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Theory of Rational Option Pricing

Robert C. Merton
October, 1971

I. Introduction . The theor>' of warrant and option pricing has

been studied extensively in both the academic and trade literature. The

approaches taken range from sophisticated general equilibrium models to ad

hoc statistical fits. Because options are specialized and relatively unim-

portant financial securities, the amount of time and space devoted to the

development of a pricing theory might be questioned. One justification is

that, since the option is a particularly simple type of contingent-claim asset,

a theory of option pricing may lead to a general theory of contingent-claims

pricing. Some have argued that all such securities can be expressed as com-

binations of basic option contracts, and, as such, a theory of option pricing

2
constitutes a theory of contingent-cla ms pricing. Hence, the development

of an option pricing theory is, at least, an intermediate step toward a

unified theory to answer questions about the pricing of the firm's liabili-

ties, the term and risk structure of interest rates, and the theory of

speculative markets. Further, there exists large quantities of data for test-

ing the option pricing theory.

The first part of the paper i;oncentrates on laying the foundations

for a rational theory of option pricin;',. It is an attempt to derive theorems

about the properties of option prices based on assumptions sufficiently weak

to gain universal support. To the extent it is successful, the resulting

theorems become necessary conditions to be satisfied by any rational option

pricing theory.

^633690
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As one might expect, assumptions weak enough to be accepted by

all, are not sufficient to uniquely determine a rational theory of option

pricing. To do so, more structure must be added to the problem through addi-

tional assumptions at the expense of losing some agreement. The Black and

Scholes [ 4 ] (henceforth, referred to as "B-S") formulation is a significant

"break-through" in attacking the option problem. The second part of the

paper examines their model in detail. An alternative derivation of their

formula shows that it is valid under weaker assumptions than they postulate.

A number of extensions to their theory is derived.

3
II. Restrictions on Rational Option Pricing . An American -

type warrant is a security, issued by a company, giving its owner the right

to purchase a share of stock at a given ("exercise") price on or before a

given date. An "American"-tvpe call option has the same terms as the war-

rant except it is issued by an individual instead of a company. An "American"-

type put option gives its owner the right to sell a share of stock at a

given exercise price on or before a given date. An "European"-type option

has the same terms as its "American" counterpart except that it cannot be

surrendered ("exercised") before the last date of the contract. Samuelson

[ 36] has demonstrated that the two types of contracts may not have the same

value. All the contracts may differ with respect to other provisions such

as anti-dilution clauses, exercise price changes, etc. Other option contracts

such as strips, straps, and straddles, are just combinations of put and call

options

.
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The principle difference between valuating the call option and

the warrant is that the aggregate supply of call options is zero, while

the aggregate supply of warrants is generally positive. The "bucket shop"

IT n 4
or incipient assumption of zero aggregate supply is useful because the

probability distribution of the stock price return is unaffected by the

creation of these options, which is not in general the case when they are

issued by firms in positive amounts (see Merton, [29], section 2). The

"bucket-shop" assumption is made throughout the paper although many of the

results derived hold independently of this assumption.

The notation used throughout is: F(S,T;E) is the value of an

American warrant with exercise price E and T years before expiration, wlien

the price per share of the common stock is S;f(S,T;E) is the value of its

European counterpart; G(S,t;E) is the value of an American put option and

g(S,T;E) is the value of its European counterpart.

From the definition of a warrant and limited liability, we have

that

(1) F(S,T;E) > 0; f(S,T;E) >

and when T^ = 0, at expiration, both contracts must satisfy

(2) F(S,0;E) = f(s,e;E) = Max[0,S-E].

Further, it follows from conditions of arbitrage that

(3) F(S,t;E) > Max[0,S-E].

In general, (3) need not hold for an European warrant.

Definition : Security (portfolio) A is dominant over security
(portfolio) B, if on some known date in the future, the return on
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A will exceed the return on B for some possible states of the

world, and will be at least as large as on B, in all possible
states of the world.

Note that in perfect markets with no transactions costs and the

ability to borrow and short-sell without restriction, the existence of a

dominated security would be equivalent to the existence of an arbitrage

situation. However, it is possible to have dominated securities exist

without arbitrage in imperfect narkets. If one assumes something like

"symmetric market rationality" and that investors prefer more wealth to

less, then any investor willing to purchase security B v/ould prefer to pur-

chase A.

Assumption I: A necessary condition for a rational option pric-
ing theory is that the option be priced such that it is neither
a dominant nor a dominated security.

Given two American warrants on the same stock and with the same

exercise price, it follows from Assumption I, that

(4) F(S,Ti;E) > F(S,T2;E) if Tj > T2,

and that

(5) F(S,t;E) > f(S,T;E).

Further, two warrants, identical in every way except that one has a larger

exercise price than the other, must satisfy

(6) F(S,t;Ei) < F(S,t;E2)

f(S,T;Ei) < f(S,T;E2) if El > E2.

Because the common stock is equivalent to a perpetual (t = =0) , American

warrant with a zero exercise price (E = 0), it follows from (4) and (6)

that
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(7) S > F(S,t;E),

and from (1) and (7), the warrant must be worthless if the stock is,

i.e.,

(8) F(0,T;E) = f(0,T;E) = 0.

Let P(t) be the price of a risk-less (in terms of default),

discounted loan which pays one dollar, T years from now. If it is assumed

that current and future interest rates are positive, then

(9) 1 = P(0) > P(Ti) > P(T2) > . . . > ?(T) for < li < T2 ^
. . . < T

,n n

at a given point in calendar time.

Theorem I. If the exercise price of an European warrant is E

and if no payouts (e.g. dividends) are made to the common stock
over the life of the warrant (or alternatively, if the warrant is

protected against such payments), then f(S,T;E) >^ Max[0, S-EP(t) ]

.

Proof: Consider the following two investments:

A. Purchase the warrant for f(S,T;E);
Purchase E bonds at price P(t) per bond.

Total investment: f(S,T:E) + EP(t).

B. Purchase the common stock for S.

Total investment: S

Suppose at the end of T years, the common stock has value S . Then, the

* A
value of B will be S . If S £ E, then the warrant is worthless and the

*
value of A will be + E = E. If S > E, then the value of A will be

,* ^\ . T- o* Therefore, unless the current value of A is at least
(S - E) + E = S .

as large as B, A will dominant B. Hence, by Assumption I, f(S,T;E) + EP(t) ^ S,

which together with (1), implies that f(S,T;E) ^ Max[0, S-EP(t) ] . Q.E.D.
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From (5), it follows directly that Theorem I. holds for American

warrants with a fixed exercise price over the life of the contract. The

right to exercise an option prior to the expiration data always has non-nega-

tive value. It is important to know when this right has zero value, since

in that case, the values of an European and American option are the same.

In practice, almost all options are of the American type while it is always

easier to solve analytically for the value of an European option. Theorem

I. significantly tightens the bounds for rational warrant prices over (3).

In addition, it leads to the following two theorems:

Theorem II. If the conditions for Theorem I. hold, an American
warrant will never be exercised prior to expiration, and hence,

it has the same value as an European warrant.

Proof: if the warrant is exercised, its value will be Max[0,S-E]. But from

Theorem I, F(S,T;E) ^ Max[0,S-EP(T) ] which is larger than Max[0,S-E] for

T > because, from (9), P(t) < 1. Hence, the warrant is always worth more

"alive" than "dead." Q.E.D.

Theorem III. If the conditions for Theorem I. hold, the value

of a perpetual (T = '^') warrant must equal the value of the

common stock.

Proof: from Theorem I, F(S,°°;E) > Max[0,S-EP(°°) ] . But, P(°°) = 0, since, for

positive interest rates, the value of a discounted loan payable at infinity

is zero. Therefore, F(S,'»;E) > S. But, from (7), S^F(S,«';E). Hence,

F(S,'=°;E) = S. Q.E.D.

Theorem II. suggests that if there is a difference between the

American and European warrant prices which implies a positive probability

of premature exercise, it must be due to unfavorable changes in the exercise

price or to lack of protection against payouts to the common stocks. This

result is consistent with the findings of Samuel son and ^"erton T 371 .
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Samuelson [36], Samuelson and Merton [37], and Black and Scholes

[ 4 ] showed that the price of a perpetual warrant equaled the price of the

common stock for their particular models. Theorem 111. demonstrates that it

holds independent from any stock price distribution or risk-averse behavioral

6
assumptions

.

Samuelson [36] argues that, rationally, the price of two shares

of stock must be equal in value to exactly twice the price of one share.

Similarly, he argues that the price of a warrant giving its owner the right

to purchase two shares for the total exercise price of (2E) should be equal

to exactly twice the price of a warrant giving its owner the right to pur-

chase one share at exercise price E. This homogeneity property need not hold

if transactions costs vary according to price per share or number of shares

in a non-homogeneous way or if there are other problems of indivisibilities.

It will also not hold if the distribution of future stock price returns

depend on the level of prices. E.g., if stock splits which niake low-oricp

stocks out of high-price stocks affect the probability distribution of future,

per-dollar return on the stock. The homogeneity property vastly simplifies

the analysis and leads to further restrictions on the rational option price.

Since it is generally believed that such effects, if they exist, are small,

we make the following assumption:

Assumption 11. If F(S,T;E) is a rationally determined price
for a warrant with exercise price E and time to expiration t,

when the stock price is currently S, then F(AS,t;XE) = XF(S,t;E)
for X > 0.

Theorem IV. If Assumption II. holds, then the warrant price is
a convex function of the stock price."





Proof: from (8), F(0,t;E) = 0. So, to prove convexity, it is sufficient

to show that P(>^S,T;E) £ Ar(S,T;E) for < A < 1. By, Assumption II,

AKS,t;E) = P(AS,T;XE). But, AE < E, and therefore, from (6), F(As,T;Ae)

> F(AS,t;E). Q.E.D.

Samuelson [ 36] pointed out that when Assumption II. holds, one can

always work in standardized units of E = 1 where the stock price and warrant

price are quoted in units of exercise price instead of dollars, by choosing

X = 1/E. Not only does this change of units eliminate a variable from the

problem (at least, for the case when the exercise price is constant over the

life of the warrant), but also it is an useful operation to perform before

making empirical comparisons across different warrants where the dollar

amounts may be of considerably different magnitudes.

As suggested by the analysis leading to Theorem I, the rational option

price will depend on the current price of dollars to be delivered at the

time of expiration, P(T), through the boundary inequalities H ax [ 0, S-EP(T) ]

.

If the distribution of returns on risk-less bonds is independent of the level

of P(t), then it is conjectured that P(T) will only enter into the pricing

formula as multiplying the exercise price, i.e., Fwill be of the form,

KS,T;EP(T)). If this is so, then, by Assumption II, one can work in units

of exercise price valued at constant dollars at expiration, i.e., choose

A = 1/EP(T). The reduction in complexity implied by this conjecture is

large, particularly if P(T) is stochastic over time.

Based on the analysis so far, figure 1. Illustrates the general

shape that the rational warrant price should satisfy as a function of the

s':ock price and time.
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III. Effects of dividends and changing exercise price .

Theorems I-III. depend upon the assumption that either no payouts are made

to the common stock over the life of the contract or that the contract is pro-

tected against such payments. The two most common types of payouts are stock

dividends (or splits) and cash dividends. The correct anti-dilution clause

for the warrant should leave its owner indifferent between having the payout

made to the common stock or not.

9
Theorem \. If Assumption II holds and if the stock is split
A shares for one, then the correct adjustment to leave the warrant-
holder indifferent is to exchange for each pre-split warrant, A

new warrants with exercise price E/A.

Proof: If S is the price per share, pre-split, and S is the price per share,

*
post-split, then S = S/A. Ear the warrant -holder to be indifferent, the

value of his position pre-and post-split must be the same. I.e., kKi>,T;E ) =

P(S,T^;E) where k is the number of new warrants received for each old one and

E is the new exercise price per share, Ptom the first-degree homogeneity

property of F,k = A and E = E/A satisfies the identity for all A and F.

Q.E.D.

The correct clause for protecting the warrant-holder against cash

dividends is more complicated. The typical practice is to adjust the exercise

price downward by the amount of the cash dividend, which is not correct.

Neglecting tax effects, the shareholder will be indifferent between

a cash dividend or direct share-repurchase in the same amount by the firm.

Clearly, share re-purchase does not dilute the warrant-holder's claim and so,

no re-adjustment to the warrant contract need be made. However, to exactly
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mirror the effect of the cash dividend by share repurchase, an additional

adjustment must be made by the firm. Since af t 2r share repurchase, the

number of shares outstanding will be siraller than with a cash dividend, a

stock dividend is declared to ; djust tl e number of shares back to its pre-

dividend level. Thus, to avoid dilution, the warrant contract must be

modified.

Theorem VL. If Assumption II holds and if a cash dividend of

d dollars per share is paid, then the correct adjustment to leave

the warrant-holder indifferent is to exchange for each pre-dividend
warrant, S/(S - d) new warrants with exertise price, (S - d)E/S,

where S is the current pre-dividend, price per share.

Proof: as discussed above, the cash dividend is equivalent to simultaneous

share repurchase and a stock dividend which results in the number of shares

outstanding remaining unchanged. Let N = total number of shares outstanding

and n = number of shares repurchased. Then, nS = Nd, Let X equal the

number of post-stock dividend shares per pre-stock dividend shares. Then,

A(N - n) = N, or solving for X, A = S/(S - d) . The theorem follows directly

from Theorem V. Q.E.D.

If the warrant is protected by the provisions of Theorems V and

M, its valuation will be the same as for a warrant on an equivalent stock

with no payouts, and all theorems proved under the assumption of no payouts

to the stock will hold for proi ect'^d warrants.

To this point it has been assumed that the exercise price remains

constant over the life of the < ontract (except for the before mentioned

adjustments for payouts). A v.riable exercise price is meaningless for an

European warrant since the contract is not exercislble prior to expiration.
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However, a number of American warrants do have variable exercise prices

as a function of the length of timn until expiration. Typically, the exer-

cise price increases as time approaches the expiration date.

Consider the case where there are n changes of the exercise

price during the life of an American warranty i epresented by the following

schedule:

Exercise Price Time Until Expiration (t)

Eq 1 "^ i "T]^

E^ Tj^ < T <^ T^

E T < T
,n n "=

where it is assumed that E... < E. for i = 0, 1, . . ., n-1. If, otherwise
J+1 3

the conditions for Theorems I- VI hold, it is easy to show that, if pre-

mature exercising takes place, it will occur only at points in time just

prior to an exercise price change, i.e., at T = T . +, j = 1, 2, , . . , n.

Hence, the American warrant is equivalent to a modified European warrant

which allows its owner to exercise the warrant at discrete times, just

prior to an exercise price change. Given a technique for finding the price

of an European warrant, there is a syrtematic method for valuing a modified

European warrant. Namely, solve the standard problem for R(S,T;E ) sub-

ject to the boundary conditions K(S,0:E ) = M ax [0,S-E ] and T £ T Then,

by the same technique, solve for E(S,T;E ) subject to the boundary





-13-

conditions F (S,TjE,) = MaxtO,S-E ,F (S,Tj;E )] and T < T £ T . Proceed

inductively by this dynamic-prograiraninp.-like technique, until the cur-

rent value of the modified European warrant is determined. Typically,

the number of exercise price changes is small, so the technique is com-

putationally feasible.

Often the contract conditions are such that the warrant will

never be prematurely exercised, and in which case, the correct valuation

will be the standard European warrant treatment using the exercise price

at expiration, E . If it can >e demonstrated that

(10) F.(S,T ,^;E.) > ri - E. . for all S > C and j = 0, 1, . . ., N - 1,
J 3+1 3 = I'-l

then the warrant will always b worth more "aMve" than "dead," and the

nc-premature exercising result will obtain. From Theorem I, F.(S,T., -E.)
3 3+1 J

> Max[0,S-P(T. . ,-T. )E. ] . Hence, from (10) , a sufficient condition for no= 3+1 3 3

early exercising is that

(11) E /E. < P(T -T.).
3+1 3 3+1 3

The economic reasoning behind (11) is identical to that used to derive

Theorem I. If by continuing to hold the warrant and investing the dol-

lars which would have been paid for the stock if the warrant were exercised,

the investor can earn with certainty enough to overcome the increased cost

of exercising the warrant later, then the warrant should not be exercised.

Condition (11) is not as simple as it may first appear, because

in valuating the warrant today, one must know for certain that (11) will

be satisfied at some future dane, which in general will not be possible
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if interest rates are stochastic. Often, as a practical matter, the size

of the exercise price change versus the length of time between changes is

such that for almost any reasonable rate of interest, (11) will be satisfied.

For example, if the increase in exercise price is ten percent and the

length of time before the next exercise price change is five years, the

yield to maturity on risk-less securities would have to be less than two

percent before (11) would not hold.

As a footnote to the analysis, we have the theorem:

Theorem VII. If there are a finite number of changes in

the exercise price of a payout-protected, perpetual warrant,
then it will not be exercised and its price will equal the

common stock price.

Proof: applying the previous analysis, consider the value of the warrant

if it survives past th6 last exercise price change, F (S,"»;E ). By Theorem

III, F-(S,'»;E ) = S. Now consider the value just prior to the last change

in exercise price, F^(S,'»;E^). It must satisfy the boundary condition,

F (S,~;E ) = Max[0,S-E F (S,«';E )] = Max[0,S-E S] = S. Proceeding induc-

tively, the warrant will never be exercised, and by Theorem III, its value

is equal to the common stock. Q.E.D.

The analysis of the effect on unprotected warrants when future divi-

dends or dividend policy is known, follows exactly the analysis of a

changing exercise price. The arguments that no one will prematurely exer-

cise his warrant except possibly at the discrete points in time just prior

to a dividend payment, go through, and hence, the modified European warrant

approach works where now the boundary conditions are F.(S,t.;E) =

Max[0,S-E,F._^ (S-d. ,T. ;E)] with d,, the dividend per share paid at T. years

prior to expiration, for j = 1, 2, . . ., n.
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In the special case where future dividends and rates of interest

are knovm with certainty, a sufficient condition for no premature exercising

IS that

(12) E > ll^Qd(S)?(r-S),

i.e., the net present value of future dividends is less than the exercise

price. If dividends are paid continuously at the constant rate of d

dollars per unit time and if the interest rate, r, is the same over time, then

(12) can be re-written in its continuous form as

(13) E > ^(1 - e"").

Samuelson [36 ] suggests the use of discrete recursive relation-

ships similar to our modified European warrant analysis, as an approximation

to the mathematically-difficult continuous-time model when there is some

13
chance for premature exercising. We have shown that the only reasons for

premature exercising are lack df protection against dividends or sufficiently

unfavorable exercise price changes. Further, such exercising will never

take place except at boundary points. Since dividends are paid quarterly

and exercise price changes are less frequent, the Samuelson recursive

formulation with the discrete-time spacing matching the intervals between

dividends or exercise price changes, is actually the correct one, and the

continuous solution is the approximation, even if warrant and stock prices

change continuously I

Based on the relatively weak Assumptions I and II, we have shown

that dividends and unfavorable exercise price changes are the only rational

reasons for premature exercising, and hence, the only reasons for an American

warrant to sell for a premium over its European counterpart. In those

cases where early exercising is possible, a computationally-feasible, general
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algorithm for modifying an European v;arrant valuation scheme has been

derived. A number of theorems were proved putting restrictions on the

structure of rational European warrant pricing theory.

IV. Restrictions on rational put option pricing . The put

option, defined at the beginning of section II, has received relatively

little analysis in the literature because it is a less popular option

than the call and because it is commonly believed that, given the price

of a call option and the common stock, the value of a put is uniquely

determined. This belief is false for American put options, and the mathe-

matics of put option pricing is more difficult than for the corresponding

call option.

Using the notation defined in section II, we have that, at

expiration,

(14) G(S,0;E) = g(S,0;E) = Max[0,E-S],

By the same arguments which lead to Assumption II, it is assumed that G

and g are homogeneous of degree one in S and E. The correct adjustment

for stock and cash dividends is the same as prescribed in Theorems V and

VI.
15

To determine the rational European put option price, two port-

folio positions are examined. Consider taking a long position in the

common stock at S dollars, a ] ong position in a T-year European put at

g(S,T;E) dollars, and borrowing [EP'(t)] dollars where P'(t) is the

current value of a dollar payable x-years from now at the borrowing rate

(i.e., P'(t) may not equal P(t) if the borrowing and lending rates differ).
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The value of the portfolio ~ years from now with the stock price at S,

will be: S + (E - S ) - E = if S r".
l'> and S + - E = S - E, if S > E.

The pay-off structure is identical in every state to an European call

option with the same exercise price and duration. Hence, to avoid the

call option from being a dominated security, the put and call must be

priced so that

(15) g(S,T;E) + E - EP'(t) > f(S,T;E).

As was the case in the similar analysis leading to Theorem 1, the values

of the portfolio prior to expiration were not computed because the call

option is European and cannot be prematurely exercised.

Consider taking a long position in a T-year European call, a

short position in the common stock at price S, and lending [EP(t)]

dollars. The value of the portfolio t years from now with the stock

price at S, will be: - S + E = E - S, if S*" < E, and (S - E) - S + E = 0,

if S > E. The pay-off structure is identical in every state to an

European put option with the same exercise price and duration. If the

put is not to be a dominated security, then

(16) f(S,T;E) - S + EP(T) ^ g(S,T;E)

must hold.

Theorem VIII. If AssumpL Lon I holds and if the borrowing and

lending rates are equal (i.e., P(T) = P'(T)), then

g(S,T;E) = f(S,T;E) - S + EP(t) .

Proof: the proof follows directly from the simultaneous application of

(15) and (16) when P'(t) = P(t). Q.E.D.

Thus, the value of a rationally-priced European put option is

determined once one has a rational theory of the call option value. The
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formula derived in Theorem VIII is identical to B-S's equation (15),

—rx
when the riskless rate, r, is constant (i.e., P(t) = e ). Note that

no distributional assumptions about the stock price or future interest

rates were required to prove Theorem VIII.

Two corollaries to Theorem VIII follow directly from the

above analysis.

Corollary T. EP(t) > g(S,T;E)

Proof: from (5) and (7), f(S,T;E) - S ^ ^ and from (16), EP(t) > g(S,T;E)

Q. E. D.

The intuition of this result is immediate. Because of limited liability

on the common stock, the maximum value of the put option is E, and because

the option is European, the proceeds cennot be collected for x years.

The option cannot be worth more than the present value of a sure payment

of its maximum value.

Corollary II. The value cf a perpetual (x = "=)

European put option is zero.

Proof: the put is a limited liability security (g(S,x;E) >^ 0). From

Corollary I and the condition that P(oo) = 0, > g(S,oo;E). Q. E. D.

Since the American put option can be exercised at any time, its

price must satisfy the arbitrage condition

(17) G(S,x;E) > Max[0,E - S]

.

By the same argument used to derive (5) , it can be shown that

(18) G(S,x;E) > g(S,x;E),

where the strict inequality holds only if there is a positive probability

of premature exercising.
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As shown in section II, the European and American warrant have

the same value if the exercise price is constant and they are protected

against payouts to the common stock. I^ven under these assumptions, there

is almost always a positive probability of premature exercising of an

American put, and hence, the American put will sell for more than its

European counterpart. A hint that this must be so comes from Corollary

II and arbitrage condition (17). Unlil-e European options, the value of

an American option is always a non-decreasing function of its expiration

datg. If there is no possibility of premature exercising, the value of

an American option will equal the value of its European counterpart. In

that case, by Corollary II, the value of a perpetual American put would be

zero, and by the monotonicity argument on length of time to maturity, all

American puts would have zero value. This absurd result clearly violates

the arbitrage condition (17) for S < E.

To clarify this point, reconsider the two portfolios examined in

the European put analysis, but with American puts instead. The first port-

folio contained a long position in the common stock at price S, a long

position in an American put at price G(S,l^;E), and borrowings of [EP'(T)].

As was previously shown, if held until maturity, the outcome of the portfolio

will be identical to those of an American (European) warrant held until

maturity. Because we are now using American options with the right to ex-

ercise prior to expiration, the interim values of the portfolio must be

examined as well. If, for all times prior to expiration, the portfolio has

value greater than the exercise value of the American warrant, S - E, then

to avoid dominance of the warrant, the current value of the portfolio must

exceed or equal the current value of the warrant

.
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The interim value of the portfolio at T years until expiration

when the stock price is S , is S + G(s'\t;E) - EP'(T) = G(S ,T;E) + (S - E)

+ E[ 1- P'(T)] > (S - E) . Hence, condition (15) holds for its American

counterparts to avoid dominance of the warrant, i.e.,

(19) G(S,T;E) + S - EP'(t) > F(S,T;E).

The second portfolio has a long position in an American call at

price F(S,T;E), a short position in the common stock at price S, and a loan

of [EP(t)] dollars. If held until maturity, this portfolio replicates the

outcome of an European put, and hence, must be at least as valuable at

any interim point in time. The interim value of the portfolio, at T years

A * * *
to go and with the stock price at S , i s F(S ,T;E) - S + EP(T) = (E - S )

+ F(S ,T;E) - E[l - P(T)] < E - s'' , if F(S ,T;E) < E[i - P(T)], which is

possible for small enough S . From (17), G(S ,T;E) > E - S . So, the

interim value of the portfolio will be less than the value of an American

put for sufficiently small S . Hence, if an Am.erican put was sold against

this portfolio, and if the put o\<nner decided to exercise his put prematurely,

the value of the portfolio could be less than the value of the exercised

put. This result would certainly obtain if S < E[ 1- P(T)]. So, the

portfolio will not dominate the put if inequality (16) does not hold, and

an analog theorem to Theorem VIII, which uniquely determines the value of

an American put in terms of a call, does not exist. Analysis of the second

portfolio does lead to the weaker inequality that

(20) G(S,T;E) ;' E - S + F(S,T;E).
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Theorem IX. If, for some T < t, there is a positive proba-
bility that f(S,T;E) <E[I-p1t)], then there is a positive
probability that a T-year, American put option will be
exercised prematurely and the value of theAmerican put will
strictly exceed the value of its European counterpart.

Proof: the only reason that an American put will sell for a premium over

its European counterpart is if there is a positive probability of exercising

prior to expiration. Hence, it is sufficient to prove that g(S,T;E)

< G(S,t;E). From Assumption I, if for some T < t, g(S ,T;E) < G(S ,T;E) for

some possible value(s) of S , then g(S,T;E) < G(S,t;E). From Theorem

Vlll, g(S ,T;E) = f(S ,T;E) - S + EP(T). From (17), G(S*,T;E)^ Max[0,E - S

But, g(S ,T;E) < G(S ,T;E) is implied if E - S > f(S ,T;E) - S -I- EP(T),

*
which holds if f(S ,T;E) < E[ 1 - P(T)], By hypothesis of the theorem,

*
such an S is a possible value. Q. E. D.

Since almost always there will be a chance of premature exercis-

ing, the formula of Theorem Vlll or B-S equation (15) will not lead to a

correct valuation of an American put and, as mentioned in section III, the

valuation of such options is a more difficult analytical task than valuating

their European counterparts.

V. Rational option pricing along Black- Scholes lines . A number

of option pricing theories satisfy the general restrictions on a rational

theory as derived in the previous sections. One such theory developed by

Black and Scholes [4 ] is particularly attractive because it is a complete

general equilibrium formulation of the problem and because the final

formula is a function of "observable" variables, making the model subject

to direct empirical tests.
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B-S assume that (1) the standard form of the Sharpe-Linitner-

Mossin capital asset pricing model holds for intertemporal trading, and

that trading takes place continuously in time, (2) the market rate of in-

terest, r, is known and fixed over time, (3) there are no dividends or

exercise price changes over the life of the contract.

To derive the formula, they assume that the option price is a

function of the stock price and time to expiration, and note that, over

"short" time intervals, the stochastic part of the change in the option price

will be perfectly correlated with changes in the stock price. A hedged

portfolio containing the common stock, the option, and a short-

term, riskless security, is constructed where the portfolio weights are

chosen to eliminate all "market risk." By the assumption of the capital

asset pricing model, any portfolio with a zero ("beta") market risk must

have an expected return equal to the risk-free rate. Hence, an equilibrium

condition is established between the expected return on the option, the

expected return on the stock, and the riskless rate.

Because of the distributional assumptions and because the option

price is a function of the common stock price, B-S make use of the

Samuelson [36] application to warrant pricing of the Bachlier-Einstein-

Dynkin derivation of the Fokker-Planck equation, to express the expected

return on the option in terms of the option price function and its partial

derivatives. From the equilibrium condition on the option yield, such a

partial differential equation for the option price is derived. The solu-

tion to this equation for an European call option is

(21) f(S,T;E) = S<^(di) - Ee"''^^(d2)
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2

where $ is the cumulative normal distribution function, a is the instan-

taneous variance of the return on the common stock, dj e [log(S/E) +

2

(r + l/2o )T]/a/f, and dj E dj - o/F-

An exact formula for an asset price, based on observable variables

only, is a rare finding from a general equilibrium model, and care should

be taken to analyze the assumptions with Occam's Razor to determine which

ones are necessary to derive the formula. Some hints are to be found by

inspection of their final formula (21) and a comparison with an alternative

general equilibrium development.

The manifest characteristic of (21) is the number of variables that

it does not depend on. The option price does not depend on the expected

19
return on the common stock, risk-preferences of investors, or on the

aggregate supplies of assets. It does depend on the rate of interest (an

"observable") and the total variance of the return on the common stock which

is often a stable number and hence, accurate estimates are possible from

time series data.

The Samuelson and Merton [37] model is a complete, although

very simple (three assets and one investor) general equilibrium formulation.

Their formula (p. 29, equation (30)) is

(22) f(S,T;E) = e"^f '^^g(ZS - E)dQ(Z;T)

where dQ is a probability density function with the expected value of Z over

r T
the dQ distribution equal to e . (22) and (21) will be the same only in

the special case when dQ is a log-normal density with the variance of log

2 20
(Z) equal to a T . However, dQ is a risk-adjusted ("util-prob") distribu-

tion, dependent on both risk-preferences and aggregate supplies. While

the distribution in (21) is the objective distribution of returns on the
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common stock. B-S claim that one reason that Samuelson and Merton did not

arrive at formula (21) was because they did not consider other assets. If

a result does not obtain for a simple, three-asset case, it is unlikely

that it would in a more general example. More to the point, it is only

necessary to consider three assets to derive the B-S formula. In connection

with this point, although B-S claim that their central assumption is the

capital asset pricing model (emphasizing this over their hedging argument)

,

their final formula, (21), depends only on the interest rate (which is exo-

geneous to the capital asset pricing model) and on the total variance of the

return on the common stock. It does not depend on the "betas" (covariance

3

with the market) or other assets' characteristics. Hence, this assumption

may be a "red herring."

Although their derivation of (21) is intuitively appealing, such

an important result deserves a rigorous derivation. In this case, the rigor-

ous derivation is not only for the satisfaction of the "purist," but also

to give insight into the necessary conditions for the formula to obtain. The

reader should be alerted that because B-S consider only terminal boundary

conditions, their analysis is strictly applicable to European options

although as shown in sections II-IV, the European valuation is often equal

to the American one.

Finally, although their model is based on a different economic

structure, the formal analytical content is identical to Samuelson's [36]

21
"linear, a = 3" model when the returns on the common stock are log-normal.

Hence, with different interpretation of the parameters, theorems proved in

Samuelson and in the different McKean appendix are directly applicable to

the B-S model, and vice-versa.
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22
VI. An alternative derivation of the Black-Scholes model .

Initially, we consider the case of an European option where no payouts are

made to the common stock over the life of the contract. We further assume

that:

1.
"Friction-less " markets: there are no transactions

costs or differential taxes. Trading takes place con-

tinuously and borrowing and short-selling are allowed

without restrictions The borrowing rate equals the

lending rate.

2. Stock price dynamics : the instantaneous return on the

common stock is described by the stochastic differen-
tial equation^^

(23) dS .. _L ^^ = adt + adz,

where a is the instantaneous expected return on the

common stock, a is the instantaneous variance of the

return, and dz is a standard Gauss-Wiener process.

a may be a stochastic variable of quite general type

including being dependent on the level of the stock

price or other assets' returns. Therefore, no presump-
tion is made that dS/S is an independent increments

process or stationary although dz clearly is. However,

a is restricted to be non-stochastic and, at most, a

known function of time.

3. Bond price dynamics : P(t) is as defined in previous

sections and the dynamics of its returns are described

by

^^^^ 1^ = y(T)dt + 6(T)dq(t;T)

2
where y is the instantaneous expected return, 5 is

the instantaneous variance, and dq(t;T) is a standard

Gauss-Wiener process for maturity x • Allowing for the

possibility of habitat and other term structure effects,

it is not assumed that dq for one maturity is perfectly
correlated with dq for another. I.e.,

(24a) dq(t;T)dq(t;T) =
p ^dt.
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where p may be less than one for 1 ^ T. However,

it is assumed that there is no serial correlation'^--'

among the (unanticipated) returns on any of the assets,

i.e.,

(24b) dq(s;T)dq(t;T) = for s ?f t

dq(s;T)dz(t) =0 for s ^ t,

which is consistent with the general efficient market
hypothesis of Fama [12] and Samuelson [35]. y(T)

may be stochastic through dependence on the level of bond
prices, etc., and different for different maturities.
Because P(t) is the price of a discounted loan with no

risk of default, P(0) = 1 with certainty and 6(t) will
definitely depend on T with 6(0) = 0. However, 5 is

otherwise assumed to be non-stochastic and independent

of the level of P. In the special case when the interest
rate is non-stochastic and constant over time, 6=0,
y = r, and P(t) = e"''^''-,

4. Investor preferences and expectations : no assumptions

are necessary about investor preferences other than

that they satisfy Assumption I. of section II. All

investors agree on the values of o and 6, and on the dis-

tributional characteristics of dz ^nd dq. It is not

assumed that they agree on either a or \x.

From the analysis in section II, it is reasonable to assume that

the option price is a function of the stock price, the riskless bond price,

and the length of time to expiration. If H(S,P,T;E) is the option price

function, then, given the distributional assumptions on S and P, we have,

27
by Ito's Lemma, that the change in the option price over time satisfies

the stochastic differential equation,

(25) dH = H^dS + H^dP + H^dT + l/2[H^^(dS)^ + lU^^iASd?) + H22(dP)^],

2-^2 2-22
where subscripts denote partial derivatives, imd (dS) = o S dt, (dP) = 6 pdt,

dx = -dt, and (dSdP) = pa6SPdt with 0, the instantaneous correlation coefficient

between the (unanticipated) returns on the stock and on the bond. Substituting
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from (23) and (24) and rearranging terms, we can rewrite (25) as

(26) dH = 3Hdt + yHdz + nHdq,

2 22 2
where the instantaneous expected return on the warrant, g, equals [l/2a S H

+ pa6SPH^2 + 1/26Vh22 + aSH^ + yPH^ - H^l/H, y E cSH^/H, and n = SPH^/H.

In the spirit of the Black-Scholes formulation and the analysis in

sections II-IV, consider forming a portfolio containing the common stock,

the option, and riskless bonds with time to maturity, T, equal to the expira-

tion date of the option, such that the aggregate investment in the portfolio

is zero. This is achieved by using the proceeds of short-sales and borrow-

ing to finance long positions. Let W^ be the (instantaneous) number of

dollars of the portfolio invested in the common stock, W„ be the number of

dollars invested in the option, and W be the number of dollars invested in

bonds. Then, the condition of zero aggregate investment can be written as

W + W + W„ = 0. If dY is the instantaneous dollar return to the port-

28
folio, it can be shown that

(27, .Y - w^^.„^^.„3^

[w^(a-M) + W2(B-y)]dt + [w^a+w^yjdz

+ [W^ii-(W^+W2)6]dq,

where W_ E -(W +W ) has been substituted out.

Suppose a strategy, W = W , can be chosen such that the co-

efficients of dz and dq in (27) are always zero. Then, the dollar return

on that portfolio, dY , would be non-stochastic. Since the portfolio

ii29requires zero investment, it must be that to avoid arbitrage profits.
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the expected (and realized) return on the portfolio with this strategy is

zero. The two portfolio and one equilibrium conditions can be written as a

3x2 linear system,

(a-y)W^* + (6-y)W2* =

(28) aW^ + YW2 =

-6W^* + (n-<S)W2* = 0.

* *
A non trivial solution (W ^ 0; W ^ 0) to (28) exists if and

only if

(29) ^H = X = izH
.

Because we made the "bucket shop" assumption, y,a,6, and a are legitimate

exogeneous variables (relative to the option price), and B,y, and r\ are to

be determined so as to avoid dominance of any of the three securities. If

(29) holds, then y/o = 1 - n/5, which implies from the definition of y and

in (26), that
SH PH

(30) __ = 1 - _
or

(31) H = SH^ + PH^.

I.e., by Euler's theorem, H must be homogeneous of degree one in (S,P).

In section II, it was conjectured that this condition would obtain, given the

distributional assumptions of the current section.

The second condition from (29) is that 3 - y = yia.-v)/o, which

implies from the definition of 3 and y in (26) that

(32) l/lo^S^U^^ + pa6SPH^2 • 1/26^P^H22 + aSH^ + yPH^ - H^ - yH = SH^(a-y),

or, by combining terms, that
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(33) l/2o^S^H^^ + pa6SPH^2 •" 1/26^P^H22 + ySH^ + yPH^ - H^ - yH = 0.

Substituting for H from (31) and combining terms, (33) can be re-written

(34) l/2[a^S^H^^ + 2p36SPH^2 + &^'P^'^22^ ~ ^3 " °'

which is a second-order, linear partial differential equation of the parabolic

type.

If H is the price of an European warrant, then H must satisfy (34)

subject to the boundary conditions:

(34a) H(0,P,t;E) =

(34b) H(S,1,0;E) = Max[0,S - E]

,

since by construction, P(0) = 1.

Define the variable x = S/EP(t), which is the price per share of

stock in units of exercise price-dollars payable at a fixed date in the future

(the expiration date of the warrant). x is a well-defined price for t>_0,

and from (23), (24), and Ito's Lemma, the dynamics of x are described by

the stochastic differential equation,

dx 2
(35) ^ = [a - y + 6 - po6 ]dt + adz - 6dq.

From (35), the expected return on x will be a function of S, P, etc.,

2
through a and y, but the instantaneous variance of the return on x, V (t) ,

2 2
is equal to a +6 - 2pa5, and will only depend on t.

Using the homogeneity property (31), H(S,P,t;E) = EPH(Trr,l,T;E)
biir

= EPH(x,1,t;E) . Let h(x,T;E) E H(x,1,t;E) where h is the warrant price

in the same units as x. Substituting (h,x) for(H,S) in (34), (34a), and

(34b), leads to the partial differential equation for h,

(36) l/2V^x^h^^ - h2 =
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subject to the boundary conditions, h(0,T;E) = 0, and h(x,0;E) = Max[0,x-1].

From inspection of (36) and its boundary conditions, h is only a function

2
of X and t, since V is only a function of T. Hence, the assumed homogeneity

property of H is verified. Further, h does not depend on E, and so, H

is actually homogeneous of degree one in (S,EP(t)).

Consider a new time variable, T
^

2
V (S)dS. Then, if we define

y(x,T) = h(x,T) and substitute into (36), y must satisfy

(37) l/2x^^^ - V2 =

subject to the boundary conditions, y(0,T) = and y(x,0) = Max [0,x-ll.

2 2
Suppose we wrote the warrant price in its "full functional form," H(S,P,t ;E,o ,6 .p

Then, y = H(x,l,T;l,l,0 ,0) , and is the price of a warrant with T years to

expiration and exercise price of one dollar, on a stock with unit instantaneous

variance of return, when the market rate of interest is zero over the life

of the contract.

Once we solve (37) for the price of this "standard" warrant, we

have, by a change of variables, the price for any European warrant. Namely,

(38) H(S,P,T;E) = EP(T)y[S/EP(T), Tq V^(S)dS].

Hence, for empirical testing or applications, one need only compute tables

for the "standard" warrant price as a function of two variables, stock price

and time to expiration, to be able to compute warrant prices in general.

To solve (37), we first put it in standard form by the change in

variables Z= log(x) and 0(Z,T) S y(x,T )/?c, and then substitute in (37) to

arrive at

(39) = 1/2 0^^ - 02
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-1
subject to the boundary conditions: |0(Z,T)| <^ 1 and 0(Z,O) = Max[0,l-e ],

(39) is a standard free-boundary problem to be solved by separation of

30
variables or fourier transforms. Its solution is

(^) y(x,T) = x0(Z,T) = [xerfc(h^) - erfc(h2)]/2

where "erfc" is the error compliment function which is tabulated, h =

-[logx + 1/2T]//2T, and h^ = -[logx - 1/2T]/*/^. (40) is identical to (21)

with r = 0, a^ = 1, and E = 1. Hence, (38) will be identical to (21) the

B-S formula, in the special case of a non-stochastic and constant interest

-rx _ 2
rate (i.e., 6=0, y=r, P=e , and T = a t).

Equation (37) corresponds exactly to Samuelson's [36, p. 27]

equation for the warrant price in his "linear" model when the stock price

2
is log-normally distributed, with his parameters a = 6 = 0. and a =1.

Hence, tables generated from (40) could be used with (38) for valuations of

the Samuelson formula where e"^'^ is substituted for P(t) in (38). Since

"a" in his theory is the expected rate of return on a risky security, one

would expect that e~"^ < P(t). As a consequence of the following theorem,

e~°''^ < P(t) would inply that Samuelson's forecasted values for the warrants

would be higher than those forecasted by B-S or the model presented here.

Theorem X. The warrant price is a non-increasing function of

?(t), and hence, a non-decreasing function of the x-year

interest rate.

Proof: it follows immediately, since an increase in P is equivalent to an

increase in E which never increases the value of the warrant. Formally, H

is a convex function of S and passes through th.j origin. Hence, H - SH^ £ 0.

But, from (31), H - SH = PR , and since P >^ 0, H^ <^ 0. By definition, P(t)

is a decreasing function of the x-year interest rate. Q. E. D.
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Because we applied only the terminal boundary condition (34b) to

(34), the price function derived is for an European warrant. The correct

boundary conditions for an American warrant would also include the arbitrage-

boundary inequality

(34c) H(S,P,t;E) > Max[0,S-E].

Since it was assumed that no dividend payments or exercise price changes

occur over the life of the contract, we know from theorem I, that if the

formulation of this section is a "rational" theory, then it will satisfy

the stronger inequality H >_ Max[0,S-EP(T) ] (which is homogeneous in S and

EP(t)), and the American warrant will have the same value as its European

counterpart. In [ 36]^ Samuelson argued that solutions to equations like (21)

and (38) will always have values at least as large as Max [0,S-E], and Samuelson

and Merton [37] proved it under more general conditions. Hence, there is no need

for formal verification here. Further, it can be shown that (38) satisfies

all the theorems of section II.

As a direct result of the equal values of the European and American

warrants, we have:

Theorem XI. The warrant price is a non-decreasing function of
the variance of the stock price return.

Proof: from (38), the change in H. with respect to a change in variance

will be proportional to y„. But, y is the price of a legitimate American

warrant and hence, must be a non-decreasing function of time to expiration,

i.e. y > 0. Q. E. D.

We have derived the B-S warrant pricing formula rigorously under

assumptions weaker than they postulate, and have extended the analysis to

include the possibility of stochastic interest rates.
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Because the original B-S derivation assumed constant interest rates,

it did not matter, in forming their hedge positions, whether they borrowed

or lent long or short maturities. TVie derivation here clearly demonstrates

that the correct maturity to use in the hedge is the one which matches the

maturity date of the option. "Correct" is used in the sense that if the price

P(x) remains fixed while the price of other maturities change, the price of a t

-year option will remain unchanged.

The capital asset pricing model is a sufficient assumption to derive

the formula. While the assumptions of this section are necessary for the

32
intertemporal use of the capital asset pricing model, they are not sufficient.

E.g., we do not assume that interest rates are non-stochastic, that price

dynamics are stationary, nor that investors have homogeneous expectations.

All are required for the capital asset pricing model. Further, since we con-

sider only the properties of three securities, we did not assume that the

capital market was in full, general equilibrium. Since the final formula is

independent of a or y, it will hold even if the observed stock or bond prices

are transient, non-equilibrium prices.

The key to the derivation is that any one of the securities' re-

turns over time can be perfectly replicated by continuous portfolio combina-

tions of the other two. A complete analysis would require that all three

securities' prices be solved for simultaneously which, in general, would

require the examination of all other assets, knowledge of preferences, etc. .

However, because of "perfect substitutability" of the securities and the

"bucket shop" assumption, supply effects can be neglected, and we can apply

"partial equilibrium" analysis resulting in a "casual-type" formula for the

option price as a function of the stock and bond prices.
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This "perfect substitutabilitx " of the common stock and borrowing

for the warrant or the warrant and lend ag for the common stock explains why

the formula is independent of the expected return on the common stock or

preferences. The expected return on the stock and the investor's preferences

will determine how much capital to invent (long or short) in a given company.

The decision as to whether to take the position by buying warrants or by

leveraging the stock depends only on the ir relative prices and the cost of

borrowing. As B-S point out, the argume at is similar to an intertemporal

Modigliani-Miller theorem. The reason i hat the B-S assumption of the capital

asset pricing model leads to the correc. formula is that because it is an

equilibrium model, it must necessarily i ule-out "sure-thing" profits among

perfectly-correlated securities, which s exactly condition (29). Careful

study of both their derivations shows tl at (29) is the only part of the

capital asset pricing model ever used.

The assumptions of this secticn are necessary for (38) and (40)

33
to hold. The continuous-trading assunption is necessary to establish

perfect correlation among non-linear fuictions which is required to form

the"perfect hedge" portfolio mix. The iamuelson and Merton [37] model is

an immediate counter-example to the validity of the formula for discrete-

trading intervals.

The assumption of It8 process s for the assets' returns dynamics

was necessary to apply Ito's Lemma. Th further restriction that a and 6

be non-stochastic and independent of th price levels is required so that

the option price change is due only to ihanges in the stock or bond prices,

which was necessary to establish a perf ct hedge and to establish the homo-

34
geniety property (31). Clearly if in 'estors did not agree on the value of
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2
V (x) » they would arrive at different v£iluations for the warrant.

The B-S claim that (21) or (38) is the only formula consistent

with capital market equilibrium is a bit too strong. It is not true that

if the market prices options differently, then arbitrage profits are ensured.

It is a "rational" option pricing theory relative to the assumptions of this

section. If these assumptions held with certainty, then the B-S formula is

the only one which all investors could agree on, and no deviant member could

prove them wrong.

VII. Extension of the model :o include dividend payments and exer-

cise price changes . To analyze the effect of dividends on unprotected warrants,

it is helpful to assume a constant and l.nown interest rate r. Under this

assumption, 6 = 0, y = r, and P(t) = e . Condition (29) simplifies to

(41) 3 - r = Y(a--r)/o.

Let D(S,t) be the dividend per share per unit time when the stock price is

S and the warrant has T years to expiracion. If a is the instantaneous, total

expected return as defined in (23) , thei the instantaneous expected return

from price appreciation is [a-D(S, r) /S] . Because P(t) is no longer stochastic,

we suppress it and write the warrant price function as W(S,T;E). As was done

in (25) and (26), we apply Ito's Lemma to derive the stochastic differential

equation for the warrant price to be

(42) dW = W^(dS-D(S,T)dt) f W^dT + l/2W^^(dS)^

= [1/20^S^W ^ + (aS-D)W^ - W^ldt + asw^dz.

Note: since the warrant owner is not entitled to any part of the dividend

return, he only considers that part of he expected dollar return to the

common stock due to price appreciation. From (42) and the definition of 3

and Y, we have that
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(43) 3W = l/2a^s\^^ + (as-D)W^ - W^

yW = aSW^.

Applying (41) to (43) , we arrive at the partial differential

equation for the warrant price,

(44) l/2a^sV + (rS-D)W - W - rW = 0,

subject to the boundary conditions, W(0,t;E) = 0, W(S,0;E) = Max[0,S-E] for

an European warrant, and to the additional arbitrage boundary condition,

W(S,t;E) >^ Max[0,S-E] for an American warrant.

(44) will not have a simple solution, even for the European warrant

and relatively simple functional forms for D. In evaluating the American

warrant in the "no-dividend" case (D=0) , the arbitrage boundary inequalities

were not considered explicitly in arriving at a solution, because it was

shown that the European warrant price never violated the inequality, and

the American and European warrant prices were equal. For many dividend

policies , the solution for the European warrant price will violate the in-

equality, and for those policies, there will be a positive probability of

premature exercising of the American warrant. Hence, to obtain a correct

value for the American warrant from (44), we must explicitly consider the

boundary inequality, and transform it iato a suitable form for solution.

If there exists a positive probability of premature exercising,

then, for every T, there exists a level of stock price, C[t], such chat

for all S > C[t], the warrant would be ,?orth more exercised than if hi^.ld.

Since the value of an exercised warrant is always (S-E) , we have the ap-

pended boundary condition for (44),
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(44a) W(C[t],t;E) = C[t] - E,

where W satisfies (44) for £ S £ C[t].

If C[t] were a known function, then, after the appropriate change

of variables, (44) with the European boundary conditions and (44a) appended,

would be a semi-infinite boundary value problem with a time-dependent boundary.

However, C[t] is not known, and must be determined as part of the solution.

Therefore, an additional boundary condition is required for the problem to

be well-posed.

Fortunately, the economics of the problem are sufficiently rich

to provide this extra condition. Because the warrant holder is not contrac-

tually obliged to exercise his warrant orematurely, he chooses to do so only

in his own best interest (i.e., when the warrant is worth more "dead" than

"alive"). Hence, the only rational choice for C[t] is that time-pattern

which maximizes the value of the warrant. Let f (S,T ;E,C[t]) be a solution

to (44)-(44a) for a given C[t] function. Then, the value of a x-year

American warrant will be

(45) W(S,t;E) = Kaxf(S,T;E,C).
(c)

Further, the structure of the problem mikes it clear that the optimal C[t]

will be independent of the current level of the stock price. In attacking

this difficult problem, Samuelson [3f^] postulated that the extra condition

was "high-contact" at the boundary, i.e.,

(44b) W^(C[t],t;E) = 1.

It can be shown that (44b) is implieo by the maximizing behavior described

by (45). So the correct specification for the American warrant price is (44)

with the European boundary conditions plus (44a) and (44b).
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Samuelson [35] and Samuelson and Merton [37] have shown that for

a proportional dividend policy where D(S,t) = pS, p >0 , there is always a

positive probability of premature exercising, and hence, the artibrage

37
boundary condition will be binding for sufficiently large stock prices.

(44) with D = pS, is mathematically identical to Samuelson's [36] "non-linear"

("3 > ot") case where his 3 = r and his a = r - p. Samuelson (and McKean in

an appendix to [36]) analyze this problem in great detail. Although there

are no simple closed-form solutions for finite-lived warrants they did derive

solutions for perpetual warrants which are power functions, tangent to the

"S-E" line at finite values of S (See [36], p. 28).

A second example of a simple dividend policy is the constant one

where D = d, a constant. Unlike the previous proportional policy, pre-

mature exercising may or may not occur, depending upon the values for d, r,

E, and T. In particular, a sufficient condition for no premature exercis-

ing was derived in section III. Namely,

(13) ^ ^ 7 d-e"''^).

If (13) obtains, then the solution for the European warrant price will be

the solution for the American warrant. Although a closed-form solution has

not yet been found for finite T, a solution for the perpetual warrant when

E > d/r, is-^^

(46) W(S,oo.E) = SM(-1,^
J|)

where M is the confluent hypergeometric function [47], and W is plotted in

figure 2.
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Consider the case of a continuously-changing exercise price, E(t),

where E is assumed to be differentiable and a decreasing function of the

length of time to maturity, i.e., dE/dr = -dE/dt = -E < 0. The warrant price

will satisfy (44) with D = 0, but subject to the boundary conditions,

W(S,0;E(0)) = Max[0,S-E(0)] and W(S,t;E(t)) > Max[0,S-E(T) ] . Make the change

in variables X = S/E(t) and F(X,t) = W(S,t;E(t))/E(t) . Then, F satisfies

(47) 1/2oVf^^ + n(T)XF^ - n(T)F - F^ =

subject to F(X,0) = Max[0,X-l] and F(X,t) > Max[0,X-l] where n(T) E r - E/E.

Notice that the structure of (47) is identical to the pricing of a warrant

with a fixed exercise price and a variable, but non-stochastic, "interest

rate" ri(T). (I.e., substitute in the analysis of the previous section for

i-T

P(t), exp [ -| -n(S)dS], except nd) can be negative for sufficiently

large changes in exercise price) . We have already shown that for Jn(s)ds > 0,

exercise price should matter. Noting that L n(S)dS =

there will be no premature exercising of the warrant, and only the terminal

fT

[r+dE/drldS = ri +

log[E(T)/E(0)] , formal substitution for P(t) in (38) verifies that the

value of the warrant is the same as for a warrant with a fixed exercise

price, E(0), and interest rate r. We also have agreement of the current

fT

model with (11) of section III, because L n(S)dS >^ implies E(t) >^ E(0)exp[-rT]

,

which is a general sufficient condition for no premature exercising.

VIII. Valuating an American put option . As the first example of

an application of the model to other types of options, we now consider the

rational pricing of the put option, relative to the assumptions in section

VII. In section IV, it was demonstrated that the value of an European put

was completely determined, once the value of the call option is known

(theorem VIII). B-S give the solution for their model in equation (16). It

was also demonstrated in section IV that the European valuation is not valid
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for the American put option because of the positive probability of pre-

mature exercising. If G(S, T;E) is the rational put price, then, by

the same technique used to derive (44) with D = 0, G satisfies

(48) l/2d^S^G^^ + rSG^ - rG - G^ = 0,

subject to G(oo,t;E) = 0, G(S,0;E) = Max[0,E-S], and G(S,t;E) ^Max[0,E-S].

From the analysis by Samuelson and McKean [36] on warrants, there

is no closed-form solution to (48) for finite t. However, using their

techniques, it is possible to obtain a solution for the perpetual put option

(i,e., T = °°) . For a sufficiently low stock price, it will be advantageous

to exercise the put. Define C to be the largest value of the stock such that

the put holder is better off exercising than continuing to hold it. For

the perpetual put, (48) reduces to the ordinary differential equation,

(49) l/2a^S^G^^ + rSG^ - rG = 0,

which is valid for the range of stock prices C £ S <^ «>. The boundary con-

ditions for (49) are:

(49a) G(»,oo;E) = 0,

(49b)
G(C,co;E) = E - C, and

(49c) choose C so as to maximize the value of the option, which follows

from the maximizing behavior arguments of the previous section.

From the theory of linear ordinary differential equations, solu-

tions to (49) involve two constants, a^ and a„ . Boundary conditions (49a),

(49b), and (49c) will determine these constants along with the unknown

lower-bound, stock price, C. The general solution to (49) is

(50) G(S,°o;E) = a^S + a„S~^,
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2
where y = 2r/o > 0. (49a) requires that a = 0, and (49b) requires that

a^ = (E-C)C'. Hence, as a function of C,

(51) G(S,«';E) = (E-C)(S/C)"^.

To determine C, we apply (49c) and choose that value of C which maximizes

(51), i.e., choose C = C such that 3G/3C = 0. Solving this condition, we

have that C = yE/(1-Hy), and the put option price is,

(52) G(S,oo;E) = --|^ [(l+Y)S/YEf

.

*
The Samuelson "high-contact" boundary condition, G^ (C ,°°;E) = -1,

as an alternative specification of boundary condition (49c), can be veri-

A
fied by differentiating (52) with respect to S and evaluating at S = C .

Figure 3. illustrates the American put price as a function of the stock

price and time to expiration.

IV. Valuating the "Down-and-out" call option . As a second ex-

ample of an application of the model to other types of options, we con-

sider the rational pricing of a new type call option called the "down-and-

39
outer." This option has the same terms with respect to exercise price,

anti-dilution clauses, etc., as the standard call option, but with the

additional feature that if the stock price falls below a stated level, the

option contract is nullified^ i.e., the option becomes worthless. Typi-

cally, the "knock-out" price is a function of the time to expiration,

increasing as the expiration datenears.

Let f(S,T;E) be the value of an European "down-and-out" call

option, and B[t] = bEexp[-riT] be the "knock-out" price as a function of

time to expiration where it is assumed that ri >^ and <^ b _< 1. f will
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satisfy the fundamental partial differential equation,

(53) l/2a^S^f^^ + rSf^ _ rf - f^ = 0,

subject to the boundary conditions,

(53a) f(B[T],T;E) =

(53b) f(S,0;E) = Max[0,S-E].

Note: if B(t) = 0, then (53) would be the equation for a standard European

call option.

2
Make the change in variables, x - log[S/B[T]]; T = a T;

2 2 2 2
H(x,T) = exp[ax + YT]f (S,T;E)/E where a = [r - n - a /2]/a and y = r + a /2.

Then, by substituting into (53), we arrive at the equation for H,

(54) ^/2H^1 - H^ =

subject to

(54a) H(0,T) =

(54b) H(x,0) = e^^ax[0,be^ - 1],

which is a standard, semi-infinite boundary value problem to be solved by

41
separation of variables or fourier transforms.

Solving (54) and substituting back, we arrive at the solution

for the "down-and-out" option,

(55) f(S,T;E) = [S erfc(h^) - E. •"'''^erf c (h^) ] /2

- (S/B[T])"'^[B[T]erfc(h2) - (S/B[t] )Ee"''^erf c (h^) ] /2 ,

where h^ E - [log(S/E) + (r + a^/2)T] //2a^T, h^ = - [log(S/E) + (r - a^/2)T]

/v^O^, h^ E - [21og(B[T]/E) - log(S/E) + (r + a^/2)T] //2a^T, h^ = - [21og(B[T] /e:

- log(S/E) + (r - a^/2)T]//2a^T, and 6 E 2(r -n)/a^. Inspection of (55)

and (21) reveals that the first bracketed set of terms in (55) is the

value of a standard call option, and hence, the second bracket is the "dis-

count" due to the "down-and-out" feature.
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To gain a better perspective on the qualitative differences

between the standard call option and the "down-and-outer ," it is useful

to go to the limit of a perpetual option where the "knock-out" price is

constant (i.e. n = 0) . In this case, (53) reduces to the ordinary differ-

ential equation

(56) l/2a^S^f" + rSf - rf =

subject to

(56a) f(bE) =

(56b) f(S) < S,

where primes denote derivatives and f(S) is short for f (S,°°;E) . By standard

methods, we solve (56) to obtain

(57) f(S) = S - bE(S/bE)"^

2
where y E 2r/a . Remembering that the value of a standard perpetual call

option equals the value of the stock, bE(S/bE) can be interpreted as

the "discount" for the "down-and-out" feature. Both (55) and (57) are

homogeneous of degree one in (S,E) as are the standard options. Further,

it is easy to show that f(S) >^Max[0,S - E ], and although a tedious exer-

cise, it also can be shown that f(S,-i;E) >_Max[0,S - E] . Hence, the

option is worth more "alive" than "dead," and therefore, (55) and (57) are

the correct valuation functions for the American "down-and-outer."

From (57), the elasticity of the option price with respect to

the stock price ( Sf '(s)/f(S)) is greater than one, and so it is a "levered"

security. However, unlike the standard call option, it is a concave

function of the stock price, as illustrated in figure 4.
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X. Valuating a callable warrant . As our third and last ex-

ample of an application of the model to other types of options, we con-

sider the rational pricing of a callable American warrant. Although war-

rants are rarely issued as callable, this is an important example because

the analysis is readily carried over to the valuation of other types of

securities such as convertible bonds which are almost always issued as

callable.

We assume the standard conditions for an American warrant ex-

cept that the issuing company has the right to ("call") buy back the

warrant at any time for a fixed price. Because the warrant is of the

American type, in the event of a call, the warrant holder has the option

of exercising his warrant rather than selling it back to the company at

the call price. If this occurs, it is called"forced conversion," because

the warrant holder is "forced" to exercise, if the value of the warrant

exercised exceeds the call price.

The value of a callable warrant will be equal to the value of

an equivalent non-callable warrant less some "discount." This discount

will be the value of the call provision to the company. One can think of

the callable warrant as the resultant of two transactions: the company

sells a non-callable warrant to an investor and simultaneously, purchases

from the investor an option to either "force" earlier conversion or to

retire the issue at a fixed price.

Let F(S,t;E) be the value of a callable American warrant;

H(S,T;E) the value of an equivalent non-callable warrant as obtained from

equation (21), C(S,t;E) the value of the call provision. Then H = F + C.

F will satisfy the fundamental partial differential equation.
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(58) l/2a^S^F^^ + rSF^ - rF - F^ =

for £ S <^ S" and subject to

(58a) F(0,T;E) = 0,

(58b) F(S,0;E) = Max[0,S - E]

(58c) F(s",t;E) = Max[K,s'-E],

Where K is the call price and S is the (yet to be determined) level of the

stock price where the company will call the warrant.

Note: unlike the case of "voluntary" conversion of the warrant because

of unfavorable dividend protection analyzed in section VII, S is not the

choice of the warrant owner, but of the company, and hence will not be

selected to maximize the value of the warrant.

Because C = H - F and H and F satisfy (58), C will satisfy

(58) subject to the boundary conditions,

(58a') C(0,t;E) =

(58b') C(S,0;E) =

(58c') C('s,t;E) = H(s',t;E) - Max[K,s' - E] .

Because S is the company's choice, we append the maximizing condition

that S be chosen so as to maximize C(S,t;E) making (58) a well-posed prob-

lem. Since C = H - F and H is not a function of S, the maximizing condition

on C can be rewritten as a minimizing condition on F.

In general, it will not be possible to obtain a closed-form

solution to (58). However, a solution can be found for the perpetual war-

rant. In this case, we know that H(S,t;E) = S, and (58) reduces to the

ordinary differential equation

(59) l/2a^S^C " + rSC - rC =
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for £ S £ S and subject to

(59a) C(0) =

(59b) C(S') = S" - MaxLK.s" - E]

(59c) Choose S so as to maximize C,

where C(S) is short for C(S,°°;E) and primes denote derivatives. Solving

(59) and applying (59a) and (59b), we have that

(60) C(S) = (1 - Max[K/"s, 1 - E/"S])S.

Although we cannot apply the simple calculus technique for finding the

maximizing S, it is obviously S = K + E, since for S < K + E, C is an

increasing function of S and for S > K + E, it is a decreasing function.

Hence, the value of the call provision is

(61) C(S) = (^)S,

and because F = H - C, the value of the callable perpetual warrant is

(62) F(S) = (^)S.

XI. Conclusion . It has been shown that a B-S type model can

be derived from weaker assumptions than in their original formulation.

The main attractions of the model are: (1) the derivation is based on

the relatively weak condition of avoiding dominance; (2) the final formula

is a function of "observable" variables; (3) the model can be extended in

a straightforward fashion to determine the rational price of any type

option.

The model has been applied with some success to empirical in-

vestigations of the option market by Scholes [40] and to warrants by

Leonard [22]

.

As suggested by Black and Scholes [4] and Merton [29], the

model can be used to price the various elements of the firm's capital
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structure. Essentially, under conditions when the Modigliani-Miller

theorem obtains, we can use the total value of the firm as a "basic"

security (replacing the common stock in the formulation of this paper)

and the individual securities within the capital structure (e.g., debt,

convertible bonds, common stock, etc.) can be viewed as "options" or "con-

tingent claims" on the firm and priced accordingly. So, for example, one

can derive in a systematic fashion a risk-structure of interest rates as

a function of the debt-equity ratio, the risk-class of the firm, and

the risk-less (in terms of default) debt rates.

Using the techniques developed here, it should be possible to

develop a theory of the term structure of interest rates along the lines

of Cootner [10] and Merton [29]. The approach would also have application

in the theory of speculative markets.
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Footnotes

* The paper is a substantial revision of sections of Merton [25]

and [29]. I am particularly grateful to Myron Scholes for read-

ing an earlier draft and his comments. I have benefited from

discussion with P. A. Samuelson and F. Black. All errors remain-

ing are mine. Aid from the National Science Foundation is grate-

fully acknowledged.

1. See the bibliography for a substantial, but partial, listing of

papers

.

2. See Black and Scholes [4] and Merton [29].

3. This section is based on Merton [25] cited in Samuelson and Merton

[37, p. 43, footnote 6].

4. See Samuelson and Merton [37, p. 26] for a discussion of "incipient"

analysis. Essentially, the incipient price is such that a slightly

higher price would induce a positive supply. The term "bucket

shop" was coined in oral conversation by Paul Samuelson based on the

(now illegal) 1920 's practice of side-bets on the stock market.

Myron Scholes has pointed out that if a company sells a warrant

against stock already outstanding (not just authorized) , then the

incipient analysis is valid as well. E.g., Amerada Hess selling

warrants against shares of Louisiana Land and Exploration stock it

owns and City Investing selling warrants against shares of General

Development Corporation stock it owns.

5. See Modigliani and Miller [31, p. 427] for a definition of "symmetric

market rationality."

6. It is a bit of a paradox that a perpetual warrant with a positive

exercise price should sell for the same price as the common stock

(a "perpetual warrant" with a zero exercise price), and, in fact,

the few such outstanding warrants do not sell for this price. How-

ever, it must be remembered that one assumption for the theorem to

obtain is that no payouts to the common stock will be made over the

life of the contract which is almost never true in practice. See

Samuelson and Merton [37, p. 30-31] for further discussion of the

paradox.
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8. Although theorem IV is usually assumed to be a property which
always holds for warrants, examples can be found where the dis-
tribution of future returns of the common stock are sufficiently
dependent on the level of stock price, to cause perverse
local concavity.

9. For any particular function, F(S,T;E), there are many other adjust-
ments which could leave value the same. However, the adjustment
suggestion of theorem V is the only one which does so for every
such function. In practice, this is the adjustment mechanism used

to protect warrants against stock-splits.

10. By Taylor series approximation, we can compute the loss to the

warrant holder of the standard adjustment for dividends: namely,

F(S-d,T;E-d) - F(S,T;E) = -d F^(S,T;E) - d F^(S,T;E) + o(d)

= - [F(S,T;E) - (S-E)F (S,T;E)](d/E) + o(d), by the first-degree

homogeneity of F in (S,E). Hence, to a first approximation, for
S=E, the warrant will lose (d/S) percent of its value by this adjust-

ment. Clearly, for S > E, the percentage loss will be smaller and

for S < E, it will be larger.

11. The distinction is made between knowing future dividends and divi-
dend policy. With the former, one knows, currently, the actual
amounts of future pajrments while, with the latter, one knows the

conditional future payments, conditional on (currently unknown)

future values, such as the stock price.

12. The interpretation of (12) is similar to the explanation given

for (11). Namely, if the losses from dividends are smaller than

the gains which can be earned risk-lessly, from investing the

extra funds required to exercise the warrant and hold the stock,

then the warrant is worth more "alive" than "dead."

13. See p. 25-26, especially equation (42). Samuelson had in mind

small, discrete-time intervals, while in the context of the cur-
rent application, the intervals would be large. Chen [7] also

using this recursive relationship in his empirical testing of the

Samuelson model.

14. See, for example. Black and Scholes [4] and Stoll [43].

15. While such adjustments for stock or cash payouts add to the value
of a warrant or call option, the put option owner would prefer
not to have them since lowering the exercise price on a put de-
creases its value. For simplicity, the effects of payouts are not
considered, and it is assumed that no dividends are paid on the
stock, and there are no exercise price changes.
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16. The borrowing rate is the rate on a x-year, non-callable, dis-

counted loan. To avoid arbitrage, P'(t) £P(t).

17. Due to the existent market structure, (15) must hold for the

stronger reason of arbitrage. The portfolio did not require

short-sales and it is institutionally possible for an investor

to issue (sell) call options and re-invest the proceeds from the

sale. If (15) did not hold, an investor, acting unilaterly, could

make immediate, positive profits with no investment and no risk.

18. In this case, we do not have the stronger condition of arbitrage

discussed in footnote 17 because the portfolio requires a short-

sale of shares, and, under current regulations, the proceeds

cannot be re-invested. Again, inteirmediate values of the port-

folio are not examined because the put option is European.

19. This is an important result because the expected return is not

directly observable and estimates from past data are poor because

of non-stationarity. It also implies that attempts to use the

option price to estimate expected returns on the stock or risk-

preferences of investors are doomed to failure. (E.g., see

Sprenkle [42]).

20. This will occur only if: (1) the objective returns on the stock

are log-normally distributed; (2) the investor's utility function

is iso-elastic (i.e., homothetic indifference curves); (3) the

supplies of both options and bonds are at the incipient level.

21. See Merton [30] for a brief description of the relationship be-

tween the Samuelson and B-S models.

22. Although the derivation presented here is based on assumptions

and techniques different from the original B-S model, it is in

the spirit of their formulation, and yields the same formula when

their assumptions are applied

23. The assumptions of unrestricted borrowing and short-selling can

be weakened and still have the results obtain by splitting the

created portfolio of the text into two portfolios: one containing

the common stock and the other containing the warrant plus a long

position in bonds. Then, as was done in section II, if we accept

Assumption I, the formulae of the current section follow immediately.

24. For a general descr^iption of the theory of stochastic differential

equations of the Ito type, see McKean [24] and Kushner [21]. For

a description of their application to the consumption-portfolio prob-

lem, see Merton [26] and [27]. Briefly, Ito processes follow im-

mediately from the assumption of a continuous-time stochastic process

which results in continuous price changes (with finite moments)

and some level of independent increments. If the process for price
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changes were functions of stable paretian distributions with

Infinite moments, it is conjectured that the only equilibrium

value for a warrant would be the stock price itself, independent

of the length of time to maturity. This implication is grossly
inconsistent with all empirical observations.

25. The reader should be careful to note that it is assumed only that

the unanticipated returns on the bonds are not serially correlated.

Cootner [10] and others have pointed out that since the bond price

will equal its redemption price at maturity, the total returns over

time cannot be uncorrelated. In no way does this negate the speci-

fication of (24) although it does imply that the variance of the

unanticipated returns must be a function of time to maturity. An

example to illustrate that the two are not inconsistent can be

found in Merton [29]. Suppose that bond prices for all maturities

are only a function of the current (and future) short-term in-

terest rates. Further, assume that the short-rate, r, follows a

Gauss-Wiener process with (possibly) some drift, i.e. dr = adt + gdz,

where a and g are constants. Although this process is not realistic

because it implies a positive probability of negative interest

rates, it will still illustrate the point. Suppose that all bonds

are priced so as to yield an expected rate of return over the next

period equal to r (i.e., a form of the expectations hypothesis).

Then,

and

2 ^-^
P(T;r) = exp[-rT -

f T + ^—^ ]

dP
P

= rdt - gTdz.

By construction, dz is not serially correlated and in the notation

of (24), 6(T) = -gT.

26. This assumption is much more acceptable than the usual homogeneous

expectations. It is quite reasonable to expect that investors may

have quite different estimates for current (and future) expected

returns due to different levels of information^ techniques of ana-

lysis, etc.. However, most analysts calculate estimates of variances

and covariances in the same way: namely, by using previous price

data. Since all have access to the same price history, it is also

reasonable to assume that their variance-covariance estimates may

be the same.

27. Ito's Lemma is the stochastic-analog to the fundamental theorem of

the calculus because it states how to differentiate functions of

Wiener processes. For a complete description and proof, see McKean

[24]. A brief discussion can be found in Merton [27].
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28. See Merton [26] or [27].

29. "Arbitrage" is used in the qualified sense that the distributional

and other assumptions are known to hold with certainty. A weaker

form would say that if the return on the portfolio is non-zero,

either the option or the common stock would be a dominated

security. See Samuelson [38] or [39] for a discussion of this

distinction.

30. For a separation of variables solution, see Churchill [8, p. 154-

156], and for the transform technique, see Dettman [11, p. 390].

Also see McKean [23].

31. The tables could also be used to evaluate warrants priced by the

Sprenkle [42] formula.

32. See Merton [29] for a discussion of necessary and sufficient con-

ditions for a Sharpe-Lintner-Mossin type model to obtain in an

intertemporal context. The sufficient conditions are rather re-

strictive.

33. If most of the "friction-less" market assumptions are dropped, it

may be possible to show that, by substituting current institutional

conditions, (38) and (40) will give lower bounds for the warrant's

value

.

34. In the special case when interest rates are non-stochastic, the

variance of the stock price return can be a function of the price

level and the derivation still goes through. However, the resulting

partial differential equation will not have a simple closed-form

solution.

35. This point is emphasized in a critique of Thorp and Kassouf's [45]

"sure-thing" arbitrage techniques by Samuelson [38] and again, in

Samuelson [39, footnote 6].

36. Let f(x,c) be a dif ferentiable function, concave in its second argu-

ment, for £ X £ c. Require that f(c,c) = h(c), a dif ferentiable

function of c^. Let c = c* be the c which maximizes f , i.e.

f2(x,c*) =

where subscripts denote partial derivatives. Consider the total

derivative of f with respect to c along the boundary x = c. Then,

df/dc = dh/dc = f^(c,c) + f2(c,c).

For c = c*, f2 = 0. Hence, f2^(c*,c*) = dh/dc. In the case of the

text, h = c - E, and the "high-contact" condition, f^(c*,c*) = 1,

is proved.
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37. For D = pS, the solution to (44) for the European warrant is

W = e"^[S$(d^) - Ee'^^'^^Cd^)]

where $, d]^, and d2 are as defined in (21). For large S,

W ~ e-P'^[S-Ee-^"]

which will be less than (S-E) for large S and p > 0. Hence, the

American warrant can be worth more "dead" than "alive."

38. Make the change in variables: Z = 6/S and

h(Z)
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