
and characterization strategy for monitoring engineering structures [KN05]. Sev-
eral FDI and SHM procedures exist with vibration-based health monitoring a well-
known and established approach. Vibration-based diagnosis use structural behavior
for fault diagnosis and its based on the principle that structural defects result in
changes in dynamical properties. Fault detection is usually based on displacement,
velocity, or acceleration measurements at a point on the component/system [Fri05].
Although useful analysis may consider multipoint measurements and observable ef-
fects [ARS20].

Monitoring and supervision of vibrating structures is complex. The complexity is
related to data acquisition and cleansing, feature extraction, and/or statistical mod-
eling for feature classification [FDN01] [FDDN99]. Data acquisition is mainly based
on hardware and software systems and defines the data to be acquired, the trans-
mission medium, and the storage devices [SFHW01] [FDDN99]. Data cleansing
involves data normalization procedures. Sensors form an integral part of the hard-
ware system. Selection of appropriate types of sensors, quantities, and locations
need to be effectively addressed. This ensures optimal sensor placement and pre-
vent redundancy. Feature extraction details the selection and processing of features
sensitive to a specific fault type. This is important due to different sensitivity levels
of features to different types of faults. A suitable solution may be to select different
features and conclude on the most sensitive to a fault present. Feature selection
also addresses statistical distribution of features and data condensation [FDDN99].
The development of statistical models for change/fault classification completes the
process in many instances though other processes may be implemented. Monitor-
ing dynamic systems requires all outlined phases to be examined in a consistent
and coherent manner [ARS20], however techniques to accomplish this needs to be
developed.

Decision making for diagnosis systems requires the collection of data from the system
to be monitored and proper data interpretation. This requires data to be processed
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to easily understood form for appropriate decisions to be made. Current evaluation
of FDI and SHM approaches are based mainly on classification-related performance
measures. For this, related numeric and graphical measures are used. Typical evalu-
ation considers a single numeric value describing also the uncertainty of statements.
However, contemporary diagnosis systems are concerned with how the characteris-
tics of the fault, change the probability of detecting it. This implies the influence of
fault characteristics or process parameter are an essential aspect of the evaluation
process. This thesis aims to address this important but often neglected component
in the evaluation process.
In the field of Nondestructive Testing (NDT) the ability to detect faults and knowl-
edge of the fault type, location, and dimensions are critical factors in the reliable
application of fitness-for-service methods. It is therefore necessary to quantify the
effectiveness of NDT methods both to detect and size faults. The concept of Proba-
bility of Detection (POD) is used widely in many industries to establish the capabil-
ity of an inspection procedure. This is generally expressed as a POD curve, which
relates the likelihood of detection to a characteristic parameter of the flaw, usually
its size. The usefulness and capability of the POD to detect and quantify faults is
exploited in this work.
The goal of this research is threefold. The first is to adapt standard POD mea-
surement and implementation strategy to vibration-based health monitoring and
therefore integrate vibration analysis results (Results already published in [ARS20],
[ARS18b], [ARS18a], and [ARS18c]). The idea is to discuss fault diagnostics from
a POD-oriented view as shown in Fig. 1.1.
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Figure 1.1: Adaptation and implementation strategy [ARS20]

Second is to implement a novel fusion strategy to fuse POD results (Results pub-
lished in [ARS20]). Conventional FDI/SHM fusion strategies usually consider pre-
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cision values as performance measure, which is considered in the fusion process. In
this research, it is possible to use measurable POD values as replaceable for the
precision value, because both define a performance measure about the reliability
of an assignment. Using the fusion approach, the probability of the existence of a
fault can be obtained based on the individual performance and assignments of the
sensor-/feature-based statements.

Thirdly, the new evaluation approach is extended to other technological fields with
different implementation strategies. The purpose of the extension is to investigate
the generalization capabilities of the POD approach and also use the proposed ap-
proach to address the limitation of the evaluation methods in these fields (Results
already published/submitted in [ADS19], [ADS20b] and [BAMS20]).

1.2 Thesis organization

In this thesis a new performance evaluation and fusion methods (obtained in coop-
eration with Rothe [Rot19] [ARS20]) are developed permitting the integration and
assessment of the effect of process parameters on the evaluation results. The thesis
comprises of six chapters. Parts of this work have been published/submitted to
journals [ARS20], [ADS20b], and [BAMS20] or have been published in proceedings
of conferences [ARS18a], [ARS18b], [ARS18c], and [ADS19]. In the current chapter
an introduction to the challenges associated with vibration-based FDI/SHM and
performance assessment of machine learning and computer vision classification ap-
proaches are stated. Open questions and problems are clearly expressed. The second
chapter presents a state of the art review of commonly used vibration-based FDI and
SHM. Classification-related evaluation approaches are also examined. The existing
research gap are identified. Chapter two ends with a new evaluation approach based
on the Probability of Detection (POD) measure. The theoretical framework is pre-
sented. Chapter three focuses on the adaptation, implementation, and analysis of
the newly developed POD in vibration-based SHM. Using a benchmark test rig, the
principal difficulty associated with implementation of POD in dynamic systems is
demonstrated. A newly defined technique [ARS20] to fuse POD values using proba-
bility estimations instead of precision values as performance measure are considered
in the fusion process. Using the fusion approach, the probability of the existence
of a fault can be obtained based on the individual performance and assignments of
the sensor-/feature-based statement. A POD view to fault diagnosis is also intro-
duced. Noise analysis based discussion and a trade-off between decision threshold,
Probability of False Positive (PFP) and POD concludes the chapter. In the fourth
chapter, evaluation measures like the Receiver Operating Characteristic (ROC) and
Precision Recall (PR) curves are examined. These known evaluation curves do not
incorporate the effect of process parameter in the evaluation process. The POD
is extended to the evaluation of machine learning approaches and incorporates the
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effect of process parameter on the classification results. The fifth chapter provides
a concept to evaluate classifiers used in computer vision systems for object classifi-
cation and detection. Explicit and accurate evaluation of CNN classifiers in image
detection is examined using the POD. The introduced approach is experimentally
evaluated for vision-based classification results of CNN approach considering differ-
ent image parameters. Finally, the summary of this thesis, conclusions, and future
work are outlined in chapter six.
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2 Literature review and theoretical background

Before discussing the new diagnostic and evaluation techniques developed in this
thesis, it is important to examine current and existing approaches proposed in liter-
ature. The purpose is to identify existing research gap and to avoid repeating known
knowledge. Structural Health Monitoring (SHM) is relevant in ensuring the safe and
optimal operation of elastic mechanical structures. These SHM-systems are used for
fault detection, localization, severity quantification and in some cases estimation of
remaining useful life. Many statistical models are used to solve detection and lo-
calization problems however reliability of diagnosis are often not considered. This
chapter presents a state of the art on current Fault Detection and Isolation (FDI)
techniques applied to vibrating mechanical systems. A general framework for fault
diagnosis is presented. Reliability of diagnostic statements and the effectiveness
of approaches is critically examined. Focus and limitations of existing approaches
along with the outlook is addressed. The commonly used reliability assessment of
Nondestructive testing (NDT) procedure is presented. This NDT reliability mea-
sure is based on the Probability of Detection (POD). The theoretical framework of
the POD is presented and proposed as a reliability measure albeit different imple-
mentation strategies. Improvement of diagnosis techniques by integrating new ideas
(filtering, fusion) with classical approaches is proposed.

The content, figures, and tables in this chapter are based on preparation for publi-
cation of [AS20].

2.1 Introduction

Elastic mechanical materials are utilized in many engineering structures. Materi-
als that readily come to mind are Aluminum, Carbon Fiber Reinforced Polymers
(CFRP) and some grades of steel. The characteristics of these materials that make
them attractive to these fields are high strength to weight ratio, resistivity to cor-
rosion, and less susceptibility to brittle fracture. There are also some engineering
structures that exhibit elastic behavior. These structures adapt to workload changes
so far as the elastic threshold is not exceeded and tend to exhibit high vibrational
modes. Notable structures are skyscrapers, bridges, fuselage of aircrafts, turbo-
machineries, blades and tower of wind turbines. The presence of defects in these
elastic systems may affect its structural and functional integrity. From this, it can
be concluded that the structural/functional integrity together with the quality of
condition monitoring are connected. A fault represent a change or deviation from
an acceptable system/process condition [Ise06]. The change could be gradual or
abrupt [BN+93] and the extent either local or global [Ise06] [FK09] [CFL03]. Moni-
toring these deviations require formulation of appropriate diagnostic approaches to
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ensure optimal performance and fault diagnosis systems aims to achieve this opti-
mality [KN05] [FW07]. Several SHM procedures exist with vibration-based health
monitoring a well-established and utilized technique. Vibration-based SHM use
structural properties for fault diagnosis and operates on the principle that structural
defects result in changes in dynamical properties. This change in structural prop-
erties can be utilized for diagnostic purposes. Fault identification is mainly based
on displacement, velocity, or acceleration measurements at a single point [Fri05];
however, useful assessments may include observable effects and multipoint measure-
ments [ARS20] [ARS18a] [ARS18b].
State of health monitoring of elastic structures are complex. The complexity is usu-
ally related to three processes: data acquisition, feature extraction, and/or statisti-
cal modeling for feature classification [FDN01]. Data acquisition is mainly based on
hardware and software systems. Depending on the system monitored, the hardware
system could consist of different components. However an important and common
component of the hardware system are sensors. Sensors are devices to acquire data
for onward processing by other components in the acquisition system. The selec-
tion of suitable types of sensors, quantities, and locations need to be effectively
addressed. This ensures optimal sensor placement and prevent redundancy.
Feature extraction details the selection and processing of features. This is important
due to different sensitivity levels of features to faults. Depending on the applica-
tion, feature extraction is performed in time, frequency, or time-frequency domain
transforming a measured signal to a new representative form for easy and reliable
classification. The development of statistical models for fault classification completes
the process in many instances. Statistical modeling techniques implement learning
algorithms to normalize data and distribution of feature extracted. Operational and
environmental effects can conceal damage-related changes. In [FDCS96] [DFG96]
methods to distinguish changes caused by defects and environmental conditions are
presented.
Structural Health Monitoring (SHM) is the process of implementing a damage de-
tection and characterization strategy for monitoring engineering structures [KN05]
[FW07]. Damage in this context describes physical changes that adversely affects
the system performance [FW07]. The field of SHM has become an essential aspect
of industrial practice to ensure safe operations and improve maintenance [FDN01].
It is noteworthy that the evolution of the damage and changes in the dynamics of
the structure act on different time scales [Fri05]. The evolution of the damage is
slower compared to the vibration of the structure except for impact damage. The
dynamics of vibrating systems changes due to effects like altering the system prop-
erties possibly leading to changes in the mass, stiffness, and damping properties.
Changes in the structure affects its modal properties. The modal properties can be
described by mass M , damping C, and stiffness K by the relation

Mẍ+ Cẋ+Kx = F (t),
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where x, ẋ, and ẍ represent the displacement, velocity, and acceleration vectors
respectively, with F (t) representing forces and moments. The above mentioned
formulation is mainly restricted to the class of linear systems. Transformation into
the modal domain yields the eigenvalue equation for the ith mode as

(−ω2M + jω̄iC +K)φ̄i = 0,

where ω̄i is the ith complex eigenvalue with it’s imaginary part corresponding to the
natural frequency ωi and φ̄i is the ith complex mode shape vector with the real part
corresponding to the normalized mode shape φi.

Decisions about the existence of deviations (fault detection) and assignment of
causes (diagnosis) have to be made. Several FDI techniques are currently uti-
lized to detect and isolate faults. These methods can be primarily grouped into
four categories: signal-based, model-based, data driven, and hybrid approaches.
Signal-based approaches utilize output signals. Fault diagnosis models compare raw
or filtered signals to thresholds and conclude to the presence of faults. Model-
based approaches use beside output signals, input signals and requires a model
to be built (parameter identification), to be assumed (observer), or to be suitably
established [SWWS16] [IB97]. Data-driven approaches formulate implicit relation-
ships by trained models through analysis of fault-free data obtained during regular
operations [IB97]. These models are used to estimate the behavior of variables
to be compared with those obtained from measurements [MJ11] [DG13] [FK09]
[Qin12] [RJS15]. Hybrid approaches combine model-based and model-free tech-
niques [DG13] [LMSM+16] [RJS15].

Vibration-based feature extraction can be performed in time, frequency or time-
frequency domain of the signal [ABSC11] [Can10]. In time domain representa-
tion, the data are displayed as a function of time. Fault diagnosis in the time
domain usually utilize statistical techniques [FS09] [GC09]. Time series methods
are common in vibration fault analysis [KF10] [CB08] [KF13]. In the frequency
domain, the Fourier transform (FT) is the most basic and appropriate for sparse
representation of a signal [Che15]. The FT maps a signal into its frequency com-
ponents [Che15]. Time-frequency signal processing is a set of signal processing
methods, techniques, and algorithms in which the two variables time and frequency
are used concurrently [ABSC11] [Fug09] [Mal99] [Sta10] [DSJ08] [AB12]. This tech-
nique deviates from the classical methodologies in which time or frequency represen-
tation is used independent of the other [BLW+87] [SHZ+14] [HSL+98]. Short Time
Fourier Transform (STFT) is a widely used time-frequency extraction tool due to
its low computational costs in comparison to other time-frequency signal processing
tools [MS08] [LW98] [WD99]. Vibration-based feature extraction methods in specific
domains are shown in Tab. 2.1.
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Table 2.1: Vibration-based feature extraction techniques [Mar12]

Time Frequency Time-Frequency
Fractal analysis HFRT Wavelet packet trans.

Shock pulse method Envelope Analysis WVD
Time series averaging Cepstrum analysis WT

Statistical features Adaptive noise cancellation MFCCs
RMS Spectral analysis EMD

Peak value Freq. averaging techniques Spectral Kurtosis
Skewness PSD CWT
Kurtosis Statistical features DWT

Crest factor FC frequency center STFT

2.2 FDI approaches applied to elastic mechanical systems

This section details vibration-based FDI approaches implemented in the fault diag-
nosis of elastic structures. These methods can be primarily grouped into frequency
based-methods, mode shape based-methods, curvature mode shape-based methods,
and methods that combine mode shapes and frequency. There are contemporary
methods based mainly on machine learning approaches and these are classified dif-
ferently.

2.2.1 Frequency based-methods

There are sizable literature related to fault detection using shifts in resonant fre-
quencies. The knowledge that changes in physical properties results in changes in
resonant frequencies contributed significantly to the use of this method for dam-
age identification. A very detailed review and reference list can be found in Doe-
bling [DFPS96]. The use of frequency shifts have practical limitations in many
applications because it is difficult to distinguish frequency shifts caused by faults
and those produced by changes in environmental conditions. The somewhat low
sensitivity of frequency shifts to damage requires either very precise measurements
or large levels of damage [DFP+98]. Studies in the late 1990s [FDCS96] [DFG96]
have depicted that resonant frequencies have less statistical variation from random
error sources in comparison to other modal parameters. For example, in offshore
platforms damage-induced frequency shifts are difficult to distinguish from shifts re-
sulting from increased mass from marine growth [DFP+98]. In [PGO14], vibration
testing of composite laminates to detect impact damage is presented. Drop-weight
impact experiments are carried out on 44 carbon fibre reinforced composite lami-
nated specimens with incident energy levels ranging from 6.6 to 70 J. This is fol-
lowed by compression after impact (CAI) test to determine the compressive residual
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strength of the specimen. Frequency shift is used as an indicator for interlaminar
damage onset (IDO) and barely visible impact damage (BVID). The significant vari-
ations is observed in the 4th, 8th, 9th, 10th and 11th transverse modes and in the
23rd and 24th in-plane modes. The other damage indices used are the mode shape
changes, curvature mode shape changes and residual load-bearing capacity. Detec-
tion of BVID in aircraft composite structures based on nonlinear elastic material
behaviour of damaged materials is addressed in [PM09]. The specimen used for the
experiment are carbon fiber composite plates. Damage is introduced into the plates
by low velocity impact. Two damage indices: a)resonant frequency shift b)presence
of harmonics and sidebands, are used. This is based on the principle that the pres-
ence of damage results in phenomena like hysteresis. The damaged material can be
described by the relation

σ =

∫
K(ε, ε̇)dε,

where K(ε, ε̇) is the nonlinear modulus. The hysteric modulus is given by

K(ε, ε̇) = Ko(1− βε− δε2 − α[∆ε+ ε(t)sign(ε̇) + ...]),

where K0 is the linear modulus, ∆ε is the strain change amplitude, α is the material
hysteresis measure, β and δ nonlinear coefficients to be determined. The hysterical
behavior of the damaged material is analyzed by correlating the third harmonic
amplitude with the fundamental amplitude. The authors however proposed the
validation of the approach for different materials and lay-up configuration.

2.2.2 Mode shape based-methods

West [Wes86] introduced the use of mode shape information for structural dam-
age localization without prior FEM usage. The author uses the Modal Assurance
Criteria (MAC) to determine the correlation between modes from the test of an
undamaged space shuttle orbiter body flap and the modes from the flap after it has
been exposed to acoustic loading. The change in MAC across different partition-
ing techniques is used to localize the defect. Fox [Fox92] demonstrate that mode
shape changes using single number such as MAC are relatively insensitive to saw
cut damage in a beam. A MAC approach based on measurement points close to
a node for a particular mode, is found to be a more sensitive indicator of changes
in the mode shape. When examining eigenfrequency, graphical comparisons of rel-
ative changes in mode shapes proved to be a better way of detecting fault location.
In [May91] a method for model error localization based on mode shape changes
is presented. The method is based on structural translational and rotational error
checking (STRECH). By taking ratios of relative modal displacements, STRECH as-
sess the accuracy of the structural stiffness between two different structural degrees
of freedom (DOF). The STRECH approach can be applied to compare the results of
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a test with an original FEM or to compare the results of two tests. In [Liu13], modal
analysis of the complete blade-cabin-tower system is presented. The coupling of the
entire blade-cabin-tower system by developing coordinate systems and kinetic equa-
tions are established as a tool for vibration fault diagnosis. The natural frequencies
of the individual components are calculated based on the coordinate system and
the random wind vibration analyzed. The introduced approach provides a means to
analyze the complete system without individual component analysis. In [DSP+16],
two methods: a) coordinate modal assurance criterion (COMAC) and b) modal
strain energy method for the detection of damage in a composite helicopter main
rotor blade are compared. The PZL SW-3 Sokol helicopter blade is experimented
on. The blade spans approximately 7 m with a varying cross section. To obtain a
free-free boundary condition, the blade is suspended with two elastic cords at the
ends. Acceleration measurements are taken at 55 points using 55 accelerometers.
Beam-wise and torsional dynamics are captured with 49 accelerometers and the in
plane dynamics measured by 6 accelerometers. An electrodynamic shaker is used
as a source of excitation and the pristine blade accelerations (baseline data) mea-
sured by the accelerometers. A 300 g mass is attached on the blade to simulate
mass unbalance and a second experiment undertaken. PolyMAX frequency domain
identification method is used to identify the vibration modes of the blade. From
the results, modal strain method is more sensitive and precise in localizing the mass
but noisier compared to the COMAC. The authors propose the use of strain gages
or Fiber Bragg Grating sensors, to directly measure strain modes for onward strain
energy formulation.

2.2.3 Curvature mode shape-based methods

The use of mode shape derivatives, such as curvature is an alternative to obtain in-
formation about structural damage. For elastic structures such as beams,plates, and
shells, there is a direct relationship between curvature and bending strain [DFP+98].
Pandey et al. [PBS91] show that absolute changes in mode shape curvature is a good
indicator of damage for FEM beam models considered. The curvature mode values
are calculated from the displacement mode shape using the central difference opera-
tor. In [SKT92], the authors present a method based on the decrease in modal strain
energy between two structural DOF, as defined by the curvature of the measured
mode shapes. Topole and Stubbs [TS95a] [TS95b] examine the feasibility of using
a limited set of modal parameters for structural damage detection. In [SK96] the
authors examine the feasibility of localizing damage using curvature mode shape
values without baseline modal parameters. Chance et al. [CTW94] investigated
and concluded that numerical computation of curvature from mode shapes resulted
in unacceptable errors. They used measured strains instead to measure curvature
directly, which improved the results.
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2.2.4 Methods that combine mode shapes and frequency

Using single features for diagnosis purposes may not be effective in some applica-
tions. To overcome this limitation, hybrid approaches are implemented. One such
hybrid approach is the combination of frequency and mode shapes. Utilization of
modal analysis to detect fatigue damage in Aluminum cantilever beam is presented
in [RKP11]. The natural frequency and mode shapes (measured or modeled) from
frequency response function is used as damage indicator. It is shown that the pro-
posed technique is suitable for damage localization in beam-like structures.

In [YS13], a review on testing, inspection and monitoring approaches for wind tur-
bine blades is presented. The survey indicate that three mechanical property testing
procedures exist: static testing, fatigue testing, and modal testing. In static testing,
loads are applied statically to determine the ultimate strength of the blade. This is
done to examine the blades ability to withstand torrential winds. In fatigue test-
ing is performed to investigate structural properties, fatigue strength, and failure
modes. Modal testing characterize the damping and dynamic properties like natu-
ral frequency and mode shape. Another category, full scale testing, incorporates all
three techniques. The authors predict full scale testing will become the most signif-
icant performance validation method. Also real-time, remote, wireless, and smart
SHM systems are predicted to play an important role.

2.2.5 Machine learning approaches

Most contemporary fault diagnosis approaches are based on machine learning meth-
ods. Application of machine learning methods can be found in [JVW10] [SSB10].
In [TCO08], modified PCA and pattern recognition algorithm is used in the detec-
tion of faults in a scaled finite element Aluminum alloy model of an aircraft wing.
The wing structure is divided into five sections. Two forms of faults are considered:
cracks and distributed damage (introduced into a section by stiffness reduction).
The modified PCA reduces the dimensions of the frequency response function and
projects the data into a plane that makes the classification task easier. The 1-NN
classifier based on the Euclidean distance between two feature vectors is used to
classify the feature as damaged or not. The authors suggest the methodology is
suitable for structural damage detection but proposed the implementation of the
approach on experimental data.

In [BS15], a review on the non-linearities in the vibrations of elastic structures
induced by breathing crack is presented. The structures focused on are shafts,
beams, and plates. The paper suggests advantages of using non-linear vibration
effects in the case of shafts and beams because of the high sensitivity to the effect
of breathing crack, but same can not be said for plate-like structures. Since cracks
in metallic plates are mostly through-the-thickness cracks and does not constitute
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breathing cracks. It is concluded that none of the reviewed methods has universal
applicability and that a method is selected based on the fault type. The cons in
using these approaches are the high modeling complexity and exhausting calculation.
The authors propose mathematical signal processing like wavelets, novelty detection
approaches among others.

Despite the advances in vibration-based SHM applied to elastic mechanical struc-
tures, transition from theory to practical implementation, early detection of faults,
quantification of fault severity, and reliability assessment of diagnostic statements
remains an open problem [SWWS16] [KN05].

2.3 Evaluation of FDI approaches

Performance evaluation and analysis of FDI approaches are mainly based on clas-
sification related performance measures. These assessments are related to either a
numeric measure or a graphical representation. The numeric measures are based
on the calculation of True Positives (TPs), False Positives (FPs), False Negatives
(FNs), and True Negatives (TNs). They can be illustrated in a confusion matrix
(Fig. 2.1) as a basic performance metric [Sus04]. Advanced evaluation metrics can

Figure 2.1: Existing evaluation approaches based on confusion matrix

be calculated from the basic numeric measures. These advanced metrics include
sensitivity, negative predictive value, positive predictive value, precision, specificity,
accuracy among others. Selection of a suitable numeric measure normally depends
on the classification purpose.

There exist many graphical assessment techniques with the Receiver Operating
Characteristic (ROC) and Precision-recall (PR) curve the predominantly used. The
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ROC is a graph indicating the performance of a classification model as its discrim-
ination threshold is varied. The ROC is constructed with Detection Rate (DR)
against the False Alarm Rate (FAR). The ROC is a probabilistic curve and the area
under the ROC (AUC) represents degree of separability. The AUC tells how much
a model is capable of distinguishing between classes. The PR curve on the other
hand is a plot of the precision and the recall for different probability thresholds.
The PR curve is recommended for imbalance class data. Despite the popularity of
both curves, the influence of flaw characteristics on the classification results are not
considered. This thesis attempts to solve this limitation using the Probability of
Detection reliability measure.

The principal aim of POD is to specify a damage size, which can be detected/missed
applying a specific NDT method to be evaluated, taking into account statistical
variability of the sensor and measurement properties. Data used in producing POD
curves are categorized by the main variables combined in the POD approach. The
POD development and implementation strategies are outlined in the next section.

2.3.1 Probability of Detection

The introduction of damage tolerance decision rules as a way to determine the
integrity of a component resulted in the institution of statistical tools for assessing
the detection probabilities for NDT systems [SUS13]. The first general requirements
to quantify the capabilities of NDT was established with the design and production
of National Aeronautics and Space Administration (NASA) space shuttle system in
1969 [Geo07]. The methods and designs introduced by NASA were soon adopted by
the United States Air Force (USAF) in the early 1970s [PH]. The background and
evolution of the POD are indicated in Tab. 2.2.

Table 2.2: Evolution of the POD measure

Approach Property Developer Year
Moving average Hit/miss NASA 1969
Binomial stats Hit/miss Yee et al. 1976
Log. regression Hit/miss USAF 1978

Cum. distribution Hit/miss Berens & Havey 1988

Automated EC
Hit/miss

Target response
Packman et al. 19991

Probit, Logit
Hit/Miss

Target response
Berens 1993

MAPOD Hit/miss Thompson & Meeker 1997
Cum. distribution

w/ imp. stab. bounds
Hit/Miss

Target response
DOD:

MIL-HDBK-1823A
2009
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Since these pioneering groundworks, extensive research activity and experimental
programs have followed over the course of the years. Probability of Detection is now
an established certification tool [Geo07]. Data used in producing POD curves are
categorized by the main POD controlling factors/variables. These factors/variables
are either discrete or continuous and can be classified as [MHA09] [Geo07]

1. Target response: systems which provide quantitative measure of target and

2. Hit/miss: produce binary statement or qualitative information about the ex-
istence of a target.

The theoretical framework for both approaches are illustrated below.

2.3.2 Target response approach to POD

The target response approach is used when there exist a relationship between a
dependent function and an independent variable [MHA09]. In the derivation of
the POD curve, a predictive modeling technique is required. One such method
is regression analysis of the data gathered [MHA09] [Ann17] [GA10]. The data
distribution could be linear or not. A strategy to linearize the data distribution
is by plotting four models: X vs Y, log X vs Y, log Y vs X, and log X vs log Y.
The model with best linearity and variance is used in the construction of the POD
curve [KNN+05]. The regression equation for a line of best fit to a given data set is
given by

y = b+mx, (2.1)

where m is the slope and b the intercept. The Wald confidence bounds are con-
structed to define a confidence interval that contains 95 % of the observed data
[KNN+05]. Here the 95 % Wald confidence bounds on y is constructed by

ya=0.95 = y + 1.645τy, (2.2)

where 1.645 is the z-score of 0.95 for a one-tailed standard normal distribution and
τy the standard deviation of the regression line. The Delta method is a statistical
technique used to transition from regression line to POD curve [MHA09] [Ann17].
The confidence bounds are computed using the covariance matrix for the mean and
standard deviation POD parameters µ and σ respectively. To estimate the entries,
the covariance matrix for parameters and distribution around the regression line
needs to be determined. This is done using the Fisher’s information matrix I. The
information matrix is derived by computing the maximum likelihood function f
of the standardized deviation z of the regression line values. The entries of the
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information matrix are calculated by the partial differential of the logarithm of the
function f using the parameters of Θ(m, b, τ ) of the regression line.

From

zi =
(yi − (b+mxi))

τ
(2.3)

and

fi =
n∏
i=1

1

2π
e−

1
2
(zi)

2

(2.4)

the information matrix I can be computed as

Iij = −E(
∂

∂Θi∂Θj

log(f)). (2.5)

The inverse of the information matrix yields φ as

φ = I−1 =

 σ2
b σbσm σbστ

σmσb σ2
m σmστ

στσb στσm σ2
τ

 . (2.6)

The mean µ and standard deviation σ of the POD curve are calculated by µ = yth−b
m

,
where yth is the decision threshold and σ = τ

m
. The cumulative distribution Φ is

calculated as

Φ(µ, σ) =
1

2

[
1 + erf x−µ√

2σ

]
. (2.7)

The POD as function of target a is derived as

POD(a) = Φ
[
a−µ
σ

]
. (2.8)

2.3.3 Hit/miss approach to POD

An efficient implementation of the binary data is to posit an underlying mathemat-
ical relation between POD and parameter and consequently model the probability
distribution [MHA09]. The use of ordinary linear regression is inappropriate because
the data are not continues but discrete and bounded. Generalized Linear Models
(GLM) overcome this challenge by linking the binary response to the explanatory
variables through the probability of either outcome, which does vary continuously
from 0 to 1 [NW72] [MHA09]. The GLM attains this through [NW72]
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1. A random component specifying the conditional distribution of the response
variables, Yi (for the i− th of n independently sample observations)

2. A linear predictor that is a function of regressors

3. A smooth and invertible linearizing link function g(y), which transforms the
expectation of the response variables Pi ≡ E(Yi) to the linear predictor.

The transformed probability can then be modeled as an ordinary polynomial func-
tion, linear in the explanatory variables. The POD can be generated from the GLM
as explained in the case of linear regression. The commonly used GLM in POD are
the log, logit, probit, loglog, and weibull [MHA09]. Depending on the data distri-
bution a model may be appropriate compared to the other. One criteria used is to
select GLM with least deviance.

The department of defense (USA) and many authors/institutions consider MIL-
HDBK-1823A as the state of the art and contemporary guide for POD studies
[SKGDD15] [MQLDM18]. The algorithms and programs of MIL-HDBK-1823A
[Ann17] [MHA09] will be adapted in this thesis. The POD approach is proposed as
a diagnostic and reliability measure to be implemented in vibration-based FDI and
other technological fields.

2.4 Summary and conclusions

In this chapter, existing approaches used in vibration-based FDI are presented.
These methods are grouped into frequency based-methods, mode shape based-
methods, curvature mode shape-based methods and methods that combine mode
shapes and frequency. Contemporary methods are based mainly on machine learn-
ing approaches. Several FDI approaches are utilized however reliability evaluation
of FDI schemes are usually not considered. Also, the ability of existing approaches
to quantify faults, transition from theory to practical implementation, and a stan-
dardized certification standard remains a big challenge. In comparison to NDT
approaches, the POD is well known and utilized. The POD serves two purposes.
It can be used as a fault detection and quantification method. Secondly, it can be
used as a reliability measure and a certification tool. Adapting and implementing
the POD approach in vibration-based FDI and as a reliability measure are proposed
and subsequently used in this work.
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3 Fault diagnosis and damage quantification of

elastic mechanical systems

In this chapter, fault diagnosis of elastic mechanical systems is presented. The
complexity associated with monitoring vibrating systems is introduced. Besides
challenges associated with dynamical behaviors of the systems monitored, supervi-
sion tasks are complex with respect to data acquisition, feature extraction, and/or
statistical modeling for feature classification. A diagnostic technique to access the
mentioned challenges is developed. A new fusion approach is introduced to im-
prove the detection quality by using suitable assumptions in combination with sen-
sor/information fusion applied to feature-based analysis as detection task. A new
noise analysis procedure is introduced permitting the selection of a decision threshold
with the corresponding detectable flaw size and related false alarm rate. Selecting
different sensors implies changing the signal distribution character and the decision
threshold. This change results in different values and hence can be exploited to de-
cide the optimal sensor. The new approach provides a graphical representation that
illustrates the diagnostic capabilities of a sensor as its decision threshold is varied.

The content, figures, and tables in this chapter are based on publication of [ARS20],
[ARS18a], [ARS18b], and [ARS18c].

3.1 Introduction

Elastic mechanical systems refer to structures that adapt to workload changes pro-
vided the elastic limit is not exceeded. Notable structures are skyscrapers, bridges,
aircrafts, wind turbines among others. These structures exhibit higher vibration
modes when excited and are also complex, safety-critical, and capital intensive. Ma-
terials like aluminum, carbon fiber reinforced polymers (CFRP), and some grades
of steel exhibit these elastic characteristics and are commonly used in applications
requiring high strength-to-weight ratio and corrosion resistance. Ensuring struc-
tural and functional safety guarantee optimal performance. However the presence
of defects in components may affect its structural and functional integrity. From
this, it can be concluded that the structural/functional integrity and the quality of
detection and diagnosis approaches are connected. During the last decades, several
FDI techniques are implemented to detect changes, faults, and local defects. These
approaches can be categorized into four groups: signal-based, model-based, data
driven, and hybrid approaches. Signal-based approaches use output signals. Fault
detection modules often compare raw or filtered signals to thresholds and conclude to
the presence of faults. Data-driven approaches establish relationships using trained
models through analysis of fault-free data obtained during normal operations [IB97].
Hybrid approaches combine model-based and model-free techniques [PJK+16].
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Signal-based methods are easy to implement and widely adopted in fault diagnosis.
The main idea is to extract relevant process characteristics from analyzed sensor
data. These characteristics are subsequently combined with further knowledge re-
lated to specific health states of the system [ASSS14].
Evaluation assessment of FDI approaches are based on classification-related perfor-
mance measures (PM). These PMs are numeric values or graphical representations.
For this, related measures like DR or FAR are evaluated based on the confusion
matrix. When discussing the effects of varying tuning parameters the complete pre-
cision values of the ROC can be used for evaluation [WY07]. Typical evaluation
considers a single set of numbers like accuracy which is used in describing the un-
certainty of statements. In some applications fault tolerant control systems apply
FDI techniques and reconfigure controllers to enhance the entire system reliabil-
ity [WLL+13] [HZY07]. Reliability evaluation of FDI schemes itself still remains
an open problem. The overall aim of reliability assessment is to guarantee optimal
performance and SHM aims to achieve this optimality.
Structural health monitoring is the process of implementing a damage detection
and characterization strategy for monitoring engineering structures [KN05] [FW07].
Damage in this context describes physical changes that adversely affects system
performance [FW07]. The field of SHM increasingly has become an essential aspect
of industrial practice to ensure the quality of products, safe operations, improved
maintenance, and to save cost. Many engineering structures are approaching or
exceeding their initial design life, making SHM relevant [FDN01]. In SHM, moni-
toring is mainly applied online for large structures [FW07]. Nondestructive testing
in contrast is usually applied offline after damage localization, though it is used
for in situ monitoring of structures like pressure vessels, rails, aircraft components,
among others. Nondestructive testing consists of a variety of non-invasive inspec-
tion techniques used to evaluate materials, components, structures or entire process
units.

Despite the technological advancements in the field of SHM, salient questions per-
sist. These include the transition from developed theory to practical implementa-
tion, early detection of faults, and reliability assessment of diagnostic statements
[SWWS16] [KN05]. The dynamics of vibrating systems changes due to different ef-
fects like altering of the structure possibly leading to changes in the mass, stiffness,
and damping properties. Finally decisions about the existence of changes (fault de-
tection) and/or specific faults (diagnosis) have to be made. Making reliable decisions
is of importance. Current FDI approaches utilize classification-related performance
measures. These performance measures are subject to uncertainties hence not quan-
tified. No clear or defined reliability standard also exist. Conversely, conventional
NDT approaches use the Probability of Detection as a reliability measure. The
emergence of SHM led analysts to ponder how to integrate POD in SHM systems.
In comparison to NDT, SHM systems are mounted permanently and should provide
reproducible results. Aging of the structure leads to adverse effects. In Aldrin et
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al. [AASL16] Monte Carlo simulation of flaw size as a function of time is proposed.
The results demonstrate the sensitivity of flaws to degradation of SHM-system. In
NDT, uncertainties are associated with human factors, variations in the interface
between the structure and transducer, crack form and shape, and local structure
properties whilst SHM uncertainties are environmental conditions, aging effects in
the structure, and damage morphology [SUS13]. In Mendrok and Uhl [MU10], ex-
periments are undertaken on an Aluminum frame to ascertain the POD capabilities
of a modal filter-based damage detection system. For monitoring purposes, ten ac-
celerometers are mounted on different positions on the frame. An impulse test is
carried on the specimen and the obtained damage index values and the correspond-
ing damage sizes are the input data to determine POD curve. However, no suitable
fusion technique for the individual sensor data is developed. Also, variations in
fault position and severity are not considered. Resource and time constraints in
POD analyses has given rise to Model Assisted POD (MAPOD). Model Assisted
POD is proposed in Aldrin et al. [AML+11] and Mueller et al. [MJB+11] utilizing
numerical models; however, numerical efforts and computational time difficulties
have to be solved for convenient applications in practice. Also, the ability of these
models to simulate real faults remains a challenge. The POD approach typically
quantifies a sensor/filtering technique in combination with mostly static measure-
ments. Implementing the POD in the field of vibration-based SHM is difficult.
Difficulties result from the complexity of dynamical behavior in relation to faults,
sensors position (observability), related data analysis procedures, and the system
under consideration. The POD approach usually uses a so-called POD curve, con-
structed by plotting the accrual of flaws detected against the flaw size or produce a
response over a threshold [Geo07] [MHA09].

3.2 Implementation of POD in fault diagnosis

According to [SUS13] [Geo07] [MHA09] the POD approach allows a general assess-
ment of the reliability of NDT methods and lately SHM-systems. The aim of the
a90/95 criteria is to specify a damage size, which can be detected/missed applying
a specific method to be evaluated, taking into account statistical variability of the
sensor and measurement properties. The United States Air Force (USAF), National
Aeronautics and Space Administration (NASA), as well as many authors and insti-
tutions consider MIL-HDBK-1823A (updated version of MIL-HDBK-1823) as the
state of the art and contemporary guide for POD studies [SKGDD15] [MQLDM18].
Unlike traditional POD implementation strategies, this paper adapts the method
but implements a filtering approach to extract features and use as response. It is
worth mentioning that this research focuses on fault detection. Here classical sen-
sors in combination with a vibration-oriented system response analysis are utilized.
Difficulties associated with observable effects, faults and sensor positions, and the
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non-uniqueness of the POD curve characteristics for which not so much attention is
given in literature with respect to these combinations are demonstrated.

3.2.1 Adaptation and application of POD in vibration-based fault diag-
nosis

The aim of this research is to adapt standard POD approaches to vibration-based
health monitoring and therefore integrate vibration analysis results (as shown in Fig.
1.1). Conventional NDT approaches apply statistical analysis and show the rela-
tionship between signal strength â and the size a of the flaw producing the response.
The time and cost involved in POD analysis has given rise to Model-Assisted POD
(MAPOD) to improve the effectiveness of POD models with little or no specimen
testing by utilizing model generated data [KALA07]. Two MAPOD methods are
known [TBF+09]. The first utilizes physics-based models to propagate directly the
uncertainty of a given set of examination parameters. Second is a transfer func-
tion approach which is also a physics-based method that transfers the computed
POD curve characteristics for a specific process to another with different parame-
ters [HHB09].

Since SHM systems are permanently mounted, data are continuously recorded.
Through signal processing, suitable features (e.g. eigenfrequencies and band power)
are extracted from time series data. The feature extraction task reduces data ran-
domness and noise effects. Uncertainty in measured data are accounted by con-
structing prediction bounds. The prediction bounds ensures that for every new 100
observations, 95 of them should fall within the constructed prediction bounds. Cur-
rently, classification approaches are used in monitoring vibrating systems (illustrated
in Fig. 1.1) but incapable of quantifying vibration-based fault measurements. How-
ever, the POD measure from the NDT and material testing field can be effectively
implemented in vibration-based fault diagnosis to quantify sensor-related measure-
ments and therefore be used alongside known classification approaches.

3.3 Experimental results

Illustration of the complexity related to data acquisition, feature extraction, and
statistical modeling for feature classification and its effect on the probability of de-
tecting faults is presented in this section. Using a benchmark test rig the principal
problem associated with implementation of POD in vibration-based SHM is demon-
strated. The experimental system to be considered for illustration is an elastic beam.
Acceleration, displacement, and strain measurements are taken. As features, band
power and eigenfrequency analysis are carried out on the first two modes of the
mechanical system. The obtained results and the analysis are discussed in detail.
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3.3.1 Experimental set-up

The experiment is carried out on an elastic mechanical beam using the test rig in
Fig. 3.1. An elastic steel beam of dimensions 545x30x5 mm is clamped on one
side. The beam length is divided into five equal parts (Fig. 3.2) defining sensors
position. Two strain gauges are bonded onto the beam at positions P1 and P3.
Two displacement measurements are taken at the two positions (P2, P4) using non-
contact laser sensors. Piezoelectric accelerometers are attached at three positions
(P1, P2, and P3) on the beam. The beam can be excited by modal hammer.

© SRS 2018

P P P3          P4         P51 2

Figure 3.1: Test rig (Chair Srs, UDuE) consisting of a one side clamped elastic beam
with bonded strain gauges, laser sensors, and accelerometers [ARS18b]

Position P1 P2 P3 P4 P5

x

z

Accelerometer

Strain gauge

Laser sensor

Case II

Case I

Figure 3.2: Sensor positions relative to
beam length [ARS18c]

Figure 3.3: Mechanical beam modifica-
tion using additive mass [ARS20]

3.3.2 Injected faults as changes to be investigated

In this paper changes within the elastic mechanical structures are assumed as changes
due to varying mass, so here additive masses (illustrated in Fig. 3.3) are applied to
modify the existing initial system to simulate a fault. Two cases of point mass place-
ment are examined (illustrated in Fig. 3.2). Case I involves placing the point mass
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at midpoint of position 2 and 3. Case II involves the placement of point mass at the
midpoint of position 3 and 4. These masses are added to the specified locations. For
every incrementally placed mass the beam is excited and the corresponding data are
recorded.

3.3.3 Results

The analysis is carried out for frequencies associated to the first and second mode
for each situation of mass placement (cases I and II). In Fig. 3.4 time series data
for different sensors used in the experiment are given. The regression analysis,
confidence bounds, prediction bounds, and the POD characterization for each sensor
are carried out.
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Figure 3.4: Signals of different sensors [ARS20]

The strategy to map the data to the POD curve is shown (Fig. 3.5). In Fig.
3.5 a graphical representation of the flaw size vs. response approach elaborated
earlier is given. It involves setting threshold values and fitting trendline to the data.
Confidence and prediction bounds are constructed on both sides of the line of best
fit. Probability density functions at each flaw size are established. The area above
the decision threshold is used to construct the POD curve.

The introduced strategy is implemented to analyze the frequency results from all
sensors. The results are given in Tab. 3.1.
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Figure 3.5: Strategy from data to POD curve [ARS20]

Table 3.1: Measure: Eigenfrequencies (Mode 1 and 2) and band power [ARS20]

Point mass between P2 and P3
(Case I)

Point mass between P3 and P4
(Case II)

Sensor
Mode 1 freq.
a90/95 POD (g)

Mode 2 freq.
a90/95 POD (g)

Band power
a90/95 POD (g)

Mode 1 freq.
a90/95 POD (g)

Mode 2 freq.
a90/95 POD (g)

Band power
a90/95 POD (g)

ACC 1 at P1 74.04 48.15* 45.28** 52.21 9.915 84.56**
ACC 2 at P2 74.04 55.78 34.63 52.15 9.293* 22.78
ACC 3 at P3 74.04 72.59** 20.20* 52.15 13.36 17.29*
SG 1 at P1 85.19 72.38 29.34 52.15 11.07 28.69
SG 2 at P3 126.70** 62.23 34.37 54.08** 9.394 27.93

Laser 1 at P1 67.30* 61.03 27.64 52.10* 43.49** 25.54
Laser 2 at P4 74.04 - 23.44 52.15 - 25.85

Legend: ACC: Accelerometer, SG: Strain gauge, P: Position, *: Best results, **: Worst results

From the results, it becomes evident that the a90/95 POD quantification is different
depending on sensor type and mode considered. Based on fault position, sensor
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location relative to fault, sensor type, and the mode considered, different results are
obtained. The numbers indicate the maximum mass that can be missed with a 90 %
POD at a 95 % confidence level. The lowest masses (*) represent best results, so
the sensor detects least mass change. The worst (**) POD sensor characterization,
represent worst results so the sensor requires large fault values to be detected with
a90/95 reliability. To explore the non-uniqueness of a feature for POD analysis, as
additional feature, band power is also extracted. The band power represents the
average power in the frequency range (here: 0-500 Hz). Analysis for this feature
is given in (Fig. 3.6 and 3.7). The results are compared with the eigenfrequency
results (Tab. 3.1).
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Figure 3.6: Regression analysis related to band power [ARS20]
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It can be concluded that the POD of vibration-based analysis of elastic structures
strongly depends on sensor type (dynamic range differs for each sensor), sensor
position (same sensor at different positions produce different results), fault position
(case I or II), and attribute selected (eigenfrequency or band power). Consequently
it can be stated that general statements about the usefulness of related sensors are
not possible. Depending on effects, measurement options, features considered, and
sensor type the choice becomes sophisticated and task-specific.

3.4 Fusion of results to combine individual FDI-statements

This section introduces a new fusion strategy for POD values. The precision value is
an influencing factor to the overall accuracy of fused results. In some applications,
the precision value is not computable due to unavailability of training or validation
data. Probability estimations are available as classifier output denoting the likeli-
hood of a sample belonging to the assigned class. This value can directly replace the
precision value, because both represent probabilities belonging to one class. Further-
more, conventional NDT approaches use the POD as a reliability measure instead
of the precision value. The POD is parameter dependent and quantifies a sensor-
filtering approach with respect to mostly static measurements, so the replacement
of the precision values with the POD values is more complex. This section details
a new concept replacing the precision values with POD values. This is based on
utilization of the experimental results by Rothe [ARS20] [Rot19].

3.4.1 Fusion concept

In the case of fault detection, normally the precision value is used as a perfor-
mance measure, which is considered in the fusion process. Here the measurable
POD values for specific masses can replace the precision value, because both de-
fine a performance measure about the reliability of an assignment. Therefore, the
POD of each sensor-feature combination for specific flaws, (here: the a90/95 POD
values for the sensor-feature combination) can be used to calculate the belief values
according to the Bayesian combination rule. The procedure is shown in Fig. 3.8.
First the POD curves for all n sensor-feature combinations are calculated. From
the POD curve, the a90/95i value with i = 1, ..., n for all n combinations can be
determined. Corresponding to each a90/95i value, one POD value (PODj(a90/95, i)
with j = 1, ..., n) can be assigned using the calculated POD curve (in total n times n
POD values). For further considerations, the a90/95, i values are treated like classes,
where as for unknown situations, each sensor-feature combination j can just de-
tect a fault or not. Based on the detection, the precision for one a90/95, i value
Pj used for fusion is set as Pj(a90/95, i) = PODj(a90/95, i) in case of detection and
Pj(a90/95, i) = 1 − PODj(a90/95, i) in case of no detection. Using the standard



26
Chapter 3. Fault diagnosis and damage quantification of elastic mechanical

systems

Bayesian Combination Rule, the values are combined to one belief value (here: one
value for each a90/95, i value). Using the belief values, for each detection combination,
one belief-curve can be calculated.
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Figure 3.8: Concept of POD-based fusion [Rot19]

3.5 Application to experimental data

The concept for POD-based fusion is applied to the fault diagnosis of an elastic
beam. A new approach used to improve the POD characterization of each sensor-
/vibration-based statement by decision fusion using several sensors is presented.
Here the measurable POD values for specific masses are assumed as replaceable for
the precision value. Therefore, the POD of each sensor and feature for specific faults
(here: masses denoted as a90/95 values for the considered sensor-feature combination)
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can be used to calculate the belief values according to the Bayesian combination
rule. In the case of non reliable statements, the use of one sensor and feature is not
suitable to ensure confident health status statements. Decision fusion of the results
from different sensors or features may be an option for improving reliability. To
fuse the detection results of the sensors related to their POD and a90/95 value, the
Bayesian Combination Rule (BCR) can be applied. The BCR also known as Bayes
Belief Integration or Bayesian Belief Method is a well known and commonly used
fusion technique based on conditional probability.

To set up the conditional probabilities of each classifier for each class, first the
confusion matrix has to be calculated. The confusion matrix Ck for each classifier
ek with k = 1, ...K, where K is the total number of considered classifiers is defined
as

Ck =


C11 C12 . . . C1M

C21 C22 . . . C2M
...

...
. . .

...
CM1 CM2 . . . CMM ,

 , (3.1)

where i, j = 1, ...M with M as the number of classes. The element Cij is the number
of samples, where the classifier ek has assigned class j and the actual class of the
sample is i.

Using the elements of the confusion matrix, the probability that sample x belongs
to class i, if the classifier ek assigns x to class j can be calculated using

Pij = P (x ∈ i|ek(x) = j) =
Ck
ij∑M

i=1C
k
ij

. (3.2)

For each classifier ek the probability matrix P k is set with

P k =


P11 P12 . . . P1M

P21 P22 . . . P2M
...

...
. . .

...
PM1 PM2 . . . PMM

 . (3.3)

The diagonal values (i = j) are the same as the precision value for this class. Based
on the probability matrix of each classifier, a combined belief value bel(i) for each
class i is determined for each sample with the formula

bel(i) =

∏K
k=1 Pijk∑M

i=1

∏K
k=1 Pijk

, (3.4)
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where jk is the assigned class of classifier ek for the considered sample x. The
maximum of the belief values is used to make a decision for one of the classes.
In Tab. 3.2 the POD of the seven sensors for the corresponding a90/95 values are
given. To explain the combination using POD values, the fusion of the sensors ACC
1 and ACC 2 is considered as example. To calculate the belief values, it has to be
known, which sensor detected the fault and which failed. Assuming ACC 1 detected
a fault, ACC 2 did not, the values used for belief value claculation are denoted as
P1 = PODACC1

20.20g and P2 = PODACC2
20.20g . The belief value for the mass of 20.20 g is

calculated by

bel(20.20g) =
P1 · (1− P2)

P1 · (1− P2) + (1− P1) · P2

. (3.5)

In the same way, the belief values for the other masses can be calculated. Extending
the fusion to all sensors, the number of detection combinations ascends.
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Figure 3.9: Belief values for different detection combinations, when 5 of 7 sensors
detect a fault [ARS20]

The resulting belief values for different detection combinations can be established.
As example, if five of the seven sensors detected a fault (e.g. 0 0 1 1 1 1 1) means
the first two sensors (ACC 1 and ACC 2) did not detect a fault, all others did, are
shown in Fig. 3.9. Depending on which five of the seven sensors detect the fault,
the belief values vary. However, all belief values increase for increasing masses. This
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Table 3.2: Pod results for case 1 - band power feature [ARS20]

Sensor
POD

(20.20 g)

POD

(23.44 g)

POD

(27.64 g)

POD

(29.34 g)

POD

(34.37 g)

POD

(34.63 g)

POD

(45.28 g)

ACC 1 48.6 61.8 71.6 74.0 83.9 84.8 90.0

ACC 2 63.5 71.2 83.2 84.8 89.7 90.0 96.1

ACC 3 90.0 95.0 97.1 97.6 98.8 98.9 99.5

SG 1 74.5 83.9 85.8 90.0 94.4 94.7 95.8

SG 2 64.2 75.5 84.3 85.7 90.0 91.1 96.0

Laser 1 77.7 87.1 90.0 91.6 94.5 95.4 98.1

Laser 2 85.5 90.0 93.7 95.3 97.2 98.1 99.2

means that in case of five sensors detecting a fault, the probability that a fault with
a higher mass is present is higher . In Fig. 3.10 a selection of different detection
combinations is presented. For selection of the best and worst sensor-/feature-based
statement, results according to Tab. 3.2 are considered. For example 4B means the
four best sensors have detected a fault, the others did not. In case of 6B, 5B, and
4B, all belief values are close to 100 %, whilst in case of 1W, 2W, and 3W are close
to 0 % (see Fig. 3.10). For the other cases a symmetry can be seen, e.g. the curve
of 5W corresponds to 100 % minus the curve of 2B.
Considering the case 2B, which means the two best sensor-/feature-based statement
(with the lowest a90/95 value) are detecting a fault, all other 5 sensors are not, it is
more probable, that there is a small fault than a bigger one, because if the better
sensor-/feature-based statement have detected a fault, it could be, that the fault is
too small to be detected by the other sensors (with higher a90/95 value). However,
if the mass would be larger, the other sensors should also have detected the fault.
If there is a higher number of sensors detecting a fault (like in case 5W), the belief
values increase for increasing masses, because a larger fault is easier to detect.
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Figure 3.10: Belief values for different detection combinations, selected by the best
(B) or worst (W) sensors detecting the fault [ARS20]

Using the introduced fusion approach, the probability of the presence of a specific
mass (as fault) can be obtained based on the individual performance and assignments
of the sensor-/feature-based statement.

3.6 POD view to FDI

Structural Health Monitoring systems applied to vibrating elastic structures usually
denote monitoring dynamical systems. Arising questions are related to the reliabil-
ity of measurements. Consequently this also affects related diagnostics statements
about diagnosis and therefore strongly affects the reliability of vibration-based mea-
surements. The POD-strategy introduced now allows the quantification of vibration-
based measurements (here: fault size). Further a new adaption of POD measure is
proposed and implemented with respect to the integration of the vibration analysis.
Conventional NDT approaches apply statistical analysis and use the relationship
between signal strength â and the size a of the target initially causing the mea-
surement. The variation of this can be discussed from a FDI-oriented view. In
SHM, additional data analysis is required to convey information about the signal’s
attributes. The response is a feature-based response. The output sensor values for
varied fault size have to be recorded. Through signal processing, suitable features
have to be extracted and used as response.

The detection task corresponds to the response threshold value ε. This can be
obtained from the regression line, confidence bounds, and 90 % probability density
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Figure 3.11: Detection task [ARS20]

(Fig. 3.11). From the general equation of the confidence bounds Eqn. (2.2), the
values of slope, gradient, and standard deviation can be measured directly from the
regression line. However, the size a generating a90/95 value can be obtained from
the regression line in combination with the POD curve as indicated in Fig. 3.11.
The threshold ε defines the response detection value beyond which the fault can be
detected with a a90/95 reliability. The a90/95 value δ quantifies the threshold size. The
threshold ε permits reliability certification of the response value for a specific sensor
and the subsequent quantification of the response in terms of fault size. The results
for this example indicates that a response of 0.14 dBW is the threshold value ε,
which corresponds to a fault size δ of 4.88 g. From the demonstrated consideration,
it can be stated that this is a new and significant insight for task-/application-
specific quantification of sensors and serves as detection and quantification metric
for reliability evaluation of sensors. This new view to a classical problem as well as
classical solutions should aid monitoring/fault detection system designers to learn
about the complexity of the problem and therefore to improve detection systems by
choosing the right combination of task, sensor, feature, and sensor position.
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3.7 Noise analysis-based discussion

Qualifying sensor diagnostic capabilities for detection and quantification also re-
quires noise analysis. Noise is always present in measured data. Assuming sensor
observability, the observed signals aggregates features and characteristics of the mon-
itored system including noise. Noise in this context refers to observed signal with
no useful flaw characterization information. In this work a new data driven method
is developed where the healthy state data are used to compute the noise.

Classical POD methods usually evaluate independently the noise or infer noise from
data not associated with target size [MHA09] [Ann17]. However a new approach
is introduced. For illustrative purpose, accelerometer measurements at position P3
filtered as eigenfrequency (mode 1 case II) are used (as shown in Fig. 3.12).
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Figure 3.12: Proportion of healthy data above threshold [AS20]

Flaw detection probability and false positive probability are dependent on each
other through definition of system decision threshold. The decision threshold signify
system response value above which the system is considered faulty. However from
Fig. 3.12, it becomes evident that there are still healthy state data (circled points)
above the defined threshold to be analyzed. This implies that the region above the
threshold cannot be considered to correspond entirely to faulty states. The healthy
state data, with no flaw characterization information, can thus be used to determine
false positives associated with a selected threshold. The healthy and faulty states
data are plotted together and the effect of a selected decision threshold yth on the
Probability of False Positive (PFP) for a specific sensor is inferred from the healthy
state data. The PFP is the percentage of healthy data that the system wrongly
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classifies as damage. The healthy state data of the pristine beam are measured and
used as noise.

For noise analysis, first the nature and distribution of the noisy data needs to be
established. One technique to ascertain the distribution of noise data is through
hypothesis testing.

A χ2 (chi-squared) test is undertaken to identify the nature of noise distribution.
Various distributions are tested with the Gaussian distribution emerging most plau-
sible. The χ2 produced a p-value of 0.95 thereby rejecting the null-hypothesis that
the distribution is non-Gaussian. A regression analysis is carried out on the noisy
data and the mean µnoise and standard deviation σnoise are calculated (Fig. 3.13).
For a Gaussian noise distribution, the PFP is computed as

PFP =

∫ ∞
yth

1√
2πσ̂noise

e
− (y−µ̂noise)

2

2σ̂2
noise dy.

The distribution with regards to PFP is illustrated in Fig. 3.14 (shaded red area
relative to the selected decision threshold).

Figure 3.13: Mode 1 accelerometer at
P3 noise data [ARS20]

Figure 3.14: POD and corresponding
PFP [ARS20]

The distribution regarding PFP and the corresponding POD values for accelerometer
measurements at position P3 is illustrated in Fig. 3.13.

For every selected cutoff point a single PFP value is evaluated but detected flaw
size is dependent on the probability level (50 %, 90 %, etc.). In this work the 90 %
and 90/95 POD sizes are used (similar to typical standards in industry [MHA09]).
Changing the sensor results in changing the distribution character. Other sensors
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Table 3.3: Tradeoff between decision threshold, PFP, and 90 % POD [AS20]

Sensor
13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8
1.000 0.996 0.966 0.841 0.568 0.255 0.0685 0.0103 0.0008

ACC 1 0.00 0.00 0.00 5.85 23.36 40.62 57.64 74.43 90.99
ACC 2 0.00 0.00 0.00 7.64 24.53 41.18 57.59 73.78 89.75
ACC 3 0.00 0.00 0.00 7.64 24.53 41.18 57.59 73.78 89.75
SG 1 0.00 0.00 0.00 7.64 24.53 41.18 57.59 73.78 89.75
SG 2 0.00 0.00 0.00 6.71 24.38 41.80 58.98 75.92 92.63
Las 1 0.00 0.00 0.00 3.71 21.90 39.83 57.52 74.96 92.16
Las 2 0.00 0.00 0.00 7.64 24.53 41.18 57.59 73.78 89.75

Table 3.4: Tradeoff between decision threshold, PFP, and 90 % POD [AS20]

Sensor
13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8
1.000 0.996 0.966 0.841 0.568 0.255 0.0685 0.0103 0.0008

ACC 1 0.00 0.00 0.418 15.83 31.46 47.68 64.79 82.74 101.13
ACC 2 0.00 0.00 1.79 16.82 32.06 47.80 64.32 81.55 99.15
ACC 3 0.00 0.00 1.79 16.82 32.06 47.80 64.32 81.55 99.15
SG 1 0.00 0.00 1.79 16.82 32.06 47.80 64.32 81.55 99.15
SG 2 0.00 0.00 2.10 17.40 33.1 49.40 66.80 85.10 103.9
Las 1 0.00 0.00 0.00 14.54 30.61 47.32 65.08 83.80 103.05
Las 2 0.00 0.00 1.79 16.82 32.06 47.80 64.32 81.55 99.15

will result in different distribution characters and different values; however, the
character of the introduced strategy remains. The procedure is repeated for all
sensors for the same feature (here: mode 1 eigenfrequency case II). A summary
of the 90 % and 90/95 POD and PFP values for a selected decision threshold are
illustrated in Tab. 3.3 and 3.4 respectively. The results from Tab. 3.3 and 3.4
shows the characteristic of the flaw (here: size) affects the detection probability.
This important but often ignored outcome (especially in ROC and PR evaluation),
shows the need for a parametric evaluation system incorporating the effect of flaw
characteristic in the evaluation process.

3.7.1 Improved POD analysis

A new method to improve the detection capabilities of sensors is introduced in this
section. The main idea is to discuss the sensitivity of features to the fault to be
detected. The POD results comparing different sensor/feature combinations indicate
that the most sensitive feature to point mass changes is band power. Additionally,
by utilizing the introduced noise analysis procedure, direct comparison can be made
between the eigenfrequency and band power for the same sensor (here: accelerometer
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at position P3). The noise data and corresponding PFP for band power feature for
accelerometer 3 are shown in Fig. 3.15 and 3.16.
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The trade-off between PFP, 90/95 POD, and flaw size can then be constructed for
both features (eigenfrequency mode 1 and band power) as illustrated in Fig. 3.17.

Figure 3.17: Tradeoff between PFP, POD and flaw size (a): Eigenfrequency (b):
Band power [ARS20]
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The analysis indicates for a selected PFP value of 0.1 (1) at 90 % probability and 95
% reliability level (2), the eigenfrequency feature detects a flaw of 60.2 g (3) while
the band power feature detects a flaw size of 24.9 g (4). This procedure provides an
effective and simple method to improve the detection capabilities of sensors without
affecting (here increasing) the false alarm rate.

3.8 Summary

This chapter focuses on introducing a novel POD-oriented view to vibration-based
diagnosis typically using sensor types. The measurements used are acceleration,
strain, and displacement (laser sensors). Challenges associated with monitoring dy-
namical systems are presented. The results indicate that the POD characterization
depends on the sensor position, fault position, and the feature selected. The sen-
sor type has an effect on the POD due to the fact that performance specifications
vary for different sensors. The a90/95 criteria representing probability of 90 % at
a confidence level of 95 % is successfully implemented in vibration-based FDI as
a reliability measure. The new insight introduced allows task-/application-specific
quantification of sensors relative to vibration-based monitoring/diagnosis of faults.
Using the new fusion approach introduced, the probability of the existence of a fault
can be obtained based on the individual performance and assignments of the sensor-
/feature-based statement. Noise analysis allows a decision threshold to be selected
which permit a suitable trade-off between the POD and PFP. The flaw characteristic
(here:size) plays a crucial role in its detection and the introduced approach provides
a means to assess that.
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This chapter presents a new evaluation assessment of machine learning approaches.
A ML approach may be suited for a specific task depending on the application and
data set. To select an approach for a task, performance evaluation may be impera-
tive. Typical evaluation approaches utilize the receiver operating characteristic and
precision-recall curves. Despite the popularity and acceptance of these two classifica-
tion evaluation approaches, they do not address the influence of process parameters
on classification results. Both curves are unable to quantitatively relate detectability
to a process parameter. In this chapter this limitation is discussed and addressed
by adapting the POD reliability measure but with a different implementation tech-
nique. The chapter consist of three parts. Firstly a new visualization of the effect of
process parameter on the classification results is illustrated. Consequently it can be
established that any selected decision threshold produces a single false alarm rate
value, however the detection rate values varies contingent on the process parameter.
Secondly, comparison of different classifiers utilizing the new POD approach is pre-
sented. This is useful because the POD method permits a parametric comparison of
classifiers and hence expedient when interpreting complex sensor data describing a
complex spatial scenario. Finally, improvement of the classifiers detection capabil-
ities through the use of a test-specific target response measure is presented. Based
on the newly introduced POD-related evaluation, different classifiers can be clearly
distinguished with respect to their ability to predict the correct driver behavior as
a function of remaining time before the event itself.

The content, figures, and tables in this chapter are based on the publication [ADS19]
and the submitted papers [ADS20a] [ADS20b].

4.1 Introduction

Machine learning has been developed and used for decades in many applications.
Advancements in processing capabilities of computers has made ML implementa-
tion relatively faster. Though used mainly in science and technology, it has been
embraced by the humanities. Institutions and researchers are using ML to analyze
data patterns to predict consumer behavior, detect frauds in financial transactions,
clinical trials, and statistical analysis to literary works [LAGS+13]. Several ML ap-
proaches exist. An approach may be better suited depending on the data set and
application. To select an approach, performance evaluation may be useful. The
ROC and PR curves are among the commonly used evaluation tools. Both curves
provide graphically standard tools to evaluate the performance of a binary classifier
as its discrimination threshold is varied. Whilst the ROC curve uses the ratio of DR
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to FAR, the PR curve utilize the ratio of precision to recall. These evaluation curves
can be used to determine optimal decision thresholds and allow graphical comparison
of diagnostic tests. The final evaluation process of both curves provide a measure to
select optimal models discarding properties related to process parameters on classi-
fication results. This implies, these curves cannot quantitatively relate detectability
to a process parameter [Ann17] [MHA09]. Secondly the ROC curve does have an
additional limitation of not considering the prevalence [MHA09]. The prevalence
considers the total number of cases of targets in a given sample/population at a
specific time. Conventional justification for the ROC is based on the overlapping
probabilities for signal and noise from measurements (see Fig. 4.1). Therefore,
ROC advocates argue that a trade-off between DR and FAR describes fully the test
results.

TP

FP

Noise SignalThreshold

Figure 4.1: Overlapping Probability densities of signal and noise

Many authors have critique the use of area under ROC (AUC) as it tends to be dom-
inated by the high FPR points [BKD01] [LAGS+13]. Though the AUC is buoyed by
observations to the right, highly-ranked transactions occur on the left side (region
with the least AUC) of ROC [LAGS+13]. Difficulties with the ROC when dealing
with highly skewed datasets is reported in [LAGS+13]. Some authors propose PR
curves as more informative than ROC when dealing with highly skewed datasets.
Research has mainly focused on addressing skewed datasets and using portions of
AUC [LAGS+13]. However, the fundamental concern of investigating the effect of
process parameter on classification results has received little attention. Despite these
shortcomings the ROC and PR are still widely used largely because few alternatives
exist [MHA09]. This chapter attempts to address this concern using the Probability
of detection reliability measure. The POD will be adapted, modified, and imple-
mented in assessing classifier performance by relating detectability quantitatively to
a process parameter in the evaluation.
In this chapter the POD approach is used to evaluate classifier performance incorpo-
rating time t as a process parameter. The proposed approach is used to compare the
suitability of Artificial Neural Networks (ANN), Hidden Markov Models (HMM),
Random Forest (RF), Support Vector Machines (SVM), and modified versions of
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these classifiers with respect to the reliability of related classification of upcoming
events prior to the real ones, here: human decisions based on the visual impression
of changes within the environment. Consequently, based on the POD-related evalu-
ation the different classifiers can be clearly distinguished with respect to their ability
to predict the correct behavior as a function of time prior to the event itself. This
allows a very detailed comparison of classifiers related to the effects of parameters
affecting the processes to be classified.

4.2 LANE CHANGE PREDICTION USING CLASSIFIERS

A very brief presentation on the ML algorithms used to predict driver intention
recognition is detailed in this section. The authors in [DS19] proposed a strategy to
improve training of conventional algorithms. The authors showed that usually a set
of unknown classifier tuning parameters are needed to be set manually before train-
ing, when a conventional algorithm is used. With the proposed training procedure,
the most suitable values of these unknown parameters can be determined automat-
ically to optimize the performance of the conventional algorithms. The authors
compared the reliability of the algorithms with respect to the relevant accuracy,
detection rate, and false alarm parameters. In this contribution, eight classifiers;
conventional/modified SVM, HMM, ANN, and RF are used. These classifiers pre-
diction abilities will later be evaluated using the POD method.

4.2.1 Conventional/modified Support Vector Machine

Support Vector Machine is a supervised machine learning method and is a widely
applied classification technique [CV95]. The various classes in SVM refer to different
driving behaviors, which are classified by transforming the observation variables into
an observation vector and thus generating a distribution in a high dimensional space.
Each observation vector is assigned to corresponding classes based on training data.
The three driving behaviors to be predicted are separated using hyperplanes. The
process of SVM learning is trying to find an optimal hyperplane between observation
vectors of different classes to generate a maximal geometric margin. However, the
SVM was originally designed only for two classes. In this contribution, the driver
prediction model is a multiclass problem (lane change to right S1, lane keeping S2,
and lane change to left S3). To solve this complexity one-against-one approach
is utilized to establish a multiclass model. Data processing is not needed for the
conventional SVM, it can be trained with raw data. An improved SVM is trained
with a prefilter [DS19] [DS18] applied to define features and influence the prediction
performance of SVM.
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4.2.2 Conventional/modified Hidden Markov Models

An HMM [Rab89] describes the relationship between two stochastic processes: one
consists of a set of unobserved (hidden) states which cannot be measured directly.
The other stochastic process is denoted by observable symbols. Due to dynamical
changes, the process considered moves from one state to another generating hid-
den states sequence and observation sequence. In a given observation sequence and
its corresponding hidden state sequence, the HMM parameters can be calculated
(denoted as training) and adjusted to best fit both sequences using Baum-Welch
algorithm. Based on the obtained HMM, the most probable sequence of hidden
states, which has the highest probability, can be calculated by using Viterbi algo-
rithm. In this work, three different driving behaviors (S1, S2, S3) are modelled as
hidden states for the HMM. The related training process method of conventional
HMM is referred to [DWS18] and an improved HMM is trained with an optimal
prefilter [DS19].

4.2.3 Conventional/modified Artificial Neural Network

Artificial Neural Network is a computational model that imitates biological neural
network. These models learn to perform tasks without explicit task-specific rules.
Typically, ANN contains many layers, the first and last layers are the input and
output respectively with signals traveling from input to output. To determine final
results, usually cut-off thresholds are used to distinguish the decimal values into
class labels. The values of cut-off thresholds are unknown and should be set prior to
the training. Related parameters of a conventional/improved ANN [DS19] are used.

4.2.4 Conventional/modified Random Forest

Random Forest is an extension of decision tree method and it is used to solve clas-
sification or regression problems [Bre01]. The RF algorithm contains a set of ran-
domized decision trees that are independent from each other. Each decision tree is
trained by a randomly selected Bootstrap sample [Bre01], which is generated from
the training data set with replacement. The total number of decision trees NTree

should be defined before the training process. However, the number of NTree is
unknown. In [OPB12], the authors pointed out that the value of NTree is worth op-
timizing. Therefore, an improved RF is trained with optimal parameters (including
prefilter thresholds and NTree) defined in [DS19]. Similarly, raw data and default
NTree are used to train a conventional RF.
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4.2.5 Classifier evaluation using POD

The proposed POD model building process to evaluate ML approaches performance
is illustrated in Fig. 4.2. The procedure involves:

1 Identify process parameter by which detectability can be related to quantita-
tively

2 Identify ML approaches/classifiers to be used for classification

3 Determine if a conventional or optimized classifier is used (procedure used in
this work illustrated)

4 Train classifiers

5 Generate prediction model

6 Compute performance measure

7 Implement POD approach (Target response or Hit/Miss) based on nature of
data

8 Evaluate POD

The POD is thus evaluated and generated based on the above mentioned procedures
from step 1 to 8.

4.3 EXPERIMENTAL RESULTS

The experimental setup and data of the work of Deng [DWS18] are used in this
section, however the research methods and applications presented are completely
new. As example, the comparison of ML approaches applied to driver intention
prediction is used. Here the reliability of outcomes of classifiers is examined by
using the POD approach. Therefore the POD measure has to be adapted and
implemented. Using data from real human driver simulator the proposed approach
is demonstrated and applied to different ML classification approaches. Additionally,
the classifiers are compared using the proposed approach. The obtained results and
the analysis are discussed in detail.
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Figure 4.2: Classifier POD model building process [ADS20a]

Figure 4.3: SCANeRTM studio, Chair of Dynamics and Control, UDuE, Germany
[ADS20b]

4.3.1 Experimental set-up

The driving simulation is performed using SCANeRTM studio driving simulator
(Fig. 4.3). The simulator is equipped with five monitors, base-fixed driver seat,
steering wheel, and pedals. The three rear mirrors are essential to decide lane
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change and are displayed on the corresponding positions of the monitors.

A typical driving scenario is illustrated in Fig. 4.4 and requires the ego driver (red
vehicle) to make a decision. Correct decisions are made with the aid of several sensor
data. The driving simulator simulation engine and corresponding input sensors

Figure 4.4: Driving environment [ADS20b]

(Fig. 4.5) aids in decision making. For example, vehicles can use camera images to
find lane lines or track other vehicles on the road. Like how humans perceive the
world, vision-based data provided by the simulator aids vehicles to recognize traffic
lights, traffic signs, and speed signs. With all the information collected, driving
assistant system (human behavior prediction model) can be established, and finally
suggestions/warnings are given to driver to control the vehicle’s direction, speed
among others.

Figure 4.5: SCANeRTM studio simulation engine [ADS20b]

The driving environment is a highway-based traffic scenario with four lanes of two
directions and simulated traffic environment. During driving, the participant could
perform overtaking maneuver when the preceding vehicle drives slowly. After over-
taking, the participant is permitted to stay on the new lane or drive back to the
initial lane. The time points of changing lane to left and right are decided by the
participants. The lane change/keeping behaviors are illustrated in Fig. 4.6.
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Figure 4.6: Lane changing behavior [ADS20b]

4.3.2 Data processing

Eight classifiers are selected to train driving behaviors prediction models in this
article. As detailed in section 4.2, the algorithms are used to train conventional and
modified models. The driving behaviors prediction model based on the classifiers is
shown in Fig. 4.7. It consists of two processes: parameter definition and driving
behaviors prediction.

Sensor signal

Training with conventional or
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RF

Save
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Predicted
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Actual labels

Evaluation
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Figure 4.7: Test/training model [ADS20b]

4.3.3 Target response value

The target response approach is adapted and implemented in this work because
the data to be analyzed relates a changing parameter to a response value quantita-
tively. The approach is appropriate in this context due to a relationship between
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a changing parameter (here:time) and a changing response function. To generate
the response value, the evaluation of the classifier relative to a performance is cal-
culated. Conventional and modified models are calculated in the training phase.
Based on these models, the driving behaviors in the upcoming driving processes can
be determined. The measured and estimated driving behavior states are compared
to check the correspondence. To evaluate the performance of classifiers, accuracy is
one of the most commonly used metric due to its simplicity. However accuracy does
not precisely describe the classifier performance when dealing with unbalanced data.
A high accuracy can be achieved by correctly classifying the majority class while
neglecting the minority class. To avoid this, in this contribution F-measure/score
(FM) is selected as target response value which is calculated using the multiclass
confusion matrix (Fig. 4.8).

Figure 4.8: S1 multiclass confusion matrix [ADS19]

The FM value is the harmonic mean between detection rate and precision (also
called predictive positive value (PPV)). The DR value is calculated based on TP
value and the FN numbers. The PPV is calculated based on TP and FP values.

The DR, FAR, PPV, and FM values are defined by [MMBC13]

DR =
TP

TP + FN
, (4.1)

FAR =
FP

TN + FP
, (4.2)

PPV =
TP

TP + FP
, (4.3)
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and

FM =
2 ∗DR ∗ PPV
DR + PPV

. (4.4)

To evaluate the predicted lane change performance, initial ideas of the authors
[ADS19] are used. Here, each lane change behavior is defined as a separate event.
From 7 seconds before to the time of actual lane change is considered. The time
interval is divided into 140 time points, i.e. every 0.05 s. These time points are
defined as “recognition time points”, and for each time step, FM value will be
calculated. The computed FM value at each time point is used as the response
value in the POD evaluation.

4.3.4 POD generation process

Based on the computed F score response values at each recognition time point, the
target response method is utilized in this section to generate POD for the classi-
fication results. The aim is to establish a POD characterization to illustrate the
effect of process parameters (here: time) to the classification/fused results so the
probability distribution is derived. Many authors intuitively use log x vs. log y
scale in generating the POD but that is based on convention rather than effective
statistical modeling [Ann17].

Four models comprising combinations of logarithmic and linear scales (Fig. 4.9) are
established for each ML algorithm to ascertain model having [KNN+05] [MHA09]

1 Linearity of the parameters: E(yi|X) = xiβ, where xi is the i− th row of X,

2 Uniform variance: var(yi|X) = σ2, i = 1, 2, 3, ..., n and

3 Uncorrelated observations: cov(yi, yj|X) = 0, (i 6= j).
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Figure 4.9: Regression models a: x vs. y b: log x vs. y c: x vs. log y d: log x. vs.
log y [ADS20a]

In this concrete example the model satisfying the above criteria best is the graph with
logarithmic abscissa and linear ordinate (model b) and hence selected for further
analysis.
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Figure 4.10: Relationship between decision threshold and POD

Regression analysis is implemented on the selected model and the inspection thresh-
old (minimum detectable signal), saturation threshold (maximum inspection thresh-
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old for signal), decision threshold (response value above which the signal is con-
sidered in the evaluation process), confidence bounds, and prediction bounds are
constructed using the formulation from section 2 as illustrated in Fig. 4.10.

The cumulative density function for the data distribution are also constructed. The
POD curve is generated using area of the cumulative density function above decision
threshold.

The POD curve is analogous to the regression line . The confidence bounds about
the regression line are used in the same way to construct the 95 % bounds around
the POD curve. For this work, estimation is made for both left and right lane change
detection. All the eight classifiers are used in the estimation process. The left and
right lane HMM POD curves are shown in Fig. 4.11.
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ŝ =0.14711
POD covariance matrix

æ

è
ç
ç
0.001022 -0.000165

-0.000165 0.00033

ö

ø
÷
÷

n total
= 140

ntargets=140
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Figure 4.11: POD curves A: left lane HMM curve B: right lane HMM curve

4.3.5 Noise analysis

The observed data aggregate the characteristics of the targets signature corrupted
by aberrant signals generally referred to as noise. Classical POD methods measure
noise as part of planned experimental measurement, however that is absent in the
current work. Noise therefore will be inferred from the observed data. Noise in this
context refers to observed signals with no useful target characterization information.
Therefore observed data outside the prediction bounds will be interpreted as noise.
Still using data from Fig. 4.10, the extracted noise is shown in Fig. 4.12. Statis-
tical χ2 (Chi-squared) hypothesis test is undertaken to identify the nature of noise
distribution.

Various distributions are tested. The Lognormal distribution emerging most plau-
sible. Analysis is carried out on the noisy data and the mean µnoise and standard
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deviation σnoise are calculated (Fig. 4.13). For a Lognormal noise distribution, the
FAR or PFP is computed as

FAR =

∫ ∞
yth

1

yσ̂noise
√

2π
e
− (ln y−µ̂noise)

2

2σ̂2
noise dy.

The distribution with regards to FAR is illustrated in Fig. 4.13 (shaded red area
relative to the selected decision threshold).

From Fig. 4.14 it becomes evident that for a selected decision threshold, a corre-
sponding unique FAR value exist however the detection probability varies relative
to a parameter (here: time). This implies, for a selected cut-off point there is not
one FAR to one DR value but one FAR to many DR values. This consideration
was not factored initially in the ROC construction because the size of opposition
objects during WWII was irrelevant, but modern applications are concerned with
how the characteristics of target change the probability of detecting it. To visualize
the changing probability distribution with changing thresholds, other cut-off points
are selected and the nature of the distribution illustrated in Fig. 4.15. The FAR
values for the selected decision thresholds are shown in Tab. 4.1.

Table 4.1: FAR results for different decision thresholds [ADS20a]

DT [%] 4 8 12 16
FAR 0.1489 0.0439 0.0180 0.0088
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Figure 4.15: Relationship between decision thresholds and POD [ADS20a]

4.3.6 Novel evaluation measure integrating process paramater

In this section, for the first time a new evaluation method concurrently considering
the decision threshold, FAR, POD, and process parameter is developed. To illustrate
the new approach the generated POD curves for the selected decision threshold in
section 4.3.5 are used.
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To demonstrate the novel technique, the 0.9 probability is drawn to intercept POD
and confidence curves at the points (+) and (x) respectively as shown in Fig. 4.16.
At the point of intersection; the POD, FAR, decision threshold, and process param-
eter (here: time) are known. These values are considered for every point on the
drawn 0.9 probability line. A graph depicting the relationship between the POD,
FAR, DT, and time is shown in Fig. 4.17.
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This is very useful because it provides a measure to incorporate and assess the
effect of process parameters on the evaluation process. The Fig. 4.17 correspond
to only the 0.9 probability. To see the relation for every probability point requires
the procedure to be evaluated for the entire probability range; from 0 to 1.0. The
graph corresponding to the entire probability range utilizing the developed method
is indicated in Fig. 4.18
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Figure 4.18: Parametric evaluation measure [ADS20a]

The entire POD range contains detection probabilities from 0.0 DR up to 1.0 DR.
From the illustrated relations two points can be easily taken. Here X1 denotes the
optimal point corresponding to least FAR and maximum DR. The point X2 denotes
the worst point corresponding to maximum FAR and least DR. However there is an
associated cost whereby the point X1 has a high threshold of 7 % and predicts the
impending event at 3.82 s. The point X2 on the other hand has least threshold value
of 1 % and predicts the impending event at 0.8 s. The introduced method presents a
novel and significant approach to concurrently examine the detection probabilities,
the false alarm rate, the decision threshold, and the process parameter.

4.4 Central outcome: comparison of classifiers using POD

Based on the developed POD approach, eight different classifiers ability to predict
driver lane change behavior are examined. The predicted driving behavior as a
function of target response at each recognition point for the same selected threshold
are shown in Fig. 4.19 and Fig. 4.20.
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The evaluation is premised on the classifier’s prediction time as a function of re-
maining time before the event itself.

Time [s]

0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

POD(a)= F
æ

è
ç
ç

log(a)- m

s

ö

ø
÷
÷

m̂= 1.499
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The POD curves of all classifiers are generated for left change (Fig. 4.21) predic-
tion and right lane change (Fig. 4.22) prediction using F score as target response
evaluation. There are currently many certification standards. The 90/95 reliability
measure is used here. The 90/95 certification in this context expresses the time
required to detect complete lane change with 90 % probability at 95 % confidence
level. A classifier in this context is considered to be better if it has a lower 90/95
time value compared to another. The algorithm is able to predict the complete
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lane change behavior faster so it has better prediction capabilities. The 90/95 POD
values for left and right lane changes are illustrated in Tab. 4.2.

Table 4.2: POD results for all classifiers using FM response values

Classifier
Left lane
POD [s]

Right lane
POD [s]

ANN 4.959 5.011
HMM 5.776 5.138

RF 4.876 4.896
SVM 4.781 4.823

ANN-Mod 4.969 4.565
HMM-Mod 5.464 4.871

RF-Mod 5.076 4.952
SVM-Mod 5.113 4.979

For this specific example, the experimentally obtained and analyzed results can be
summarized as follows:
In estimating left lane change classification results:

1 Conventional SVM produced best results (4.781 s) with conventional HMM
producing worst results (5.776 s).

2 The use of prefilters and tuning parameters with the aim to optimize the
performance of conventional algorithms did not result in improved POD, as
three conventional classifiers (ANN, RF, and SVM) performed better than the
modified models.

In estimating right lane change classification results:

1 Modified ANN produced best results (4.565 s) with conventional HMM pro-
ducing worst results(5.138 s).

2 The use of prefilters to tune parameters with the aim to optimize the per-
formance of conventional algorithms generally did result in improved POD,
as three modified classifiers (ANN-Mod, RF-Mod, and SVM-Mod) performed
better than the conventional models.

Accordingly we can conclude that the best classifier for this example task is conven-
tional SVM for left lane change prediction while modified ANN is best for right lane
change prediction. Conventional HMM produced worst results in both instances.
An interesting observation from the results is that, the use of prefilters to tune pa-
rameters with the aim to optimize the performance of conventional algorithms is
achieved for right lane change prediction whilst worst results are obtained for left
lane change prediction.
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4.4.1 Improvement of classifier detection capability

Comparison of the introduced method with improved approach is made in this sec-
tion. From the concrete example applying the approach introduced it can be gener-
alized that the generated POD is not unique but dependent on target response. To
improve the POD results, a strategy involving the utilization of crisp target response
evaluation value will be used. The FM is calculated using both the DR and precision
(PPV). The DR depend solely on the test dataset whilst precision is dependent on
the test and population. The DR response value can thus be selected and used for
evaluation to produce a better POD though the FM provides a better generalization
and not restricted to just the test data. The DR is used as response value and the
90/95 POD values for all eighth classifiers are shown in Tab. 4.3.

Table 4.3: POD results for all classifiers using DR response values

Classifier
Left lane
POD [s]

Right lane
POD [s]

ANN 3.067 3.325
HMM 1.439 1.204

RF 4.219 3.354
SVM 2.433 2.951

ANN-Mod 1.143 3.679
HMM-Mod 0.6355 0.5748

RF-Mod 2.883 3.181
SVM-Mod 3.300 3.485

The results show an improvement in the POD values for all classifiers in comparison
to when FM was used as response value. This simple but effective strategy can be
implemented to improve the POD results. It is also observed that usage of pre-
filters to tune parameters with the aim to optimize the performance of conventional
algorithms generally did work with the modified classifiers producing better POD
results. The introduced POD characterization strategy shows a strong dependence
on the response value and hence consideration should be given when selecting the
target response values for optimal classifier detection.

The procedure is extended to two other drivers to investigate the generalize perfor-
mance of the individual classifiers. The results are shown in Tab. 4.4 and 4.5.

A summary of the classification results for all three drivers are:
In estimating left lane change classification results:

1 For driver 1: Modified HMM produced best results (0.6355 s) with RF pro-
ducing worst results (4.219 s).
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Table 4.4: Left lane change 90/95 POD [ADS20]

Algorithm
Driver 1
POD [s]

Driver 2
POD [s]

Driver 3
POD [s]

ANN 6.383 3.067 4.400
HMM 3.518 1.439 3.052

RF 4.680 4.219 5.840
SVM 2.548 2.443 1.182

ANN-Mod 5.611 1.143 3.128
HMM-Mod 2.801 0.6355 2.853

RF-Mod 5.185 2.883 5.223
SVM-Mod 4.084 3.300 5.412

Table 4.5: Right lane change 90/95 POD [ADS20]

Algorithm
Driver 1
POD [s]

Driver 2
POD [s]

Driver 3
POD [s]

ANN 3.325 5.605 4.568
HMM 1.204 3.352 3.593

RF 3.354 3.974 10.9
SVM 2.951 4.037 5.525

ANN-Mod 3.679 4.143 4.302
HMM-Mod 0.5748 2.431 1.625

RF-Mod 3.181 6.005 5.631
SVM-Mod 3.485 5.688 5.616

2 For driver 2: SVM produced best results (2.548 s) with ANN producing worst
results (6.383 s).

3 For driver 3: SVM produced best results (1.182 s) with RF producing worst
results (5.84 s).

In estimating right lane change classification results:

1 For driver 1: Modified HMM produced best results (0.5748 s) with modified
ANN producing worst results (3.679 s).

2 For driver 2: Modified HMM produced best results (2.431 s) with modified
RF producing worst results (6.005 s).

3 For driver 3: Modified HMM produced best results (1.625 s) with RF produc-
ing worst results (10.9 s).
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Accordingly the following statements can be deduced for the experimental results:

1 For this example task, the most suitable classifier is modified HMM producing
4/6 best results.

2 The worst classifier for this example task is RF/ modified RF producing 4/6
worst results.

3 The application of prefilter to define features and influence prediction perfor-
mance generally results in an improved POD except for SVM.

The introduced approach permits a new POD-based certification and comparison
method for binary classifiers based on their reliability of prediction. Evaluation
and prediction of an impending event seconds before it occurs by the applied eight
classifiers is not directly possible using known measures (DR, FAR, ROC). However
the implemented approach provides a suitable strategy in predicting future event of
a dynamically changing situation as a function of the process parameter (here: time)
seconds before it occurs. Using a typical 90/95 POD certification standard provides a
new measure to compare the classification performance of different machine learning
approaches to a given task.

4.4.2 Fusion of results

In this section, the robustness of the POD measure in detecting and predicting
lane change behavior is improved through fusion. Robustness in this context refers
to improved stability bounds. An option to access improved stability bounds is the
tightness of confidence bounds. Three fusion approaches: Majority Voting, Bayesian
Combination Rule, and Behavior Knowledge Space are implemented in this work
to ascertain the possibility of improving the stability bounds. Also different static
selection strategies are considered to verify combinations that lead to better POD
results. Instead of considering and comparing the individual classification results,
the fusion of decisions from the classifiers can lead to an improvement of reliability
and/or robustness [TJGD08] [RKS19]. To avoid the combination of classifiers with
low accuracy and high dependency in comparison to other classifiers, ensemble se-
lection methods are used. The static selection method chooses all unseen patterns
based on validation errors during training phase. This approach selects an ensemble
of suitable classifiers for combination [ME15] [BJSO14]. In this contribution the
results of the eight classifiers are selected using the accuracy. As a conclusion from
the studies in [RS16], the selection of only the best classifiers does not always lead
to the best results. In some cases, the combination of very good and medium or
very good and worse classifiers can lead to a better fusion performance. Therefore
the considered static selection strategies are
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� all not modified ones,

� all modified ones,

� the two best,

� the three best,

� the four best, and

� the two worst.

The results of the classifiers are fused with the following three fusion methods using
the classifier results in the form of class labels.

Majority Voting

The Majority Voting (MV) is based on the simple majority rule, where a selection or
decision is made based on the number of votes for each alternative solution. Similar
to this idea, during fusion using MV, the final decision is based on the number of
classifiers assigning a specific class to a sample. The assignment of the classifier has
to be on abstract level. Therefore to provide for whether classifier ek assigns a class
qk(x) to a given sample x, the binary characteristic function for considered class ci
is introduced, where

bk(x ∈ ci) =

{
1, if qk(x) = ci

0, otherwise.
(4.5)

For each class, the binary characteristic functions for all nK classifiers are added to
the number of votes for each class ci using

b(x ∈ ci) =

nK∑
k=1

bk(x ∈ ci). (4.6)

Consequently, with respect to the current pattern x, the number of votes for each
class determines the choice of a final class label by application of

q̂(x) =


ci, if

b(x ∈ ci) = max
{
b(x ∈ c1), . . . , b(x ∈ cnC )

}
≥ α · nK + ft(x)

0, otherwise,

(4.7)

where nC denotes the total number of classes and α ∈ (0, 1] represents a parameter
that affects the required number of votes for a specific class label to be considered
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as the final result q̂(x). Moreover the additive function ft(x) usually considers the
exception of receiving the same number of votes for the top classes or the frequent
case of a slight difference of voting [XKS92]. Equation 4.7 describes a broad variety of
voting methods, each defined by its distinct implementations of parameters [RG00]
[XKS92], the specific version termed as MV is obtained by defining α = 0.5 and
ft(x) = 0 [SL00] [RG00].

Bayesian Combination Rule (BCR)

The Bayesian Combination Rule (BCR) also known as Bayes Belief Integration or
Bayesian Belief Method is a well known and commonly used fusion technique based
on conditional probability.

To set up the conditional probabilities of each classifier for each class, first the
confusion matrix has to be calculated. The confusion matrix Ck for each classifier
ek is defined as

Ck =


Ck

11 Ck
12 . . . Ck

1nC

Ck
21 Ck

22 . . . Ck
2nC

...
...

. . .
...

Ck
nC1

Ck
nC2

. . . Ck
nCnC

,

 , (4.8)

where i, j = 1, ..., nC with nC as the number of classes. The element Ck
ij is the

number of samples, where the classifier ek has assigned class cj and the actual class
of the sample is ci.

Using the elements of the confusion matrix the probability, that sample x belongs
to class ci, if the classifier ek assigns x to class cj can be calculated using

P k
ij = P (x ∈ ci | qk(x) = cj) =

Ck
ij∑nC

i=1C
k
ij

. (4.9)

For each classifier ek the probability matrix P k is set with

P k =


P k
11 P k

12 . . . P k
1nC

P k
21 P k

22 . . . P k
2nC

...
...

. . .
...

P k
nC1

P k
nC2

. . . P k
nCnC

 . (4.10)

The diagonal values (i = j) are the same as the precision value pi for this class.
Based on the probability matrix of each classifier, a combined belief value bel(i) for
each class i is determined for each sample with the formula

bel(x ∈ ci) =

∏nK
k=1 P

nK
iqk∑nC

i=1

∏nK
k=1 P

nK
iqk

, (4.11)

where qk is the assigned class of classifier ek for the considered sample x. The
maximum of the belief values is used to make a decision q̂(x) for one of the classes.
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Behavior Knowledge Space

The Behavior Knowledge Space (BKS) method [HS93], uses the specific combina-
tion of classifier labels from a training data set to denote a most probable class for
an unknown sample generating a new combination of classifier labels. While con-
sidering the individual assignments qk(x) of the nK different classifiers and the nC
possible class assignments, the nnKC possible combinations describes the Behavior
Knowledge Space. Every specific combination of labels is called a unit of the BKS,
and further denoted as BKS(q1(x), . . . , qnK (x)) = BKSl, where l = 1, . . . , nnKC .
During training, for each unit BKSl the total number of samples nl as well as the
number of samples belonging to one class nl(ci) is counted. The best representative
class for each unit BKSl is denoted by

cl = {ci | nl(ci) = max
{
nl(c1), . . . , nl(c2)

}
}. (4.12)

Once the best representative classes are determined, the combination of assignments
for the unknown sample x is related to the unit and the final decision is made by

q̂(x) =

cl, if nl > 0 and
nl(cl)

nl
≥ λ

0, otherwise.
(4.13)

where λ ∈ [0, 1] is a parameter controlling the degree of confidence in the generated
decision [RG00], while the original chosen value (as proposed in [HS93]) is λ = 0.5.

Given the case that the number of training samples assigned to a single unit equals
zero, and therefore there exists no knowledge on possible class labels, the final
decision is reached at random from the set {c1, . . . , cnC} [KBD01]. Furthermore
if ties between different classes exist within a unit, these ties are broken randomly
[KBD01].

4.4.3 POD generation of fused data

Based on the computed values, the target response method is utilized in this section
to generate POD for the classification/fused results as a new reliability standard.
The aim is to establish a POD characterization to illustrate the effect of process
parameters (here: time) to the classification/fused results so the probability distri-
bution is derived.

Four models comprising combinations of logarithmic and linear scales are established
for each fused ML algorithm to ascertain best model [MHA09].

The model that fits the mentioned criteria best is selected. Regression analysis is
implemented on the selected model and the decision threshold is constructed as
illustrated in Fig. 4.23.
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Figure 4.23: POD generation procedure

The POD curve is generated using area of the cumulative density function above
decision threshold. The POD for the classifiers are constructed for both right and
left lane change.

As example, the POD curve for ANN right lane change and 2 best BKS fused results
are shown in Fig. 4.24 and 4.25 respectively.

4.5 Results and discussion

Detailed analysis of the results is discussed in this section. Based on the proposed
approach, the POD curves of all classifiers are generated. There are currently many
certification standards but the 90/95 reliability measure is used here. The 90/95 cer-
tification in this context expresses the time required to detect complete lane change
with 90 % probability at 95 % confidence level. A comparison of Fig. 4.24 and
4.25 indicate the POD curve for the fused results has improved stability bounds due
to its tight confidence bounds. The tight confidence bounds provides the desired
robust lane change detection capabilities.

Classifiers are selected based on the mean overall accuracy with the ranking: The
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Figure 4.24: ANN right lane change
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Figure 4.25: POD for 2 worst MV results

POD results for the different selection strategies are indicated in Tab. 4.6 and 4.7.
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1. SVM-Mod 86.22 %
2. RF-Mod 85.90 %
3. ANN-Mod 84.85 %
4. RF 83.40 %
5. ANN 81.39 %
6. HMM-Mod 81.25 %
7. HMM 74.91 %
8. SVM 73.90 %

Table 4.6: Left lane change 90/95 POD

Fusion approach
Fused classifiers BCR BKS MV
All not modified - 3.276 3.271

All modified - 3.333 2.649
2 best - 3.315 3.107
3 best 3.765 3.141 3.234
4 best - - 3.544
2 worst - 2.642 2.642

Table 4.7: Right lane change 90/95 POD

Fusion approach
Fused classifiers BCR BKS MV
All not modified 4.192 3.398 3.303

All modified 4.169 3.86 3.452
2 best 3.618 3.618 3.284
3 best 4.169 3.592 3.457
4 best 4.509 4.045 3.475
2 worst 3.382 3.382 1.321

The time duration for complete lane change is 7 s. The least time values represent
best results because the selected fused algorithm is able to predict the lane change
within the shortest possible time.

The experimentally obtained and analyzed results can be summarized as follows: In
estimating left lane change classification results for the fused data:

1 Majority voting is best suited producing 5/6 best results.

2 Bayesian combination rule has worst suited 6/6 worst results.

3 Two worst selection strategy produced best POD results (2.642 s)

In estimating right lane change classification results for the fused data:
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1 Majority voting is best suited producing 6/6 best results.

2 Bayesian combination rule has worst suited 4/6 worst results.

3 Two worst selection strategy produced best POD results (1.321 s)

Accordingly the following statements can be deduced for the experimental results:

1 For this example task, the most suitable fusion approach is MV.

2 The worst fusion approach is BCR.

3 The best static selection strategy is 2 worst classifiers.

To understand the reason for the two worst classifiers producing best results requires
knowledge on the POD results for the individual classifiers illustrated in Tab. 4.3.
The results from Tab. 4.3 indicates that HMM-Mod has the best driver behavior
prediction though SVM-Mod has the highest accuracy. An indication that an ML
approach with the highest accuracy does not translate into it producing the best
POD.

4.6 Summary

In this chapter a new assessment on the performance of classifiers using POD ap-
proach is presented. This is needed because the evaluation process of known diag-
nostic tools like ROC/PR curves are non-parametric and hence incapable to relate
detectability with a process parameter. It can be clearly shown that for a selected
decision threshold there is a corresponding unique FAR but several DR values. This
implies, the ROC/PR curve though successful then suffers serious deficiencies in
modern systems and applications which requires detectability to be related to a
parameter. This deficiency is addressed using the new established POD measure.
The new approach is demonstrated on experimental data from real human driving
simulator. The target response method is implemented as a new analysis and cer-
tification tool for classifiers permitting the comparison of different ML algorithms.
The introduced approach provides a comprehensive interpretation of the quality
of a classification model by incorporating a process parameter in the evaluation
process. Different fusion strategies are implemented to improve the reliability of
POD statements through enhancement of POD stability bounds. The target re-
sponse analysis is used to compare different fusion and static selection strategies.
The fusion approaches used are Bayesian Combination Rule, Behavior Knowledge
Space, and Majority Voting. The results show MV is the best fusion approach for
this example task in estimating lane change behavior. The introduced approach
allows a new insight into the ability of machine learning-based classifiers to handle
dynamically changing situations.
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In this chapter, object classification and detection using Deep Convolutional Net-
work (CNN) is presented. Deep CNN is a useful classifier for large-scale image clas-
sification. It is common knowledge that classifier performance depends on problem
characteristics and vary with process parameters. The question about the perfect
classifier is difficult to evaluate. This chapter focuses on accurate and explicit eval-
uation of CNN classifiers in image detection. Existing evaluation approaches do
not integrate the effects of other properties related to image parameters or varying
problem details in the evaluation process. The POD is proposed as a new evaluation
measure allowing evaluation of further image parameters affecting the classification
results. The introduced approach permits the assessment and comparison of dif-
ferent classifiers related to the same parameter-dependent classification task. The
proposed method is implemented on a number of images and comparisons made on
parameters with the best detection capabilities. Similar to typical standards in the
industry, the probability of detecting an image at 90 % with a reliability level of
95 % is successfully implemented and the comparison made between different im-
age parameters. The advantage of the novel approach is experimentally evaluated
for vision-based classification results of CNN approach considering different image
parameters. To illustrate the newly introduced performance measure a comparison
using alternative standard machine learning-based classifiers using identical exper-
imental data is shown. This chapter is organized as follows: In section 5.1 the
state-of-art and the need for a new evaluation approach is presented. In section 5.2
the classification approaches and the corresponding results are discussed. In section
5.3 newly proposed approach [ADS19] based on POD measure is briefly introduced,
applied, and the results are presented. Comparison is made between different clas-
sifiers in section 5.4 using Hit/Miss approach and subsequently the conclusion is
presented in section 5.5.

The content, figures, and tables in this chapter are based on the submitted paper
[BAMS20].

5.1 Introduction

Performance evaluation and analysis of classification approaches are based on ei-
ther a numeric measure or a graphical representation. The numeric measures are
based on the calculation of true positives, false positives, false negatives, and true
negatives. They can be illustrated in a confusion matrix as a basic performance
metric [Sus04]. Selection of a suitable numeric measure normally depends on the
classification purpose. In [SL09] twenty four performance measures are introduced
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for binary, multi-class, multi-labeled, and hierarchical classifiers based on the values
of the confusion matrix. The confusion matrix evaluations used are accuracy, pre-
cision, sensitivity, recall, fscore, exact match ratio, among others. The limitation
of all aforementioned measures are that some important details could be hidden
by using a single performance measure. These performance measures are also sen-
sitive to imbalanced data. Nevertheless using one scalar performance measure is
very simple and easy. Accuracy measure (as a ratio between the correctly classified
samples to the total number of samples) is the most common performance measure
in evaluating classification algorithms. In [LJL+19] for example, a group collabo-
rative representation model for face recognition and object categorization tasks are
evaluated using the accuracy. In [WFY15] average precision (AP) and mean AP
(mAP) are used in the evaluation of collaborative linear coding approaches with the
purpose of eliminating the negative influence regarding noisy features in classifying
images.

Graphical assessment methods provide different interpretations of the classification
performance. The ROC is one of the graphical performance measures for binary clas-
sifiers [Faw06]. It is the illustration of true positive rate against false positive rate.
This illustration is not helpful in the case of data sets with large class imbalances.
An alternative visualization is the precision-recall (PR) curve that is the relationship
between recall and precision. The area under the ROC curve (AUC) and PR curve
(AUPRC) are also used as performance measures with the same limitations as single
performance measures. In [DG06] a comparison between ROC and PR performance
illustrations is investigated. Furthermore, some approaches are proposed to find a
suitable threshold value to reduce the sensitivity of assessment to the imbalanced
data [ZXL+16]. Another graphical assessment approach which shows the relation
between false acceptance rate (FAR) and false rejection/recognition rate (FRR) is
the Detection Error Trade-off (DET) curve [MDK+97].

Deep learning approaches are widely used in computer vision for recognition and
tracking [LOW+20, ZZXW19]. For large-scale image classification, Deep CNN is
one of the suitable classifiers . Previously mentioned classification assessment ap-
proaches can be used to evaluate the classification results of CNN in machine vision
field [HZRS15]. The most commonly used performance measure in object detection
field is AP considering both precision and recall into account [LOW+20].

It is worth mentioning that the effects of other properties related to image pa-
rameters or varying problem details are not considered in the well-known evaluation
approaches. This limitation in verifying and incorporating the effect of image param-
eters on the classifier performance is addressed in this chapter. A new performance
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evaluation is proposed based on the Probability of Detection (POD) evaluation met-
ric for the evaluation and comparison of different binary classifiers.

In [ADS19] the authors introduced the idea of classifier evaluation using POD and
applied this to driving behavior prediction. In this chapter the focus is different: the
approach is applied to vision-based image detection, the theory of the new approach
is completely developed, and a new certification standard for image classification
approaches is clearly defined.

5.2 Deep Convolutional Neural Network for object classifi-
cation

Convolutional Neural Network (CNN) is a class of deep Neural Networks and widely
used in computer vision as a suitable approach for image recognition and classifica-
tion. The most common advantage of using CNN compared to other image classi-
fication algorithms is the pre-processing filter that can be learned by the network.
The structure of CNN consists of convolutional layers, ReLU layers (activation func-
tion), pooling layers, and fully connected layer. Each layer involves linear and/or
nonlinear operators.

Convolutional layers extract features from the input image by applying a convolution
operation to the input image. The convolutional layer is the first filter layer that
builds a convolved feature map for the next layer. The pooling layers are applied
to avoid overfitting and preserving the desired features. The last Pooling Layer is
followed by one (or more) fully-connected layer(s) according to the architecture of
the multilayer perceptron. This is mainly used for classification. The number of
neurons in the last layer then usually corresponds to the number of (object) classes
the network should distinguish.

With each filter layer the abstraction level of the network increases. The abstraction
that finally leads to the activation of the subsequent layers is determined by the
characteristic features of the given classes that will be recognized.

5.2.1 Network architecture

In this chapter, two architectures are used as the classification model:

1. ResNet18 [HZRS16] and
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Figure 5.1: Architecture of ResNet18 (according to [HZRS16])

2. MobileNet V2 [SHZ+18].

In the ResNet18 structure, a CNN with 18 layers deep is built based on a deep
residual learning framework shown in Fig. 5.1. The learning approach eliminates
accuracy degradation as the network depth increases. In the MobileNet V2 struc-
ture, an inverted residual and linear bottleneck layer is proposed to increase the
accuracy in mobile and computer vision applications. This structure is an improved
version of MobileNet V1 which uses the depthwise separable convolution to decrease
the size of the model (number of parameters) and correspondingly the complexity
(multiplications and additions) of the network. Overall architecture of this approach
is shown in Fig. 5.2 and correspondingly in Table 5.1.

Table 5.1: Overall architecture of MobileNet V2

Input Operator t c n s
2242 x 3 conv2d - 32 1 2
1122 x 32 bottleneck 1 16 1 1
1122 x 16 bottleneck 6 24 2 2
562 x 24 bottleneck 6 32 3 2
282 x 32 bottleneck 6 64 4 2
142 x 64 bottleneck 6 96 3 1
142 x 96 bottleneck 6 160 3 2
72 x 160 bottleneck 6 320 1 1
72 x 320 conv2d 1x1 - 1280 1 1
72 x 1280 avgpool 7x7 - - 1 -
1 x 1 x 1280 conv2d 1x1 - k - -

5.2.2 Classification results

Custom dataset containing 10 classes (apple, atm, card, cat, banana, bangle, bat-
tery, bottle, broom, bulb, calender, camera) is used in this work. Both ResNet and
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Figure 5.2: Network architecture of MobileNet V2 with basic building block as
inverted residual block (according to [SHZ+18])

Table 5.2: Classification results

Model Training accuracy Validation accuracy
ResNet18 0.995 0.9878
MobileNet V2 0.9621 0.976

MobileNet V2 are trained for 10 epochs on the customized data set using transfer
learning approaches [TSK+18]. The pre-trained version of ResNet and MobileNet
V2 on the ImageNet dataset [DDS+09] is used in the experiments. It can be observed
that it is faster to achieve high classification accuracy on the customized dataset us-
ing pre-trained models trained on almost similar datasets. The classification results
are detailed in Table 5.2.

5.3 New evaluation of object classification by the target re-
sponse approach

In this research, the two classifiers are used in detecting an apple image. The vary-
ing image parameters considered are the contrast and brightness (see Fig. 5.3).
The target response approach is adapted and implemented as a new performance
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Figure 5.3: Input images with varying brightness (top row) and varying contrast
(bottom row) provided to the classification networks

Table 5.3: Probability of detection considering different image contrasts

Contrast Probability
0.0 0.31452537
0.1 0.72617805
0.2 0.9944179
0.3 0.9994198
0.4 0.99984
0.5 0.9999324
0.6 0.99995387
0.7 0.99997306
0.8 0.99997616
0.9 0.9999759
1.0 0.9999771

assessment for object detection classification models. For illustrative purpose, the
MobileNet V2 classifier and contrast values are implemented. The contrast is varied
from 0 (min) to 1 (max). Beyond a contrast value of 0.2, the algorithm is able to
detect the image with a probability of 0.9944 (see Table 5.3). Therefore the analysis
is made for the range of values 0-0.2 since beyond 0.2, the algorithm reaches satu-
ration threshold and has no effect on POD characterization. One hundred contrast
values between 0-0.2 and the corresponding probability values are examined.

A graph of the MobileNet V2 classifier contrast data is illustrated in Fig. 5.4. The
least detectable target (inspection threshold), maximum detectable target (satura-
tion threshold), and threshold below which the observed data is characterized as



5.3 New evaluation of object classification by the target response approach 71

40

60

80

100

Contrast

10
-3

10
-2

10
-1

10
0

2 3 4 6 8 2 3 4 6 8 2 3 4 6 8

P
ro

b
a

b
ili

ty
 [

%
]

Figure 5.4: Log x data model

noise(decision threshold) are constructed.

Regression analysis are carried out for the dataset to establish a POD characteri-
zation to illustrate the effect of process parameter (here: contrast) to the detection
probability results. The 95 % confidence bounds and the prediction bounds are also
constructed (see Fig. 5.5). The confidence bounds are constructed for certification
purpose while the prediction bounds serve as boundaries so that for every new 100
observations, 95 should fall within. The cumulative density function (CDF) for the
data distribution are also constructed. The POD curve is generated using area of
the cumulative density function above decision threshold (Fig. 5.6).

The confidence bounds about the regression line are used in constructing the 95 %
bounds around the POD curve. The POD generation procedure are repeated for
the confidence bounds to construct the 95 % bounds around the POD curve. The
90/95 certification criteria representing 90 % probability of detecting the image with
a reliability of 95 % is utilized in this research. The 90/95 (o in Fig. 5.7) value for this
concrete example is 0.02167. This implies, in varying the contrast values from 0 to 1,
at 0.02167 the algorithm is able to correctly detect the image with 90 % probability
at 95 % reliability. Unlike classical evaluation approaches, this introduced and
novel approach provides a new evaluation and performance assessment for classifiers
incorporating the effect of image property on the classification results.
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Figure 5.5: Regression analysis
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Figure 5.6: POD generation approach
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Figure 5.7: POD curve, o: 90/95 POD value

5.4 Comparison of different Neural Network models by the
Hit/Miss approach

In this section a new POD implementation strategy is deployed due to the nature of
the data to be analyzed. This new approach is used to evaluate the performance of
two Neural Network algorithms namely MobileNet V2 and ResNet. Each model is
implemented on two varying parameters namely brightness and contrast. Here, the
classes as opposed to the probabilities are used. The classes are binary in nature and
hence the Hit/Miss approach will be used. At each parameter intensity, if the algo-
rithm correctly classifies the image it is assigned a value of 1 (Hit) and 0 (Miss) for
a wrong class. Like the former approach the analysis is made for parameter changes
from 0-0.2 at a step size of 0.002. To accurately implement the Hit/Miss approach,
the appropriate link function to be used needs to be determined. For illustrative
purpose, the classification results of MobileNet V2 considering brightness values are
used (Fig. 5.8).
Eight models of different link functions are constructed to select best fitting model as
illustrated in Fig. 5.8. The data distribution of the logarithmic model does not sup-
port the construction of a valid POD curve estimate and hence the Cartesian models
will be more suitable for this example. A statistical hypothesis testing procedure is
undertaken to ascertain best fitting link function model. To model the relationship
of GLM, deviance is a measure of goodness of fit: the smaller the deviance, the
better the fit. It is attained using a generalization of the sum of squares of residu-
als in ordinary least squares to cases where model-fitting is achieved by maximum
likelihood. The Cartesian Weibull is selected for this specific analysis because it has
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Figure 5.8: Models to select link function with least deviance [BAMS20]

the least data deviance in comparison to the other link functions. The procedure is
repeated for MobileNet V2 contrast parameter as well ResNet brightness and con-
trast parameters. The hypothetical testing procedure show Cartesian Weibull is the
best link function for all. The Weibull is implemented to map −∞ < x < ∞ to
0 < y < 1. The Weibull function is expressed as

f(X) = g(y) = log(−log(1− p)),

where f(X) is an algebraic function with linearized parameters and p the probability.
The probability of detection as a function of brightness B for the Weibull model is

POD(B) = 1− exp(−exp(f(X))).

Using the Weibull, surface contours are constructed to ascertain the most plausible
GLM (Fig. 5.9, 5.10, 5.11, and 5.12).

The likelihood ratio test is used to assess goodness of fit. The log likelihood ratio
contour encloses all β0, β1 pairs that are plausibly supported by the data. The
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Figure 5.9: Likelihood surface contour
for MobileNet V2 brightness [BAMS20]
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Figure 5.10: Likelihood surface contour
for MobileNet V2 contrast [BAMS20]
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Figure 5.11: Likelihood surface contour
for ResNet brightness [BAMS20]
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Figure 5.12: Likelihood surface contour
for ResNet contrast [BAMS20]

confidence bounds are constructed on the surface contours using a method developed
by Cheng & Iles approximation [CI83].

Using the maximum likelihood estimation (MLE) method, the GLM values for the
intercept and gradient are generated for both classifiers. With these values, a GLM
model and confidence bounds fitting the data are constructed (Fig. 5.13, 5.14, 5.15,
and 5.16).
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Figure 5.14: GLM with estimated pa-
rameters for MobileNet V2 contrast
[BAMS20]
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Figure 5.15: GLM with estimated
parameters for ResNet bright-
ness [BAMS20]
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Figure 5.16: GLM with esti-
mated parameters for ResNet con-
trast [BAMS20]

From the fitted GLM model, the POD curve is generated using the parameter es-
timates (Fig. 5.17, 5.18, 5.19, and 5.20). The 90/95 criteria is also successfully
implemented on the results.

The 90/95 reliability value for MobileNet V2 is 0.101. This implies at the exact
brightness intensity value of 0.101, the MobileNet V2 algorithm is able to detect
the image with 90 % POD at a 95 % reliability level. The procedure is repeated
for MobileNet V2 contrast, ResNet brightness, and ResNet contrast parameters. A
comparison of the 90/95 POD values for the two classifiers and image parameters
are detailed in Table 5.4.
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Figure 5.17: POD curve for MobileNet
V2 brightness [BAMS20]
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Figure 5.18: POD curve for MobileNet
V2 contrast [BAMS20]
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Figure 5.19: POD curve for ResNet
brightness [BAMS20]
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Figure 5.20: POD curve for ResNet
contrast [BAMS20]

Table 5.4: The 90/95 POD values [BAMS20]

Classifier Brightness Contrast
MobileNet V2 0.1010 0.1297
ResNet 0.1214 0.0851

The smallest 90/95 POD values define the best results because the classification
algorithm is able to detect the image with 90/95 reliability with the least con-
trast/brightness changes. The results indicate Mobile2Net V2 performed better
using brightness as parameter while ResNet performed better using contrast as pa-
rameter.
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This novel POD approach introduces a new performance evaluation for vision-based
classification models incorporating and assessing directly the effects of image pa-
rameters.

The introduced approach makes it possible to check the number of target hits and
missed directly from the POD curve. For the classification results, there were no
misses beyond 90/95. The hits beyond 90/95 for the classifiers and different param-
eters are detailed in 5.5.

Table 5.5: Hits beyond 90/95 POD [BAMS20]

Classifier Brightness Contrast
MobileNet V2 50 36
ResNet 40 58

For this specific example, the evaluation and prediction system is reliable for all
classification results because no misses are observed beyond the 90/95 POD thresh-
old. For this specific example, the classifiers with the most hits beyond 90/95 are
the best because the most correct class predictions beyond 90/95 thresholds are
generated. This assertion is corroborated by the POD results in Table 4. However
this conclusive statements can only be made for systems with no misses beyond the
90/95 threshold. The complexity increases if there are misses beyond 90/95 and
requires the performance of noise analysis to conclude on the best classifier.

5.5 Summary

This chapter presents a new measure for performance evaluation of binary classifiers
used in object detection. This is needed because often the effects of other properties
related to image parameters or varying problem details are not considered in the
evaluation process. Effectiveness of this approach is experimentally evaluated for
vision-based classification results of CNN considering different image parameters.
Two classification models are trained (ResNet and MobileNet V2). The proposed
target response approach is implemented on MobileNet V2 classifier as a new eval-
uation procedure. Furthermore, the results of two classifiers are compared using
the novel Hit/Miss evaluation approach. The results indicate that Mobile2Net V2
performs better considering brightness as parameter while ResNet performs better
considering contrast as varying parameter. Based on the newly introduced POD-
related evaluation, different vision-based classification approaches can be clearly
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distinguished with respect to their ability to predict the correct image as a function
of related image parameters. The introduced approach provides a comprehensive
interpretation of the quality of a classification model and therefore allows a new
evaluation quality.
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6 Summary, conclusion, and future work

6.1 Summary and conclusion

In this thesis challenges associated with monitoring dynamical systems are pre-
sented. The difficulties are related to data acquisition, feature extraction, and sta-
tistical modeling for features classification. A data acquisition system consists of
software (signal data) and hardware (sensors and other components). The num-
ber, types, and sensor positions has been a difficult subject for researchers over the
years. Feature selection is also critical due to different sensitivity levels of features
to faults. Fault diagnosis approaches try to solve these problems however critical
questions still remain: transition from theory to practical implementation, correctly
selecting senors (types, number, and positions) and reliability evaluation of FDI
schemes.

To address these challenges, a novel POD-oriented view to vibration-based diagnosis
typically considering different sensor types is presented. The measurements used are
acceleration, strain, and displacement (laser sensors). The results indicate that the
POD characterization depends on the sensor type, sensor position, fault position,
and the feature selected. The sensor type has an effect on the POD due to the fact
that performance specifications vary for different sensors. Sensor and fault position
plays an important role due to observable effects. The a90/95 criteria representing
probability of 90 % at a confidence level of 95 % is successfully implemented in
vibration-based FDI as a reliability measure. The POD measure is adapted and im-
plemented in this work to provide a statistical modeling technique to select the best
sensor (type and position)-feature combination for optimal fault diagnosis especially
considering their noise characteristics.

A new data driven noise analysis procedure is presented to analyze the PFP and
corresponding POD value for any selected decision threshold. An effective method
to improve sensor detection without affecting the false alarm by utilizing sensitive
features is introduced. The noise analysis procedure provides a graphical representa-
tion that illustrates the diagnostic capabilities of a sensor as its decision threshold is
varied. The new insight introduced allows task-/application-specific quantification
of sensors relative to vibration-based monitoring/diagnosis of faults.

Using the novel fusion approach introduced, the probability of the existence of a
fault can be obtained based on the individual performance and assignments of the
sensor-/feature-based statement. Noise analysis allows to define a decision threshold
which permit a suitable trade-off between the POD and PFP.

The introduced approach is extended to the certification of ML approaches. This
is needed because existing evaluation processes and known measures like ROC of-
ten do not consider effects of process parameters on classification results. When
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interpreting scenarios or for classification of complex sensor data describing a com-
plex spatial scenario this might be of special interest. The 90/95 POD reliability
measure is implemented as a new certification standard for classifiers. The new
approach is demonstrated on experimental data from real human driving simulator.
The data from the multi-sensor system are fused by classification and subsequently
decision/statements about the lane change behavior have to be made. The approach
also permits the comparison of different ML algorithms thereby aiding in the selec-
tion of desirable approach for a specific task. The target response analysis is used to
compare different classifiers. A new measure establishing a process-parameter de-
pendent evaluation is introduced allowing a new insight into the ability of machine
learning-based classifiers to handle dynamically changing situations.

To demonstrate the generalizable capabilities of the introduced approach and also
to solve a critical problem in vision-based evaluation approaches, the proposed ap-
proach is extended into the field of computer vision systems albeit different imple-
mentation strategies. This is needed because often the effects of other properties
related to image parameters or varying problem details are not considered in the
evaluation process. Effectiveness of this approach is experimentally evaluated for
vision-based classification results of CNN considering different image parameters.
Two classification models are trained using ResNet and MobileNet V2. The pro-
posed target response approach is implemented on MobileNet V2 classifier. Further-
more, the results of two classifiers are compared using the novel Hit/Miss evaluation
approach. The results indicate that Mobile2Net V2 performs better considering
brightness as parameter while ResNet performs better considering contrast as vary-
ing parameter. Based on the newly introduced POD-related evaluation, different
vision-based classification approaches can be clearly distinguished with respect to
their ability to predict the correct image as a function of related image parameters.
The introduced approach provides a comprehensive interpretation of the quality of
a classification model and therefore allows a new evaluation quality.

6.2 Future work

In this thesis, the diagnostic capabilities of different sensor-feature combination is
presented. The performance evaluation of these sensors and classification approaches
implemented in machine learning and computer vision systems are developed using
the POD approach. The evaluation procedure considered a single parameter in the
assessment process. As future work, the consideration of two or more parameters
concurrently in the evaluation process needs to be developed. This is important be-
cause the POD approach demonstrated a strong dependence on the sensor-feature-
position combination. In the Machine Learning field, the approach shows a strong
dependence on the target response value, while in the computer vision field it showed
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a dependence on the image parameter. Therefore an approach considering simulta-
neously two or more parameters in the evaluation process will help conclude on the
general best approach.

Also further research to improve the POD using other fusion strategies needs to
be investigated. The introduced POD-based fusion is applied to one example to
evaluate the feasibility of the introduced concept. To critically examine the influence
on the fusion performance, further experiments have to be undertaken to consider
all sensor-feature combinations detecting a fault or not. Using the results of the
experiments, individual accuracy and fused accuracy can be compared.
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[AS20] Ameyaw, Daniel A. ; Söffker, Dirk: Fault diagnosis and damage
quantication of elastic mechanical systems: State of the art, limita-
tions, and outlook. In: Mechanical Systems and Signal Processing
(2020). – submitted

[ASSS14] Al-Shrouf, Lou’i ; Saadawia, Mahmud-Sami ; Söffker, Dirk:
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[ADS20a] Ameyaw, D. A.; Deng, Q.; Söffker, D.: A new kind of visualization
and interpretation of classifier performance. In: Information Sciences,
submitted

[ADS20b] Ameyaw, D. A.; Deng, Q.; Söffker, D.: A new measure comparing
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