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Dynamic algebras combine the classes of Boolean (B v ' 0) and regular 
(R U ; * ) algebras into a single finitely axiomatized variety (~ 9/ ◊) 
resembling an R-modu1e with "scalar" multiplication ◊. The basic result is 
that * is reflexive transitive closure , contrary to the intuition that this 
co'ncept should require quantifiers for its definition. Using this result we 
give several examples of dynamic algebras arising naturally in connection with 
additive functions, binary relations, state trajectories, languages, and 
flowcharts. The main result is that free separable dynamic algebras are 

. residually separable-and-finite , important because finite separable dynamic 
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completeness proof for the Segerberg axiomatization of propositional dynamic 
logic, and yet another notion . of regular algebra. 
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Dynamic Algebras: Examples, Constructions, Applications 

Vaughan R. Pratt 

1. INTRODUCTION 

We propose, with Kozen [17], the notion of a dynamic algebra, which 
integrates an abstract notion of proposition with an equally abstract notion 
of action. Just as propositions tend to band together to form Boolean 
algebras, as Halmes [12] puts it, with operations v and ', so do actions 
organize themseh·es into regular algebras, with operations U ; *. Analogously 
to the proposition pvq being the disjunction of propositions p and q, and p' 
the complement of p, the action aUb is the choice of actions a or b, a; b, or 
just ab, is the sequence a followed by b, and a* is the iteration of a 
indefinitely often. 

Just as v and ' have a natural set theoretic interpretation, so do U, ; 
and * ha,·e natural interpretations on additive functions, binary relations, 
trajectory sets, languages, and matrices over regular algebras, to name those 
regular algebras that are suited to dynamic algebra. The section below on 
exathples illustrates this. 

It is natural to think of an action as being able to bring about a 
proposition. We write (a)p, or just ap, pronounced "a enables p," as the 
proposition that action a can bring about proposition p. A dynamic algebra 
then is a Boolean algebra (B v ' 0), a regular algebra (R U ; *), and the 
enables operation O:RxB➔B , 

Motivation. An important problem in computer science is how to reason about 
computer programs. The proposals of [10, 14,29,8,6,21J are representative of a 
class of methods (by no means the only class) that may be exemplified by the 
following. 

Let x:=5 denote the program for setting the value of the program 
variable x to 5. Then (x:=5)x=5 asserts that setting x to 5 can make x equal 
to 5, which is necessarily true and so is the same (abstract) proposition as 
the unit l of the Boolean algebra of all such propositions. Thus \\.'e would 
write <x==S>x=S = 1. On the other hand (x:=x+ l)x=5, again viewed abstractly, 
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is not 1 but rather is the same abstract proposition as x=4. (The "l" in "x+l" 
is numeric 1, disting\iished by context from Boolean 1.} And (x:=x-1 *>x=O must 
be x?O, as it is not possible to make an initially negative variable zero by 
decrementing it indefinitely. 

These observations about x:=5, x:=x+ 1, etcetera, depend on the nature of 
program variables, numbers, arithmetic, assignment, and so on. However there 
are also more universal observations one can make, at a level that knows 
nothing about programs that manipulate variables and numbers. For example no 

. program can bring about the truth of false; that is, a0=0. Moreover, a 
program can bring about pvq just when it can bring about p or it can bring 
about q, i.e. a(pvq) = apvaq. One of a orb can bring about p just when 
either a can bring about p or b caff, i.e. (aUb)p = apvbp. And ab can bring 
about p just when a can bring about a situation from which b can bring about p, 
i.e. (ab)p = a(bp). (In full, <a;b)p = <a>(<b)p). We rely on context to 

· indicate where to insert ; and ◊.) · 

Suppose now that either p holds, or a can bring about a situation from 
which a can crentua!ly (by being iterated) bring about p. Then a can 
eventually bring nbout p. That is, pvaa*p ~ a*p. (We write ~q to indicate 
that p implies q, defined as pvq = q.) In turn, if a can eventually bring 
about p, then either p is already the case or a can eventually bring about a 
situation in which p is not the case but one further iteration of a will bring 
about p. That is, a*p ~ pva*(p' Aap). This is the principle of induction, 
in a simple Boolean disguise as can be seen by forming the contrapositive and 
replacing p' by q to yield q /\ [a*J(q=>[aJq) ~ [a*Jq, where [aJp, p=>q 
abbreviate (ap')',p'vq respectively. [aJ is the dual of <a>, and [aJp 
asserts that whatever a does, p will _hold if and when a halts. 

The notion of a test program p? is also useful. A test cannot bring 
about a different situation; morem·er p? cannot bring about even the present 
situation unless p already holds. Thus (p?)q = pAq. Tests are of use in 
defining certain well-known programrhing constructs such as 
if p then a else b = ·(p?a)U(p'?b), and while p do a = (p?a)*p'?. We will 
have little to say about tests in this paper. 

Outline. The remainder of the paper is as follows. Section 2 supplies the 
main defini tions. Section J gives the basic result, that the regular operation 
* of a dynamic algebra is reflexiYe transitive closure, or quasiclosure to be 
precise. Section 4 illustrates the abstract concept of dynamic algebra with 
five concrete examples of dynamic algebras that arise in practice, and also 
gives some counterexamples. Section 5 gives the main results, that free 
dynamic algebras are residually (separable-and-finite)-or-Boolean-trivial 
(isomorphic to a subdirect product of dynamic algebras each of which is either 
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separable and finite or has a one-element Boolean component), and that free 
separable dynamic algebras exist and are residually separable-and-finite. 

Section 6 gives se,·eral applications of these results. Using the fact 
that every finite separable dynamic algebra is isomorphic to a Kripke structure 
we apply the first part of the main result to show the completeness of the 
Seger berg axiomatization of propositional dynamic logic [30], which we state in 
algebraic form as the equality of two varieties. Using the second part of the 
main result we show that separable dynamic algebras and Kripke structures 
generate the same variety and so have the same equational theory, both Boolean 
and regular. Finally we explore a new definition of the notion of regular 
algebra, a surprisingly controYersial class given the importance of some of its 
instances. Section 7 tidies up some loose ends. Section 8 supplies some 
algebraic prerequisites as a convenient reference for the reader who may need 
prompting on some of the definitions; in the text we refer thus8 to this 
section. 

For us the most interesting parts of the paper are Theorems 3. 4 (* 1s 
reflexive transitive closure) and 5. 3 (existence of filtrations). We find it 
surprising that an equational system can define reflexive transitive 
quasiclosure exactly, that is, with no nonstandard models. While it may not 
come as a surprise to those familiar with the Fischer-Ladner filtration result 
(9J that it can be obtained in an algebraic form, those familiar with the 
various efforts to obtain the completeness result may find it of interest that 
the filtration result itself need be the only subtle part. Lemma 3. 1 is the 
key to the rest of the paper, filtration included, but it is not a difficult 
lemma. 

2. DEFINITIONS 

Syntax . We define the following classes of algebras. 

Class 
Boolean algebras 
Regular algebras 
Dynamic algebras 
Test algebras 

Symbol 
~ 
91 
SJ 
/} 

Similarity Type 
(B V 1 0) 
(R U ; *) 

(17 91 ◊) 
(.@ ?) 

The types are: v:BxB➔B , ':B➔B, 0:B, U:RxR➔R, ;:RxR➔R, *:R➔R, 0:RxB➔B, 
?:B➔R. We write pAq for (p'vq')', l for 0', [aJp for (ap')', ~q for pvq=q, · 
a~b for Vp(ap~bp) . 
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Semantics. A Boolean algebra is a complemented distributive lattice, these 
. all being properties definable equationally. A dynamic algebra (~ ~ ◊) 
satisfies the following equations. 

1. q; is a Boolean algebra. 3. (aUb)p = ap v bp 
2a. aO = 0 4. (ab)p = a(bp) 
2b. a(pvq) = ap v aq 5a,b. pvaa*p ~ a*p ~ pva*(p'Aap). 

These axioms are obtained from the Hilbert-style Seger berg axioms [ 30] 
for prop()sitional dynamic logic [9] · in the same way one may obtain Boolean 
identities from a Hilbert-style axiomatization of propositional calculus. Note 
that axiom 2a is obtc1ined from the modal logic inference rule of Necessitation, 
namely from p infer [aJp. We have discussed the motivation for all of these 
axioms in the previous section. 

A test algebra satisfies: 

6. (p?)q = J)/\q. 

We will not prove anything about test algebrns in this paper. Although 
they introduce a little complication into some of the arguments, the reader 
should find it straightforward to extend most of the results below about 
dynamic algebras to test algebras. We mention converse among the open 
problems of Section 7. 

Predy;,amic Algebras. A predynamic algebra is any algebra similar to (having 
the same similarity type as, but not necessarily satisfying the equations for) 
a dynamic algebra. Free predynamic algebras are used in this paper for the 
notion of an FL-set. 

Separability. If ap=bp for all p we call a and b inseparable, an equivalence 
relation which \Ve shall later show to be a congruence relation on dynamic 
algebras. Following Kozen [17] we call separable any dynamic algebra in which 
inseparability is the identity relation. We let S denote the class of 
separable dynamic algebras. 

Separability can be expressed with the first-order sentence 
VaVb]p(ap=bp...,. a=b). (Taking the contrapositive of the quantifier-free part 
makes this more understandable.) This being a Horn sentence [5, p. 235] , it 
follows that S is closed under direct products [15]. Example 7 shows that S is 
closed under neither homomorphisms nor subalgebras. 
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3. BASIC RESULT 

In this section we prove the fundamental theorem of dynamic algebra. 
We present this result before giving the examples, partly because it helps 
somewhat in understanding the examples, partly because its proof does not 
deserve to be buried deeper in the paper. 

Actions as Functions. Although we have taken the type of◊ to be ◊=RxB➔B 
we could equivalently have taken it as ◊:R➔(B➔B); the reason for the former 
was so that it would be clear that we were defining .an ordinary algebra. The 
latter type is consistent with our use of the notation (a)p - we may think of 
<a> as a function on B. Our use of the alternative notation ap is to suggest 
that we may think of a itself as a function on B. All that is lacking is 
extensionality, that is, we may have ap = bp for all p E B yet not have a=b. 
The lack of extensionality does not prevent us from appearing to be able to 
define operations such as composition by saying that (ab)p = a(bp) for all p. 

Accordingly we shall think of the elements of R as quas1functions, 
having all the attributes of functions save extensionality. In a separable 
dynamic algebra they become functions. 

Recall that a ~ b means that ap ~ bp for all p. It follows that ~ on 
quasifunctions is reflexive and transitive but not antisymmetric, and so is a 
quasiorder. In a separable dynamic algebra it becomes a partial _ order. 

Th~ content of axioms 2a, b is now clear. Axiom 2a says that all 
quasifunctions are strict (0- preserving), and axiom 2b that they are finitely 
addith·e (preserving joins of finite non-empty sets). 

Continuing in this vein, axioms 3 and 4 leave no doubt that U is 
pointwise disjunction and ; is composition. - In the absence of extensionality 

- we must consider these apparent functionals to be be quasifunctionals, which 
are operations on quasifunctions with which the relation of inseparability is 
compatible (a = a' and b = b' implies aUb = a'Ubt etc.), easily seen from 
axioms 3 and 4 to be the case for U and ; . 

Axiom 5 however is nothing short of inscrutable. It may be made a 
little rnore symmetric by rephrnsing it as pv(p' Aaa*p) ~ a*p ~ pva*(p' Aap), 
using Boolean manipulation on Sa. This can then be broken up into p ~ a*p 
together with the even more symmetric p' Aaa*p ~ p' Aa*p ~ a*(p' Aap). The lower 
and upper bounds on p' Aa*p seem to be referring to the start and end of the 
"interval" · during which p remains false, an interval which must exist when 
p' Aa*p holds. This intuitive analysis, while suggestive, is however not a 
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characterization of *. The following supplies a more satisfactory formal 
analysis. 

Let a!p = {qlpvaq~q}. Let min S be the least element of the partially 
ordered set S when it exists, and undefined otherwise. (This is in contrast to 
AS, the meet of S, which may exist but not be in S.) 

We propose the following alternative to 5a, b. 

5' . a*p = min(a!Jj). 

Axiom 5' is not an acceptable equational identity for the purpose of 
defining a variety because of its use of min and !. However it provides an 
excellent metamathematical characterization of *, as the following lemma shows. 

Lemma 3.1. Sa,b and 5' are interchangeable as axioms. 

Proof. 
q E a!p. 

(➔). Assume Sa,b. Sa asserts that a*p E a!p. 
We ·show that a*p ~ q. We have: 

Now consider arbitrary 

p ~ q 
Hence a*p ~ a*q 

~ qva*(q'Aaq) 
= qva*O 
= q. 

(pvaq ~ q) 
(2b - expand definition of ~) 
(Sb) 
(pvaq ~ q) 
(2a, 1) 

(+-). Assume a*p = min(a!p). Then a*p E a!p, so 5a holds. For 5b it 
suffices to show that pva*(p' Aap) E a!p, since a*p ~ q for any q E a!p. 

p v a(pva*(p' Aap)) = p v (p' Aa(pva*(p' Aap))) 
= p v (p' A(apvaa*(p' Aap))) 
~ p v (p' Aap v aa*(p' /\ap)) 
~ pv a*(p'Aap) 

( 1) 

(2b) 
(1) 
(5'➔5a) I 

Notice that we used only isotonicity of a (~q ➔ a~aq) in the ➔ 
direction. If we relax axiom 2b to require only isotonicity we get isodynamic 
algebras, which we shall consider in Section 6 in discussing .regular algebras. 
In Section 6 we show that isotonicity is inadequate for the ~ direction. 

From Lemma 3. 1 we inf er that * is a quasifunctional, since if a = a' 
then a*p = min(a!p) = min(a'!p) = a'*p, so a* =. a'*. Thus= is a congruence 
relation. We now address the question of characterizing which quasifunctional 

* is. We ·define a quasiclosure operator to be as for a closure operator8, 
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except that idempotence is replaced by quasi-idempotence, fx ~ ffx and ffx ~ 
fx, which for regular elements means fa = ff a where = is inseparability. 

Lemma 3. 2. * is a quasiclosure operator. 

Proof. 
(Isotonicity.) If a ~ b then for all p, b!p ,; a!p, whence min(a!p} ~ 
min(b!p), thus a*p ~ b*p, whence a* ~ b*. 
(Reflexivity.) p ~ a*p, so ap ~ aa*p ~ a*p, for all p, whence a ~ a*. 
(Quasi-idempotence.) a*p = min(a!a*p} = a*a*p, so a*p f a*!p. But if q f · 

a*!p, p ~ q, so a*p ~ a*q ~- q, whence a*p = min(a*!p) = a**p. · I 

We call the quasiclosure system associated with * the system of 
asterates, the word "asterate" being Conway's [7, p. 25]. By the definition of 
a closure system8, an asterate is a fixed point of *. 

· There are of course many quasiclosure operators, and merely being one 
is not a remarkable thing in a variety. So which quasiclosure operator is *? 
We say that the quasifunction a is reflexive when p ~ ap for all p, and 
transith-e when aa ~ a.. Thus a is reflexive and transitive when for all p, 
pvaap ~ ap, i.e. ap f a!p, the characterization we use in the next proof. 

Lemma 3. 3. a is an asterate iff a is reflexive and transitive. 

Proof. ( ➔) 

( f-} 
ap = a*p f a!p. 
a*p =· min(a!p) ~ ap, and ap ~ a*p, so a*p = ap. I 

Thus the system of asterates coincides with the set of reflexive 
transitive quasifunctions, making * reflexive transitive quasiclosure. From 
all this we infer the following "representation theorem" for dynamic algebras. 

Theorem 3. 4. Every dynamic algebra is a Boolean algebra f$ together with· a 
set of strict finitely additive quasifunctions on q; closed under the 
quasifunctionals of pointwise disjunction, composition, and reflexive 
transitive quasiclosure. 

Note that when a is reflexive, aap = ap iff a*p = ap, for all p. 

This -theorem is very helpful in reasoning about dynamic algebras. It 
does not however make as satisfactory a connection as does Theorem 6. 2 with the 
intuitions of computer scientists, which tend to be oriented towards the notion 
of state as providing a "place" for predicates to hold in, and for programs to 

· travel between. Example 2 below, Kripke struGtures, amplifies this intuition. 
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4. EXA\t1PLES 

This section is meant to be suggestive rather than encyclopedic, and is 
kept short by omitting proofs and lengthy explanations. The reader will 
however find the following lemmas helpful in understanding Example 1. 

Lemma 4.1. The set a!p is closed under arbitrary meets when they exist. 

Proof. Let S <;; a!p, and suppose /\S exists. Then for any rES, /\~r so pva(/\S) 
~ pvar ~ r. Hence pva(AS} ~ AS (AS is the greatest lower bound on S} , so 
AS € a!p. I 

Corollary 4. 2. In a complete lattice (hence in a complete Boolean algebra} 
min(a!p) always exists and is /\(a!p}. 

Let X be a set of subsets of a lattice qJ, and write aS for { asls~S} 
for any S in X. We call the quasifunction a X-additive when a(vS} = v(aS) for 
all S in X for which vS exists. We call a respectively strict, isotonic, 
finitely addith·e, continuous, and completely additive, when a is 
X- additi,·e for X respectively {<P}, the set of nonempty finite chains of ?lJ, 
the set of nonempty finite st1bsets of f!/J, the set of directed sets of $, and 

the power set 2flll of · all st1 bsets of qJ. 

Lemma 4. 3. The quasifunctionals U ; * on quasifunctions on a complete lattice 
preser:ve X-additivity for any X. 

Proof. Let S E X. For U we have (aUb}(vS) = a(vS}v b(vS) = v(aS) v v (bS) = 
v((aUb)S). For ; we have (ab}(v S} = a(b(vS)) = a(v(bS)) = v(a(bS)) = v((ab)S). 
For * we have (v S}v a(v(a*S)) = (v S}v(v(aa*S)) = v(S U aa*S) ~ v(a*S), so v(a*S)" 
f a!(v S) . For any r E a!(v S} we argue as follows. Let sES, so s ~ vS, so 
a!(vS) <;; a!s, whence a*s = min(a!s) ~ r (min(a!s) exists by Corollary 4. 2). So 
v(a*S) ~ r. Hence v(a*S) = min(a!(vS)) = a*(vS). I 

Thus if a and b are strict, so are aUb, ab, and a* . The same holds 
with " strict" replaced by "isotonic," "finitely additive," "contint1ous," or 
"completely additive." 

Example J: Full dynamic algebras. Given a complete Boolean algebra 
q; = '(B v ' -0), let R be the set of all strict finitely (resp. completely) 
additiYe functions on B and let ◊:RxB➔B be application of elements of R to 
elements of B. By Lemma 4: 3, R is closed under U ; * when assigned the 
interpretations of Theorem J. 4. Hence by that theorem (86 (R U ; *) ◊) is a 
dynamic algebra. We call it the full (resp. completely full) dynamic algebra 
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on f!ll. Note that the completely full algebra has fewer functions than the full 
one. Both are of course separable. 

The class of full dynamic algebras contains some pathological cases, as 
Example 6 will show. Examples 2-5 however give algebras encountered in 
ordinary practice. 

Example 2: Kripk~ structures. Given a set W (the set of possible worlds, 
· or states), let q; be the power set algebra on W. Then the full Kripke 

structure on \V is the completely full dynamic ~lgebra on f!lJ, a separable 
dynamic algebra. A Kripke structure on W is a subalgebra of the full Kripke 
structure on W. The class K consists of all Kripke structures. The class of 
dynamic algebras, being a variety, is closed under taking subalgebras, whence 
Kripke structures are dynamic algebras. They are not however necessarily 
separable ones since S is not closed under subalgebras, as Example 7 will show. 

Completely additive functions on the complete Boolean algebra of 
subsets of W correspond to binary relations on W. This is because the set of 
function's f: W ➔ 2 W ( binary relations) naturally corresponds to the completely 
additive subset of the set of functions f:2 W ➔ 2 W. The correspondence is as 
follows. If f: W ➔2 W .is a bin.ary relation, the corresponding g:2 W ➔ 2 W 
satisfie..s g( U) = U{ f( u)luHJ}. Conversely, any completely additive g:2 W ➔ 2 \lv 

· must satisfy g(U) = U{g({u})luEU}, by complete additivity, so the restriction 
of g .to the atoms of 21tv corresponds naturally to a function f:W➔2W. 

From this it should be clear that the operations of pointwise 
disjunction and composition correspond exactly to those of union and 
composition for binary relations. Reflexive transitive closure for functions 
on lattices similarly corresponds to reflexive transitive closure for binary 
relations since the definition of reflexive transitive closure depends only on 
U and ; and these have already been shown to correspond . Note that we need to 
start from the full power set algebra to avoid omitting any closures and 
getting the wrong reflexive transitive closure; "smaller" Kripke structures are 
obtained as subalgebras after * .is defined. 

Because of this correspondence we will define binary relations on W to 
be completely additive functions on 2 W. 

Kripke structures supply quite satisfactory models of programs. The 
elements of the sets constituting the Boolean part of a Kripke structure model 
the states of one or more computers. Each Boolean element is then a predicate 
on states; for example the formula X?O denotes the set of states in which the 
variable x is non-negative. The regular elements correspond to binary 
relations on the set of states. The relations in turn correspond to the edges 
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of a graph whose vertices are the states. Each edge· is labelled with a 
· program. The whole graph then presents a picture of all the possible states of 

a system together with all the possible state transitions, each labelled with 
its agent . 

The graph enjoys certain closure properties. For example there exists 
between two states a transition labelled either a or b just when there exists 
between those states a transition labelled aUb. There exists a path between 
two states consisting of transition a ( to some state) followed by transition b 
just when there exists a transition ab between those two states. There exists 
a (possibly trivial) finite path of a 's between two states just when there 
exists a transition a* between those states (whence for every state and every 
program a there is a transition a* leaving and returning to that state). 

Because of the importance of Kripke structures in computer science, the 
question arises as to whether the equational theory of dynamic algebras does 
justice to Kripke structures. The next section lays the groundwork for showing 
in the section after it that the classes K and S (Kripke structures and 
separable dynamic algebras) generate the same variety and so have the same 
equational theory. Both the Boolean and regular theory are of considerable . 
importance in reasoning about programs, the former dealing with program 
correctness and termination, the latter with program equivalence. 

Example J: Trajectory algebras. These constitute a variation on Kripke 
structures in which q; is as before, while the completely additive functions in 
R are replaced by sefs · of non-empty strings over the set W of states. The 
regular operations are as follows. U is set union, ; is "fusion product ," in 
,vhich ab= {u ... v ... wlu . . . v E a and v ... w Eb}, and a*= WU a U aa U aaa U 
(Fusion product differs from concatenation in that there is a requirement of 
"compatibility" between the strings being "fused." Thus the fusion product of 

. {ab,cd} with {de, bc} is {abc,cde}, while the concatenation is 
{abde,abbc,cdde ,cdbc}.) Finally ap = {ulu ... v Ea and v E p}. 

In a Kripke structure a program can be considered a set of pairs of 
states, each pair having an initial and a final state. In a trajectory algebra 
a program is a set of state trajectories, each trajectory having an initial 
state, intermediate states, and a final state. 

Trajectory algebras supply a natural example of a nonseparable dynamic 
algebra. This is because two sets of trajectories may differ only in their 
intermediate states, and henc~ exhibit the same functional behavior on f!/J . 
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Other modalities besides ◊ suggest themselves for trajectory algebras, 
such "throughout" and "sometime during." A complete axiomatization of such 
modalities appears in (24]. 

Example 4: Linguistic Algebras. Let I* denote the set of finite strings 
over some alphabet I. A language is a subset of I*. ·Recall that a field of 
sets is a set of sets closed under union and complementation relative to its 
union. We define a regular algebra of languages to be a set of languages 
closed under union, concatenation, and reflexive transitive closure. A 
finirary-linguisric dynamic algebra over a given alphabet is an algebra 
consisting of a field of languages ( with complementation being relative to 
};*), a regular algebra of languages, and the operation of concatenation, all 
languages being over the given alphabet. Every finitary-linguistic dynamic 
algebra is a dynamic algebra. 

In connection with programs I may be considered to be the vocabulary 
of commands the computer can issue. A program is then a set of command 
sequences. There seems to be no natural interpretation of propositions in this 
setting. 

1;w denotes the set of infinite-to-the-right strings over I. A 
linguistic dynamic algebra differs from a finitary one in that_ B,R are sets 
of infinitary languages (subsets of 1:*Uiw). . Every linguistic dynamic 
algebra is a dynamic algebra. 

With . some thought the reader may verify that a*(apAap')' = 1 is an 
identity of finitary- linguistic dynamic algebras but not of linguistic dynamic 
algebras, and hence not of dynamic algebras. 

Every finite Kripke structure is a homomorphic image of a linguistic 
dynamic algebra (see (25] for a proof). It follows from this and the results 
below that the Boolean equational theory of linguistic dynamic algebras 
coincides with that of dynamic algebras. 

An application of linguistic dynamic algebras is to Pnueli 's 
tense-logic treatment of non-terminating processes [19]. Though no semantics 
is pro1:iosed in [ 19], Pnueli has suggested elsewhere [20] that the semantics of 
propositions be a set of sequences, with ; being defined as concatenation. 

Example 5: Flowchart Algebras. Let ~ = (~ 91 ◊) be a separable dynamic 
algebra, and let V be a finite set of dimensions. Take ~' to be the direct 

power q;V, whose elements are Boolean vectors that combine pointwise unde.r v 
and ', using the corresponding operations of ~-
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A regular matrix is a function a:v2➔R . Regular matrices combine 
pointwise under U using the corresponding operation of :!ll. They are multiplied 
in the usual way for matrices, taking U and ; from :!ll as the exterior and 
interior operations respectively. When a is a lxl matrix (IVI = 1) with sole 
element b f R, a* is the lx 1 matrix with sole element b*. When V can be 
partitioned into two non-empty subsets V 1, V 2, inducing a corresponding 
partition of a as the block matrix 

(A B) 
(D C) 

then, following Conway (7], a* is taken to be the matrix 

( (A*BC*D)*A* 
((C*DA*B)*C*DA* 

(A*BC*D)* A*BC*) 
(C*DA*B)*C* ) 

Separability is used to ensure that this definition of a* does not 
depend on the choice of partition of V. 

A set of s1.1ch matrices closed under these three operations forms an 
algebra q;,. The operation ◊' multiplies matrices by vectors in the usual 
way, with the v of q; as the exterior operation and the ; of :!ll as the 
interior . The algebra (g/J' g;, ◊') we call a flowchart algebra. 

Every flow~hart algebra is a dynamic algebra. 

Flowchart algebras supply a natural solution to the problem of treating 
programs algebraically. The traditional method is via "elimination of goto's," 
using various program transformations that non-trivially manipulate the 
structure of the original program. Flowchart algebras permit an algebraic 
treatment of the origin<1l " goto-laden" program. The set V su'pplies vertices 
for a graph; each Boolean vector gives a possible labelling of the vertices 
with facts from q;, while each matrix defines a labelling of the edges of the 
graph with programs from 9?. 

In this formulation the vertex labels are the complements of the 
formulas used in the programming milieu to annotate flowcharts as described in 
[ lOJ, the complement being attributable to our use of ◊ as "possible" where 
programming custom calls for the dual "necessary." Axiom 5b in this setting 
amounts to the so-called "Floyd induction" principle.; the reader familiar with 
[10] will find the axiom more recognizable if the contrapositive is taken and p 
replaced by p' (as just mentioned) to yield pA[a*J(p::,[aJp) ~ [a*Jp, where [aJp 
abbreviates (ap')' and p::,q abbreviates p'vq. · 
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Example 6: A non-standard dynamic algebra. This example shows that there 
exist dynamic algebras in which a*p = v{aipli~O} fails. Let fflJ be the power 
set algebra of NU{ m} = { 0, l , 2, ... , oo} and let gg be the full dynamic algebra on 
gg, a specialization of Example 1. Now let a be the function mapping p c;;;; NU{ oo} 
to {n+ljnfp}U{mlp is infinite}. That is, a(p) forms the set of successors of 
the elements of p ( with m+ 1 defined as oo) together with oo when p is infinite. 
Observe that a is strict and fini_tely additive but not continuous and so not 
completely additive. Then v{a1{0}1i~0} = N, while min(a!{0}) = NU{oo}. 

. Kozen [ 17] calls a dynamic algebra *-continuous when it satisfies a*p 
= v{ a1pli~0}. His definition of a dynamic algebra includes *-continuity as a 
requirement , along with conditions on 9/ axiomatizing it as a regular 
* -continuous algebra, in ·place of Segerberg's 5a,b (which then becomes a 
theorem). Let us call this class *C (for *-continuous). Example 6 contradicts 
Sc;; *C. 

It can be shown that K c;;;; *C, whence not all dynamic algebras are 
isomorphic to Kripke structures. "Kozen has asked whether every *-continuous 

· dynamic algebra is isomorphic to a Kripke structure. 

One might ask whether *C forms a variety. Now S c;; VK ( the variety 
generated8 · by K), as we sho,v later. But since K c;;;; *C, VK c;; V*C, whence S c;; 
V*C. Example 6 is in S but not in *C, whence *C is not a variety. 

Th~ last two examples are not examples of dynamic algebras so much as 
examples of their behavior under various operations. 

Example 7: Loss of separability under homomorphisms and subalgebras. Let 
g = (({0 ,P,P',I} v '0) ({A,B} U; *)◊)such that BP= 1, Ap = Bp = p 
otherwise, and such that 9 is a dynamic algebra (whence U ; * are determined.) 
_Let h:g:,_.,.9 satisfy h(P') = h(0) = 0, h(P) = h(l) = I, h(A) = A, h(B) = B, a 
homomorphism as the reader may verify. The homomorphic image h(~ is not 
separable . Furthermore h(9 ) is also a subalgebra of !». Hence S is closed 
under neither homomorphisms nor subalgebras. That separability is expressible 
with a Horn sentenGe ensures ·that S is closed under direct products. 

Example 8: Effect of homomorphisms on the reg\1lar component of a separable 
dynamic algebra . It may have occurred to the reader that the class of regular 
components of separable dynamic algebras might make a good candidate for the 
class of regular algebras, whatever they might be. This is discussed in more 
detail in the section on applications. Here we show non-preservation of this 
class under homomorphisms. 
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Let f!J be the power set algebra on the set of all finite strings on an 
arbitrary alphabet . Let 9'l consist of those elements of B containing A ( the · 
empty string), with U ; * having their standard interpretations on languages. 
Let ◊ be concatenation. Then (~ :!ll ◊) is a dynamic algebra, separable 
because {A} E B. Let 9?' be ({I,A,A*} U ; *) with I ~ A ~ A*, asterates l,A*, 
I acting as multiplicative identity, AA = A, all remaining products equal to 
A*. This is not the regular component of any dynamic algebra because A is 
reflexive and transitive but not an asterate, contradicting Lemma 3. 3. Define 
h:&f➔.1r' so that {A} goes to I, infinite sets to A*, finite sets to A, visibly 
a homomorphism. This establishes that the class of regular components of 
separable dynamic. algeb.ras is not preserved under homomorphisms. The example 
is Conway's [7,p.102], minus the element 0. 

5. MAIN RESULT 

The main result has two parts. The first part states that every free 
dynamic algebra is residually (separable-and-finite)-or-Boolean-trivial. The 
second part states that every free separable dynamic algebra is residually 
separable-and-finite. The first part is adequate for showing completeness of 
the Segerberg axiomatization of propositional dynamic logic, and the reader 
wishing to sre only that result may skip the second part. The first part is 
however inadrquate for the next application, that every free separable dynamic 
algebra is residually K (isomorphic to a subdirect product of Kripke 
structures), ,vhence every separable dynamic algebra is a homomorphic image of 
such a subdirect_ product. This is a useful representation theorem for dynamic 
algebras,· though not as strong as showing that every dynamic algebra is 
isomorphic to a Kripke structure, which Example 6 showed to be false for our 
notion of dynamic algebra. · 

We approach the. main result via an abstract version of the 
modal logic technique of filtratfon, which in a Kripke structure setting is 
the process of dividing a Kripke model of a given formula p by an equivalence 
relation on its worlds to yield a finite Kripke model of p. Fischer and Ladner 
[9] showed that filtration could be made to work for propositional dynamic 
logic just as well as for modal logic. We extend their result to show that 
filtration does not depend on any special properties of Kripke structures but 
works for all dynamic algebras, even ones that are not *-continuous in Kozen's 
sense U 7]. Our proof is little more than the abstract version of that of [9J. 
We attend first to some prerequisites. 

The reader may wish to look at the account of generator sets and free 
· algebras in Section 8. We let P,Q, .. . ,A,B, . . . ,X,Y, ... range over the set of 
generators in B,R,BUR respectively, and write Bo,Ro,Do for the 
respective generator sets. 
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Lemma 5. I. The regular component of any subalgebra of a dynamic algebra 
g = (,q? 9? ◊) containing the regular generators of a generator set of g 
coincides ,vith 9?. 

Proof. Left to the reader. D 

The Boolean analogue of this Lemma is false; the Boolean generators 
generate only part of the Boolean component (consider AP etc. ). 

FL-sets. An FL-set is a Boolean subset F of a predynamic algebra such that 

pv q E F ➔ p,q E F 
p' E F ➔ p E F 
ap E F ➔ p E F 
(aU b)p E F ➔ ap,bp E F 
(ab)p E F ➔ a(bp) E F 
a*p E F ➔ p,aa*p E F. 

These rides form a generative system with source set8 the Boolean 
elements of a free predynamic algebra; we call the associated closure operator 
FL-closure, FL(X). 

Lemma 5. 2. (Fischer-Ladner ( 9).) The FL-closure of a finite Boolean subset 
of a free predynamic algebra is finite. 

See [ 9J for a proof. 

Filtration. We are now in a position to state and prove the central theorem of 
this paper , which asserts the existence of filtrations. 

Theorem 5. 3. Given an S-free8 dynamic algebra 9 = ($ &? ◊) and a finite · 
subset Bg of B, there exists a dynamic algebra 9 1 and a homomorphism f:g➔g, 
injective on Bg, with f(~ separable and finite. 

We call f a filtration, and f(9) a filtrate, of Bg. 

Proof. Our construction of g , and f from 9 and Bg proceeds via a series of 
steps given by the following diagram. · 
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h f 
q;11 q; q;, 

u/ u q;x 
h u 

q; II . F > q;, 

G 'i'U h U'i'G 
B II 

f Br 
FL 'i' U C u 

B II 
g Bg 

The components of the diagram are as follows. The arrows trace the 
order of construction, except for the top two arrows which represent 
homomorphisms. q; and Bg are given. 9 11 is a free predynamic algebra 

generated by the generators of q; and h:911➔9 is the homomorphism fixing those 
generators (whence h is onto). B

8
11 is c(Bg) where c:B➔B" is a choice 

function satisfying hc(p) = p; c exists by the Axiom of Choice and because h is 
onto. (This use of ACh can be eliminated at the cost of a little more 
complication.) B( = FUBg"), finite by Lemma 5.2, and q/F" =· G<B(), the 
subalgebrn generated by B(. Br = h(B(), finite because B(' is, and q;, = 

h(~ F") = h( G(B()) = 8 G(h(B()), finite because finitely generated Boolean 

algebras are finite. q;, is the full, hence completely full, dynamic algebra 
on ~ , (see Example · 1 ·above; thus q;' is separable and finite) . Since q;, is a 

finite and hence complete sublattice of q; it defines a closure operator8 J on 
· ~. The homomorphism f agrees with J on B0 (the Boolean generators of ~ and 
maps each regular generator A to "JA", the function on B' that takes p to 
J(Ap), which the reader may verify is strict and finitely additive and so in 
R' . Such an f exists since q; is S-free. q; x is the set of all fixed points 
of f, a Boolean subalgebra of q; as it happens. 

The one inclusion shown in the diagram that requires verification is 
~IC q/ , x· 

Claim (i) . For all a ER" and p EB', fh(a)p ~ h(a)p. 
Claim (ii). For all ar E BF", fh(a)h(r) = h(a)h(r). 

\Ve pro,,e these claims by induction on R11 , proving (i} explicitly. For 
(ii) replace ~ by = and p by h(r) uniformly in the proof of (i). (We need h(r) 

. rather than p in (ii) to make use of Bp" being an FL-set.) We write er ,13 
for h(a),h(b). Superscripts on= and r refer to notes below; the note$ 
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specify whether they are for Claim (i) or (ii) or both. Lemma 5. 1 justifies 
confining the induction to R". 

fh(A)p = A{qEB ' lq~h(A)p} ~ h(A)p . 
. fh( aUb)p = (f(a)Uf({J))p = f(a)pvf(/3)p ~1 apv{Jp = h(aUb)p. 
fh(ab)p = f(a)f({J)p ~2 o:{Jp = h(ab)~. 
fh(a*)p = f{a)*p = n~in(f(a)!B,p) ~ · min(o:!B'p) ~4 min(o:!Bp) = h(a*)p. 

Notes. 
1. (i_i) (aUb)r E BF" ➔ ar, br E BF", BF" being FL-closed. 
2. (ii) Similarly (ab)r E BF" .... a(br),br E BF"· 
3. (i) Since f(a)q ~ aq for all q by induction, f(a)!B'p c;; a!B,P· 

(ii) a*r E BF" ➔ a(a*r) E BF", so f(a)a*p = aa*p by induction, so 
a*p E f(a)!B'p, so min(f(a)!B'p) ~ a*p = min(o:!B'p), so 
= by J(i). 

4 ( ') S. B' B ' ' • 1 111ce c;; , a .B'p c;; o:.Bp. 
(ii) Since a*p E B', a*p E a!B,P, so min(a!B'p) ~ a*p = min(a!Bp). 

Claim (iii). For all r E BF", fh(r) = h(r) . · 

We proceed by structural induction on BF". 

fh(P) = h(P) (construction of f on generators, PEBF", h preserves generators). 
fh(pvq) = fh(p)v fh(q) = h(p)vh(q) = h(pvq). 
fh(p') = fh(p)' = h(p)' = h(p') . 
fh(ap) = fh(a)fh(p) = fh(a)h(p) = h(a)h(p) (by (ii)) = h(ap). 

We infer that q;, = h(f!IJF") c;; q;x: This completes the defense of the 
diagram, establishing that q; , is finite and separable, and f fixes Bg. 

Clearly f(.01) is finite. To see that f{~ is separable it suffices to observe 
that the Boolean component of f(~ is q;, since flJ ' c;; flJx; in fact q;, = 
$ x as it happens. The regular component of f(.@) may be smaller than that of 
g,, but that will not compromise separability. I 

We now give the first part of the main result. 

Theorem 5. 4. (Main result, first part.) Every free dynamic algebra g is 
res id uall y (sepa ra ble-and-fini te)-or-Boolean-trivial. · 

Proof. Take the separating set of congruences to consist of the kernels of 
the filtrations of the double tons of ~, together with the congruence relation 
that is the complete relation on the Booleans and the identity relation on the 
regular elements. The filtration kernels separate the Booleans while the other 
relation separates the regular elements, so this is a separating set of 



18 

congruences. The corresponding quotients are either separable and finite 
(Theorem 5. J) or Boolean- trivial in the case of the congruence that is the 
complete relation on the Booleans. a 

It can be shown that e\'ery full' dynamic algebra is simple, that is, 
admits only the identity congruence and the complete congruence. Kozen has 
pointed out to us that this implies that Theorem 5. 4 cannot be strengthened by 
omitting "free," simplicity being an even stronger condition than that of being 
subdirectly irreducible. 

The reader may at this point wish to skip the second part of the main 
result . and go the next section, where the Seger berg completeness result is 
proved without depending on the second part. The second part is of interest in 
that it supplies a ·situation when the Boolean-trivial factor of the first part 
may be omitted. 

Theorem 5. 5. (Main result, second part.) Every free separable dynamic 
algebra is residually separable-and-finite. 

Proof Take the kernels of the filtrations of the doubletons of g as for 
Theorem 5. 4, possible because free separable dynamic algebras are S-free. This 
set separates the Booleans. It also separates a f. b, since by separability 
there exists p such that ap f. bp, whence ap f bp for some congruence, so 
a 1 b for that congruence. Hence the kernels form a separating set. The 
corresponding quotients are separable and finite by Theorem 5. 3. I 

· For this theorem to be of any use, free separable dynamic algebras must 
exist. As Example 7 shows, S is not a variety and hence not a guaranteed 
source of free algebras. Howe\'er VS, the variety generated by S, does have 
free algebras, which we can show supply the necessary free separable dynamic 
algebras. 

Lemma 5. 6. Every free VS-algebra having at least one Boolean generator is 
separable. 

Proof Let g be a free VS-algebra. If a f. b in g then there exists ~ ' tn 

S and a homomorphism h:g-'g , which maps a,b to distinct elements8. Since £» 1 

is separable there must exist p E B' such that h(a)p f. h(b)p. If we take 
g:0-' 0 ' to be a homomorphism agreeing with h on the generators of X' and 
satisfying g(P) = p, we have g(aP) = g(a)g(P) = h(a)p f. h(b)p = g(b)g(P) = 
g(bP), whence aP t- bP. Hence g is separable. I 
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We do not know whether this Lemma holds when there are no Boolean 
generators. Fortunately for our application all we need are free algebras with 
at leas! a given number of generators. 

6. APPLICATIONS 

The first application uses the first part of the main result to show 
the completeness of the Segerberg axiomatization of propositional dynamic 
logic. Completeness of this system, as with other modal logics, is 
traditionally measured · with respect to Kripke structures. In the program logic 
application this is because of the satisfactory way in which Kripke structures 
model computation, .as discussed in Example 2. We first prove an easy result 
about finite Kripke structures. 

Theorem 6. I. Every finite separable dynamic algebra is isomorphic to a 
( finite) Kri pke structure. 

Proof. Let g = (-1? 9l ◊) be a separable finite dynamic algebra. Then by 
the fact that e\'ery finite Boolean algebra is isomorphic to the power set 
algebra of its atoms, and by separability, f» is isomqrphic to a subalgebra 
of the foll (hence completely full by finiteness of qJ) dynamic algebra on the 
power set algebra of the atoms of -1?, which is by definition a Kripke 
structure. I 

Let K+ be the class of Kripke structures together with the class of 
Boolean- frh·ial dynamic aigebras, that is, dynamic algebras with one Boolean 
element, and let Da be the class of dynamic algebras. Recall that VC is the 
variety generated8 by class C. 

Theorem 6. 2. Da = VK+. 

Proof. Certainly K ~ Da, and trivially the Boolean-trivial algebras are too, 
so since Da is a variety, VK+ ~ Da . . Conversely, by Theorems 5.4 and 6.1 every 
free d.ynamic algebra is in VK+, whence so is every dynamic algebra, being a 
homomorphic image of some free dynamic algebra. I 

Although K+ is a bigger class than K its Boolean theory cannot 
be decret1sed since the Boolean theory of Boolean-trivial algebras must include 
all Boolean identities holding in K. Thus Theorem 6. 2 supplies an algebraic 
form of the Segerberg-Parikh completeness result for propositional dynamic 
logic. The connection with the Hilbert-style form of Segerberg's axiom system 
is easily made along the lines one would use to translate identities of Boolean 
algebra into their corresponding Hilbert-style axioms. 
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There are two unsatisfactory aspects to Theorem 6. 2. First, K+ is 
somewhat artificial compared with K. Second, the regular theory of K+ is 
trivial (has only identitjes x=x) since the regular theory of Boolean- trivial 
dynamic algebras is trivial, whereas the regular theory of K is quite rich. 
The following shows just how rich it is. 

Theorem 6: 3. The projection of K on its regular coordinate (i.e. the class · 
of regular components of Kripke structures) is the class of regular algebras of 
binary relations. 

Proof. The former is certainly included in the latter. Conversely, any 
regular algebra of binary relations on a set W is the regular component of a 
subalgebra of the foll dynamic algebra on W, a Kripke structure. I 

Hence the regular theory of K is the theory of regular algebras of 
binary relations. Thus a connection with K would be much more rewarding than 
the connection with K+ . The axiom of separability supplies exactly that 
connection inasmuch as it supplies the missing regular theory, as the following 
shows. 

Theorem 6. 4. VS = VK. 

Proof. Since K is the closure under subalgebras of full Kripke structures, 
which are separable, we have VK c_;; VS. Since free algebras in S are residually 
separable-and-finite, they are residually K by Theorem 6. 1. Furthermore every 
separable cl)'nami'.c algebra is a homomorphic image of some free separable dynamic 
algebra by Leanna 5. 6, so VS c_;; VK. D 

Combining Theorems 6. 2 and 6. 4 we infer that VS may be defined 
axiomatically by the dynamic algebra axioms together with an appropriate set of 
axioms for binary relations. There is unfortunately no finite equational 
axiomatization ·or the latter (26] , though the dynamic algebra axioms plus the 
axiom of separability comes to within a quantifier of one. The system of 
Salomaa [27] comes similarly close, to within a nonstandard inference rule. 

Regular Algebras. Is there such a thing as a regular algebra? Unlike such 
satisfactorily defined classes as groups, rings, lattices, Boolean algebras, 
and even dynamic algebras, · regular algebras have an identity problem: there is 
no agreed-on definition of a regular algebra . Moreover, a monograph by J. H. 
Conway [7] gi\·es some insight as to why. 

Conway exhibits five classes of algebras of type (R U ; *· 0 1) , called 
X-Klcene algebras for X ranging over S,N ,R,C,A, in order of strictly 
increasing size. We immediately rename S to T to avoid conflict with our S; 
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his S stood for Standard. T appears to consist of complete lattic_es under U in 
which ; is associative and distributes over all joins, and a* = v{a1li~0}. 
Furthermore, 0 and I are additive and multiplicative identities respectively. 
N (Normal) is HT and R (Regular) is VT, where HT is the hereditary closure 
(closure under subalgebras) of T and VT is the variety generated by T (closure 
under subalgebras and homomorphisms - T is already closed under direct 
products). C is a variety strictly larger than VT axiomatized by a finite set 
of axioms together with a* = (an)*a<n, essentially Kleene's axiom schema 
(11) of 7. 2 [16]. A (Acyclic) is a finitely axiomatized variety whose 
significance is not apparent to us; it is Kleene's system less the infinite 
schema. 

Kozen [17] has proposed a definition of regular algebra, of the same 
similarity type as Conw;iy's , as a semil;ittice _under U in which ; is associative 
and distributes over finite joins and over v{ a11i~0}, the latter, defined as 
a*, being the only infinite join required to exist. Let us call this the class Z. 

Theorem 6. 4 suggests that the regular components of separable dynamic 
algebras might constitute ;in interesting class of regular algebras. Let !Yl = 
({O ,2, 1} U ; *) where 0 ~ 2 ~ I (defining U), 1 is the only asterate, and ; 
is integer multiplication modulo 4 (so 2;2 = 0). This is Conway's third 
example of a T-algebra on p.101 of [7J. However Kozen has pointed out to us 
that in any separable dynamic algebra, if a ~ I (where Ip = p for all p), aa = 
a. Thus ~ is not the regular component of any separable dynamic algebra. 

It is the case that every regular algebra of binary relations is the 
regular component of a separable dynamic algebra, namely a subalgebra of a full 
Kripke structure where. all the Boolean elements are retained ( to maintain 
separability). · Furthermore every regular algebra of languages on the alphabet 
2; is isomorphic to a regular algebra of binary relations; the isomorphism maps 
the language L to {(u,uv}luO::*, vfL}. Hence the regular components of 
separable dynamic algebras include all regular algebras of binary relations and 
of languages. Since these are of central importance in the theory of regular 
algebras we might be forgiven for excluding apparent oddities such as the 
example· immediately above. 

to do so however would be to exclude some well-motivated algebras. 
Kozen h<1s pointed out to us th;it (N min + KO) is such an algebra, where N = 
{0,1,2, ... }, min(9,5) = 5 etc., and KO is the constantly zero function. This 

· algebra is of central importance in the computation of minimal cost routes in 
networks; given a choice of routes one wants the cheaper of the two, whence 
min; the cost of a sequence of two routes is the sum of their costs, whence +; 
and the cheapest way to travel a route an arbitrary number of times is not to 
venture forth even once, whence KO. 
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To avoid excluding such algebras we propose to relax axiom 2b of the 
dynamic algebra conditions to: 

2i. ap ~ a(pv q). 

We call such algebras isody11amic; every dynamic algebra is an 
isodynamic algebra as is easily verified. To see that the converse does not 
hold, let q; ha,·e elements 0 ,P ,P' , 1 and let A be the function on B mapping P' 
to P and fixing ever\thing else. A is isotonic but not finitely additive. 
Take 9l to be ({A ,A*} U ; *) where A* maps P' to 1 and fixes everything else, 
with U pointwise disjunction and ; composition. Take ◊ to be application. 
Then (g/J 9l ◊) is an isodynamic algebra, as may be verified by calculation. 

A more interesting example takes qJ to be the power set algebra on N 

and ·9? to contain for each i?0 the function Ai on 2N that removes the least i 
elements from its argument. These functions can be seen to be isotonic but not 
finitely additive. Define AiuAj = Amin(i,j), Ai;Aj = Ai+j, and Ai* 
= AO. · T aking ◊ to be application , it can be verified that (qJ 9l ◊) is a 
separable isodynamic algebrn whose regular component is isomorphic to the 
above- mentioned (N ·min + KO) algebra. 

. One would hope that Example 1 general-izes in the obvious way to 
isodynamic algebras. Suppose it did. Consjder the full isodynamic algebra on 
{0,1, 2}, with of course a*p = min(a~p). Lemma 4.3 works for isotonic functions 
so th~re is no question about U ; and * being defined. Now let us write p as 
l:if J/1, e . g. { 1,2} is written as 6. Let A be some isotonic function such 
that Al = A2 = 2, A3 = AS= 7. Then A!l = {7} and 2 f A!2, so A* l = min(A!l) = 
7 and A*2 = min(A!2) = 2. But lv A*(l'AAl) = lv A*(6A2) = lv A*2 = lv 2 = 3; 
contradicting. axiom 5b. Thus "full isodynamic algebras" are not isodynamic and 
so Example 1 does not generalize. Incidentally this shows why isotonicity is 
inadequate for the ... direction of Lemma 3. 1; if this qirection worked with 
isotonicity the remaining arguments leading up to Example 1 would all go 
through for full isodynamic algebras. We do not at present have any nice 
characteri za tion of which isotonic functions on a complete Boolean algebra 
satisfy axiom 5b under the min(a!p) interpretation of a*p. 

We now exhibit a regular component of a separable isodynamic algebra 
which is not in VT. Let P generate a four element .Boolean algebra fJ1l, and take 
A to be the· function on B mapping P to P' and fixing the rest of B. Take I to 
be the identity function on B. Then A(AUI)P = 1 but AAP = AIP = P' so A(AUDP 
~ (AAUAI)P . Hence A(AUI) -I AAUAI, contradicting a law of VT. The closest 
we can come to this law is a\jJac ~ a(bUc). However (aUb)c = acUbc holds. 
Note also that Theorem 3. 4 holds, so * is reflexive transitive closure in a 
separable isodynamic algebra. 
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With the above in mind we identify the class of regular components of 
separable isodynamic algebras as an interesting class of regular algebras. 

7. LOOSE EN OS 

· Comple.x;ry. The set of valid formulas of propositional dynamic logic has been 
shown to be complete in deterministic exponential time, the lower bound 
appearing in .[9J, thr upper bound in [22]. (A simpler proof of the upper bound 
appears in [ 25].) The intimate connection bet,veen that theory and the 
equational .thMry of dynamic algebras establishes the same complexity result 
for the latter. The theory of separable dynamic algebras has the same 
complexity since its theorems are those of dynamic algebras together with a=b 
if and only if aP=bP (P any propositional variable) is a theorem. 

Origin. The origin of dynamic algebra is in dynamic logic ([21J, see also 
[23]}, whose origin is in turn in modal logic. It is rather surprising that 
the calculus of binary relations was not incorporated into the Kripke 
semantics of modal logic earlier. As pointed out at the end of [9], the 
classical modal logics K, T, S3, S4, and S5 are all special cases of dynamic 
logic (S5 requires converse), so that decidability of satisfiability for each 
of these logics follows from the procedure given in [9J for propositional 
dynamic logic. . Closely related logics, all addressed specifically at 
programming, are those of Hoare [14], Salwicki [29], Dijkstra [8], and 
Constable [6J. Example 4 makes a connection with the logic of _Floyd [l0J. 

Terminology. We had originally called dynamic algebras Hoare algebras, after 
[14], which contains a Geiltzen- like form of the dynamic logic theorems given in 
[21] and extended by Segerberg to a propositionally complete system. We 
adopted Kozen's te rm "dynamic algebra" after seeing [17]. Some time later we 
realized that Kozen 's definition of a dynamic algebra was. strictly stronger 
than ours because of its assumptions about continuity; we have yet to resolve 
this terminological conflict . The term "separable" is also Kozen 's, as is the 
analogy of dynamic algebras to modules with regular elements acting as · 
"scalars." 

There is a close similarity between the axioms for dynamic algebras 
and those for modules.. One might call a dynamic algebra a Boolean semimodule 
with * (cf. [28J which employs a concept of semimodule, though neither 
Boolean nor having *). 

Open Problems. We mention again Kozen's problem, is every *-continuous 
dynamic algebra isomorphic to a Kripke structure? 
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We ha Ye treated neither tests, p?, nor converse, a-. Converse 
formalizes the idea of running a program in reverse, and was studied in this 
context in [ lJ . See [l 8] for a complete axiomatization of converse 
(essentially a(a-p)'Ap = 0 and a-(ap)'Ap = 0). Is there an alge~raic 
analogue of our Lemma 3. 1 for converse? 

What is the axiom rank and base rank [5,p.173] for dynamic algebras? 
The axiom rank is at most 3 since the Segerberg axiomatization only requires 3 
variables in each axiom. · 

What reasonable axioms are there for regular ' in dynamic algebra? We 
propose the term "complemented dynamic algebra" for a dynamic algebra expanded 
by adding regular complement. 

A related question that the reader may find better defined deals with 
the problem of recognizing identities for the complemented linguistic dynamic 
algebras ((2L v ') (2L u ; * ') ◊) where L = S*usw and S is an arbitrary 
alphabet. Is this problem even decidable? 

8. BACKGROUND 

A grasp of the ideas in one of U,5, 1 lJ is more than sufficient 
preparation for this paper. The following first aid may prove convenient for 
the reader comfortable with the definitions of subalgebra, homomorphism, direct 
product, lattice, and Boolean algebra. 

fttlinor Points. We use poser for partially ordered set and join and meet 
• for least upper bound vS and greatest lower bound AS of a subset S of a poset. 

Note that V<P exists just when f!.i contains a least element, as it does when it 
is a Boolean algebra. A directed set is a non-empty set which contains upper 
bounds on each of its finite subsets. A complete sublatace of a poset P 
contains all its meets and joins as defined in P. The power set algebra on 
the set X is a complete Boolean algebra consisting of all subsets of the set X. 
A field of sets is any subalgebra of a power set algebra, necessarily 
Boolean , not necessarily complete or atomic; conversely every Boolean algebra 
is isomorphic to a field of sets UlJ. Being complete and being atomic are 
independent for infinite Boolean algebras and both true for finite ones. 

Heterogeneous Algebras. As is shown in [4] , all of the following carries 
through for heterogeneous algebras of the sort used here , in our case having up 
to two carriers B and R and up to eight operations, v ' 0 U ; * ◊ ? , of 
various types. Direct products and homomorphisms respect type in the 
heterogeneous case; one would not find a Boolean element paired with a regular 
in a direct product , nor a homomorphism mapping a Boolean element to a regular. 
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Closure . Operators. A closure operator on a poset P is an isotonic 
reflexive idempotent function f on P; that is, x ~ y implies fx ~ fy, x ~ fx, 
and ffx = fx . A closure system on a poset is the set of fixed points of some 
closure operator. Every complete sublattice L of a poset P is a closure 
system with associated closure operator J(x) = 11{yfLlx~y}. P itself need not 
form a complete lattice, though it must have a greatest element, which will 
appear in e,·ery complete sublattice as 11 i,p . When P is a complete lattice, 
every closure system of P is a complete sublattice of P. 

Generarfre Systems. A system of rules of the form, "if u is in the set then 
so are v, w, ... , " is called a genera tire system. The set of all subsets of a 
given source set each meeting aH the rules is clearly closed under 
intersection and so forms a closure system. Hence associated with any 
generati,·e system and source set is a closure operator on the power set of the 
source set. 

Generator Sets. The set of subalgebras of an algebra .# is closed under 
intersection and so forms a closure system. The associated closure operator G 
yields for each subset X of A the subalgebra G(X) generated by X. X is 
called a generating set of G(X), and the elements of X are called 
generators. A useful property of G is that it commutes with homomorphisms; 
h(G(X)) = G( h(X)) for any subset X of A and homomorphism h from .91. 

Fr<Y Algebras. Given a class C of similar algebras, an algebra .# of the 
same similarity type, not necessarily in C, is C-free when it contains a 
generating set A0 such that any function from Ao to an algebra in C extends 
to a homomorphism, necessarily uniquely by the previous paragraphs. When such 
an sf is in C we call .# a free <:-algebra. (The standard notion of "free" 1s 
the latter; we need the former, C-free, for Theorem 5.3 .) 

Any non- trivial class closed under subalgebras and direct products has 
free algebras (5,p.118]. 

Vr1rieties. A class of similar algebras closed under subalgebras, direct 
products, and homomorphisms is called a variety; equivalently (2], a variety 
is any class defined by a ( possibly infinite) set of equational identities. 
Thus Boolean and dynamic algebras form varieties, being defined purely by 
equational identities. 

The class of all varieties of a similarity type is closed under 
arbitrary intersection ( take the variety defined by the union of their 
theories) and so form a closure system, so that the variety generated by any 
class of similar algebras always exists. We write VC for the variety generated 
by class C. If a -;. b in any free algebra .# of VC then there exists an algebra 
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.#1 of C and a homomorphism h:sf➔sf1 for which h(a) 'I h(b). (This is because 
any law of C algebras must be a law of VC algebras.) 

A set of congruences on an algebra sf is called separating when no two 
elements of s-f are related in every congruence. sf is residually P, P being 
some property of algebras, when sf/= is P for each congruence = in some 
separating set of congruences on sf. 

If s-f is residually P then sf is isomorphic to a substructure of a 
direct product of P algebras, which t'hemselves are homomorphic images of s-f 
( the natural homomorphism onto the quotient). Substrnctures of direct products 
obtained in this way from separating sets of congruences are called subdirect 
products. Thus gh·en a class C of residually P algebras it follows easily 

. that VC = V(PflHC) where VC is the variety generated by C and HC c;; VC is the 
class of homomorphic images of C. 

As varieties are closed under subalgebras and direct products they have 
free algebras. Lemma 5. 8 shows that free separable dynamic algebras with at 
least one Boolean generator exist. 

Letting S denote the class of separable dynamic algebras, we point out 
that both free dynamic algebras and free separable dynamic algebras are S-free, 
an essential aspect of Theorem 5.1. Note that there are no non-trivial 
separab_le- free dynamic algebras; the adjectives do not commute! 

Deductive Systems. -It is a well-publicized fact that the pure predicate 
calculus has a deductive system that is complete in the sense-that it can be 
used to prO\·e from a set r of first-order formulas, the non-logical a.xioms, 
any first-order formula valid in the axiomatic class consisting of all models 
of r. Less well-publicized is the fact that the rules permitted for 
manipulating equations in high school algebra is complete in the same sense, 
with pure equations in place of first-order formulae and varieties in place of 
axiom a tic classes. The rules invariably include implicitly those in the 
following system, whose only logical axiom is X=X for some variable X. 

Symmetry: x=y _. y=x. 
Transiti\·ity: x=y ,y=z ➔ x=z. 
Replacemrnt x1=y1, . .. ,xn=Yn ➔ f(x1, . . . ,xn)=fly1, . .. ,yn) for any n-ary f. 
Substitution (s(X)=t(X) -➔ s(y)=t(y) for any variable X and term y). 

These rules form a generative system with source set pairs of elements 
of a word algebra, and the associated closure operator is called deductive 
closure·. The system is complete in the sense that the deductive closure of a 
set of axioms coincides with the set of equations holding identically in the 
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variety defined by the axioms. The proof is easier than for the first-order 
case, see e.g. [lJJ. 

The significance of this fact for us is that we need not get involved 
in• the details of deductive closure since this is now all taken care of for us . . 
Our only obligation is to ensure that any given system of axioms really does 
define the same variety as that generated by the class of models we are 
interested in. 
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