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Abstract

Although human tumours are shaped by the genetic evolution of cancer cells, evidence also 

suggests that they display hierarchies related to developmental pathways and epigenetic programs 

in which cancer stem cells (CSCs) can drive tumour growth and give rise to differentiated 

progeny1. Yet, unbiased evidence for CSCs in solid human malignancies remains elusive. Here we 

profile 4,347 single cells from six IDH1 or IDH2 mutant human oligodendrogliomas by RNA 

sequencing (RNA-seq) and reconstruct their developmental programs from genome-wide 

expression signatures. We infer that most cancer cells are differentiated along two specialized glial 

programs, whereas a rare subpopulation of cells is undifferentiated and associated with a neural 

stem cell expression program. Cells with expression signatures for proliferation are highly 

enriched in this rare subpopulation, consistent with a model in which CSCs are primarily 

responsible for fuelling the growth of oligodendroglioma in humans. Analysis of copy number 

variation (CNV) shows that distinct CNV sub-clones within tumours display similar cellular 

hierarchies, suggesting that the architecture of oligodendroglioma is primarily dictated by 

developmental programs. Subclonal point mutation analysis supports a similar model, although a 

full phylogenetic tree would be required to definitively determine the effect of genetic evolution on 

the inferred hierarchies. Our single-cell analyses provide insight into the cellular architecture of 

oligodendrogliomas at single-cell resolution and support the cancer stem cell model, with 

substantial implications for disease management.

Intra-tumoural heterogeneity contributes to therapy failure and cancer progression1. 

Although branched genetic evolution of cancer cells is a key determinant of tumour 

heterogeneity, non-genetic programs such as those associated with the self-renewal of tissue 

stem cells and their differentiation into specialized cell types contribute further to tumour 

functional heterogeneity. In human gliomas, candidate CSCs have been functionally isolated 

in high-grade (WHO grade III–IV) lesions2. However, functional approaches such as in vivo 
orthotopic xenotransplantation in mice or in vitro sphere formation assays have generated 

controversy, as they identify candidate CSCs through selection in xenogeneic environments 

that are very different from the native tumour milieu and only provide limited genetic 

characterization of putative CSCs. In addition, it remains unknown if gliomas contain CSCs 

early in their development—as grade II lesions—a question central to our understanding of 

the initial steps of gliomagenesis3. Thus, it is critical to develop a framework that allows the 

analysis of cellular programs at single-cell resolution and across different genetic clones in 

human tumours in situ at each stage of clinical progression. We focused on 

oligodendroglioma, an incurable glioma characterized by mutations in IDH1 or IDH2 and 

co-deletion of chromosome arms 1p and 19q4. We performed single-cell RNA-seq5 (scRNA-

seq) from six untreated grade II oligodendrogliomas, in which IDH1 or IDH2 mutation and 

1p/19q co-deletion were confirmed (Extended Data Fig. 1a–c). Overall, we analysed 4,347 

cells that passed quality controls (Methods; Extended Data Fig. 1d). Three tumours were 

analysed more deeply (MGH36, MGH53 and MGH54, with analysis of 791 to 1,229 cells 
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per tumour) and three (MGH60, MGH93 and MGH97) were profiled at medium depth (430 

to 598 cells analysed).

We distinguished malignant from non-malignant cells by estimating CNV from the average 

expression of genes in large chromosomal regions within each cell6 (Fig. 1a; Methods). 

Each tumour contained a large majority of cells with the 1p/19q co-deletion, as well as some 

cases of tumour-specific CNVs, which were validated by fluorescence in situ hybridization 

(FISH) and by whole-exome sequencing (WES) (Fig. 1a and Extended Data Fig. 1c). In two 

tumours (MGH36 and MGH97), CNV analysis identified two sub-clones (Fig. 1a, b).

Another 303 cells lacked detectable CNVs and clustered by gene expression into subsets that 

expressed microglia and mature oligodendrocyte markers, respectively (Extended Data Fig. 

2a). There was significant variation between the microglia cells, with a set of pro-

inflammatory cytokines (IL1A, IL1B, IL8 and TNF), chemokines (CCL3, CCL4) and early 

response genes coordinately expressed by ~ 80% of the microglia (Extended Data Fig. 2b). 

This program differs from canonical macrophage M1 and M2 responses7, suggesting an 

unknown microglia program that may be glioma-specific.

We next examined cancer cell heterogeneity from the three tumours with the largest cell 

numbers. A combined principal component analysis (PCA) (Methods) identified two 

prominent groups of cells, corresponding to low and high PC1 scores (Fig. 1c) and 

expressing distinct lineage markers of astrocytes and oligodendrocytes, respectively. These 

results were highly consistent across all six tumours, and were not accounted for by 

technical or batch effects (Extended Data Fig. 2c–f and Supplementary Note 1). In each 

tumour, cells with high PC1 scores were strongly associated with the high expression of 137 

genes, including oligodendrocytic markers (for example, OLIG1, OLIG2, OMG), and with 

the low expression of 128 genes, including astrocytic markers (for example, APOE, 

ALDOC, SOX9) (Fig. 1d, e and Supplementary Table 1)8,9. Cells with low PC1 scores had 

the opposite patterns of expression. This suggests that oligodendrogliomas are primarily 

composed of two subpopulations of glial cells, and this mirrors the histopathology4.

Cells with high PC2 and PC3 scores had intermediate PC1 scores (Fig. 1c and Extended 

Data Fig. 2c, e), suggesting a lack of differentiation, and prompting us to explore additional 

programs. A total of 63 genes were associated with high PC2 and PC3 (Fig. 2a, 

Supplementary Table 1 and Methods), and several lines of evidence suggest that they 

represent a ‘stemness’ program. The 20 highest-ranking genes include SOX4, SOX11 and 

SOX2, neurodevelopmental transcription factors critical to neural stem cells and glioma 

CSCs10–12. Additional signature genes with important roles in neurogenesis and in glioma 

CSCs included NFIB, ASCL1, CHD7, CD24, BOC and TCF4 (refs 6, 10–14). Similar 

results were obtained by hierarchical clustering, which showed a distinct cluster of cells 

preferentially expressing PC2- and PC3-associated genes (Extended Data Fig. 3a, b). Several 

of these genes were identified by scRNA-seq in primary glioblastoma CSCs (Extended Data 

Fig. 3c, P = 1.5 × 10−4, hypergeometric test). Expression of PC2- and PC3-associated 

regulators was highest in prenatal human brain and dropped significantly after birth, 

suggesting a role in early neural development (Allen Brain Atlas15, Fig. 2b, P = 8 × 10−18, t-
test). Similarly, PC2- and PC3-associated genes were preferentially expressed in single cells 
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from fetal human brain (P = 0.006, hypergeometric test)16. On the basis of these lines of 

evidence, we separated cells with intermediate PC1 values into ‘undifferentiated’ (low PC2 

and PC3) and ‘stem/progenitors’ (high PC2 and PC3) cells (Fig. 2a).

Oligodendrogliomas are thought to arise from transformation of oligodendrocyte progenitor 

cells (OPCs)17. However, PC2 and PC3 genes were not preferentially expressed in OPCs; 

instead, they were preferentially expressed in cells of neuronal lineage9,18 (Extended Data 

Fig. 3d) and upregulated upon activation of tri-potent mouse neural stem cells19 (NSCs) 

(Fig. 2c, Extended Data Fig. 3e; P = 3 × 10−6, t-test).

To further examine if the stemness program is associated with tri-potent stem/progenitor 

cells, we profiled human neural progenitor cells (NPCs) by scRNA-seq (Extended Data Fig. 

4a–d). PCA of the NPC profiles identified an expression program highly similar to the PC2 

and PC3 associated program of tumour cells (Fig. 2c, Extended Data Figs 3f and 4e, f and 

Supplementary Table 2; P = 2 × 10−35, t-test). Thus, a common program is shared by subsets 

of putative oligodendroglioma stem cells and normal NPCs and NSCs. Together, our 

analysis reveals three main expression patterns recapitulating oligodendrocytic and 

astrocytic differentiation, and stem/progenitor programs of early neural development.

To assign a cellular state to each tumour cell precisely, we defined differentiation and 

stemness scores (Methods). Plotting these scores across the cells of all six tumours revealed 

similarity to normal development (Fig. 2d), with a transition from stem/progenitor programs 

into differentiation along two glial lineages. Notably, the same architecture was observed in 

each of the six tumours and also found when tested with a different method for scRNA-seq 

(Fig. 2e, Extended Data Fig. 5a, e, Methods). Statistical analysis of the lineage scores 

suggests the existence of intermediate states for each lineage (Extended Data Fig. 5c and 

Supplementary Note 2).

To assess how tumour cell proliferation and self-renewal may relate to developmental 

programs, we next scored each cell for the expression of signatures for the G1/S and G2/M 

phases (Methods)20,21. We found a small proportion of cells in each tumour (1.5–8%) that 

were proliferating, consistent with Ki-67 staining, and we estimated the cell-cycle phase of 

proliferating cells (Fig. 3a, Extended Data Fig. 6a–c and Supplementary Table 3). Almost all 

proliferating cancer cells were confined to the stem/progenitor and undifferentiated 

subpopulation of the tumour (Fig. 3b, c, Extended Data Fig. 6d and Supplementary Table 3), 

suggesting that this is the compartment fuelling the growth of oligodendroglioma in humans. 

We confirmed these patterns in tumours by both RNA in situ hybridization and 

immunohistochemistry with markers of astrocytes (GFAP and APOE), oligodendrocytes 

(OMG), stem/progenitor cells (SOX4, CCND2) and cell proliferation (Ki-67) in tissue 

staining across the original six tumours and in a validation cohort of ten additional tumours 

(Fig. 3d, Extended Data Figs 5d and 8c and Supplementary Table 3). Additionally, there is a 

strong correlation between our cell-cycle and stem/progenitor signatures across 69 bulk 

oligodendroglioma samples in The Cancer Genome Atlas22 (Extended Data Fig. 6e). Finally, 

the enrichment of cell-cycle signatures among stem/progenitor and undifferentiated cells 

was even more striking for cells inferred to be in G2/M phases compared to those in G1 

phase (Extended Data Fig. 6f), possibly reflecting a short G1 phase in stem cells23.
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Although cycling cells were highly enriched among stem/progenitors, their frequency was 

low (~ 10%) even in that compartment; accordingly, the PC2 and PC3 program did not 

include a signature for the cell cycle, except for CCND2 (Fig. 2a), a gene controlling cell 

cycle and self-renewal of glioma CSCs24. CCND2 was highly expressed both in cycling 

cells and in non-cycling stem/progenitor cells (Extended Data Fig. 7a, b), consistent with 

CCND2 priming cells for the cell cycle23. Interestingly, stem/progenitor tumour cells 

preferentially express CCND2, whereas differentiated cells express CCND1 and CCND3, 

mirroring their expression patterns in normal neural development (Extended Data Fig. 7c). 

Furthermore, CCND2 was upregulated in activated mouse NSCs before these cells enter the 

cell cycle (Extended Data Fig. 7d). These results suggest CCND2 has a role in both normal 

and malignant stem cell programs.

Finally, we explored the role of genetic events in shaping cellular identity, devising two 

approaches to obtain genetic information from scRNA-seq and classify cells into tumour 

subclones. First, we used the inferred CNVs in each cell (Fig. 1a, b). Second, we defined 

subclonal point mutations from bulk DNA whole-exome sequencing, using ABSOLUTE25, 

and identified these mutations in the RNA-seq reads of individual cells, albeit with limited 

sensitivity (Methods).

In both analyses, we found genetic subclones that span all three of the compartments, 

although the genetic information obtained with these two approaches is partial and is not 

sufficient to reconstruct a full phylogenetic tree. We observed the same three sub-population 

architectures in distinct CNV subclones in MGH36 and in MGH97 (Fig. 1b), with cycling 

stem/progenitor cells and two lineages of differentiated non-cycling cells (Fig. 4a and 

Extended Data Fig. 8). Similarly, examining the distribution of expression states for cells 

harbouring subclonal point mutations, we found that 22 subclonal point mutations (Extended 

Data Fig. 9) and a subclonal loss-of-heterozygosity event (Extended Data Fig. 10) are not 

significantly restricted to particular developmental states and often span all three states. 

Thus, the three compartments exist in different genetic subclones.

Although most subclonal mutations were of unknown functional relevance, we identified a 

subclonal mutation of CIC (~ 30% frequency in MGH53), a known tumour suppressor in 

oligodendroglioma26. RNA-seq reads detected the CIC mutation only in 7 MGH53 cells. We 

therefore designed a mutation-sensitive qPCR testing approach and were able to identify 28 

mutant CIC cells (including all cells detected by RNA-seq) and 27 wild-type CIC cells (Fig. 

4c). Notably, we identified a signature of expression changes between the mutant CIC and 

wild-type cells (Fig. 4d, Supplementary Table 5), including increased expression of ETV1 
and ETV5 (ref. 27) in mutant CIC cells8. Despite these specific transcriptional changes, 

mutant CIC and wild-type CIC cells spanned all three subpopulations (Fig. 4c). Thus, many 

subclonal mutations can accrue within the hierarchy (but not drive it), although without a 

comprehensive phylogenetic reconstruction, we cannot categorically rule out a genetic 

influence.

Although CNV subclones in MGH36 and MGH97 included cells from all three tumour 

compartments, they differed in their relative distributions (Fig. 4a, b and Extended Data Fig. 

8). Clone 1 of MGH36 displayed a higher frequency of stem/progenitors, whereas clone 2 
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displayed higher frequency of astrocyte-like cells (P < 10−9, Fisher’s exact test). Similarly, 

clone 2 of MGH97 contained a higher frequency of stem/progenitors (P < 10−16). 

Furthermore, the frequencies of cycling cells were higher in clone 1 of MGH36 and clone 2 

of MGH97, consistent with their increased frequencies of stem/progenitor cells. Thus, 

genetic evolution may modulate patterns of self-renewal and differentiation.

In conclusion, our results highlight the fact that there is a subpopulation of undifferentiated 

cells in oligodendroglioma that possess stem cell expression signatures and enriched 

proliferative potential. Thus, the most primitive and undifferentiated population of cancer 

cells might be the main source of proliferating cells in oligodendroglioma. Although we 

cannot rule out an influence from genetic mutations, many subclonal events span all three 

states, consistent with this architecture being primarily dictated by non-genetic 

developmental programs. A caveat of our work is that because grade II oligodendroglioma 

cells do not grow in xenotransplantation, we could not functionally validate the stem/

progenitor program, and instead we infer its function from the inverse association with 

differentiation programs, the enriched proliferation and the similarity to normal stem/

progenitors. Our single-cell profiles suggest that oligodendroglioma stem/progenitor cells 

more closely resemble a primitive tri-potent neural cell type, such as NSC or NPC than a 

more committed glial progenitor like an OPC17,28. By providing the genome-wide 

transcriptional signature of cancer stem/progenitor cells in oligodendroglioma, our work 

delineates cellular programs that represent promising targets to affect tumour growth. 

Further studies will be needed to functionally validate our findings, interrogate their 

generality across other glioma subtypes, and investigate opportunities for clinical translation.

Online Content Methods, along with any additional Extended Data display items and 

Source Data, are available in the online version of the paper; references unique to these 

sections appear only in the online paper.

Methods

Data reporting

No statistical methods were used to predetermine sample size. The experiments were not 

randomized. The investigators were not blinded to allocation during experiments and 

outcome assessment

Tumour dissociation

Patients at the Massachusetts General Hospital consented preoperatively to take part in the 

study in all cases following the Institutional Review Board Protocol 1999P008145. Fresh 

tumours were collected at time of resection and the presence of malignant cells was 

confirmed in frozen sections on adjacent, representative pieces of tissue. Fresh tumour tissue 

was minced with a scalpel and enzymatically dissociated using a gentle papain-based brain 

tumour dissociation kit (Miltenyi Biotec). Large pieces of debris were removed with a 100 

μm strainer, and dissociated cells were layered carefully onto a 5 ml density gradient 

(Lympholyte-H, Cedar Lane labs), which was centrifuged at 2,000 r.p.m. for 10 min at room 

temperature to pellet dead cells and red blood cells. The interface containing live cells was 
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saved and used for staining and flow cytometry. Viability was measured using trypan blue 

exclusion, which confirmed > 90% cell viability.

Fluorescence-activated cell sorting

For primary tumour sorting, tumour cells were blocked in 1% bovine serum albumin in 

Hanks buffered saline solution (BSA/HBSS), and then stained first with CD45-Vioblue 

direct antibody conjugate (Miltenyi Biotec) for 30 min at 4 °C. Cells were washed with cold 

PBS, and then resuspended in 1 ml of BSA/HBSS containing 1 μM calcein AM (Life 

Technologies) and 0.33 μM TO-PRO-3 iodide (Life Technologies) to co-stain for 30 min 

before sorting. Fluorescence-activated cell sorting was performed on FACSAria Fusion 

Special Order System (Becton Dickinson) using 488 nm (calcein AM, 530/30 filter), 640 nm 

(TO-PRO-3, 670/14 filter), and 405 nm (Vioblue, 450/50 filter) lasers. Fluorescence-minus-

one controls were included with all tumours, as well as heat-killed controls in early pilot 

experiments, which were crucial to ensure proper identification of the TO-PRO-3 positive 

compartment and ensure sorting of the live cell population. Standard, strict forward scatter 

height versus area criteria were used to discriminate doublets and gate only singlets. Viable 

cells were identified by staining positive with calcein AM but negative for TO-PRO-3. 

Single cells were sorted into 96-well plates containing cold buffer TCL buffer (Qiagen) 

containing 1% β-mercaptoethanol, snap frozen on dry ice, and then stored at − 80 °C before 

whole transcriptome amplification, library preparation and sequencing.

Whole-transcriptome amplification, library construction, sequencing, and processing

Libraries from isolated single cells were generated based on the Smartseq2 protocol (Picelli 

2014) with the following modifications. RNA from single cells was first purified with 

Agencourt RNAClean XP beads (Beckman Coulter) before oligo-dT primed reverse 

transcription with Maxima reverse transcriptase and locked TSO oligonucleotide, which was 

followed by 20 cycle PCR amplification using KAPA HiFi HotStart ReadyMix (KAPA 

Biosystems) with subsequent Agencourt AMPure XP bead purification as described. 

Libraries were tagmented using the Nextera XT Library Prep kit (Illumina) with custom 

barcode adapters (sequences available upon request). Libraries from 384 cells with unique 

barcodes were combined and sequenced using a NextSeq 500 sequencer (Illumina).

We also analysed 96 cells from MGH60 with an alternative protocol that incorporates 

random molecular tags (RMTs, also known us unique molecular identifiers, or UMIs) in 

order to control for PCR amplification bias, as described previously29 and we obtained 

similar results.

Paired-end, 38-base reads were mapped to the UCSC hg19 human transcriptome using 

Bowtie with parameters “-q–phred33-quals -n 1 -e 99999999 -l 25 -I 1 -X 2000 -a -m 15 -S -

p 6”, which allows alignment of sequences with single base changes, such as point mutation 

in the IDH1 gene. Expression values were calculated from SAM files using RSEM v1.2.3 in 

paired-end mode using parameters “–estimate-rspd–paired end -sam -p 6”, from which TPM 

values for each gene were extracted.
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Immunohistochemistry

Haematoxylin and eosin and single antibody staining (GFAP, Ki-67) was done by the 

clinical pathology laboratory at the Massachusetts General Hospital per routine protocol. For 

GFAP and Ki-67 double immunohistochemistry, paraffin-embedded sections were mounted 

on glass slides, deparaffinized in xylene, treated with 0.5% peroxide in methanol, and 

rehydrated. Antigen retrieval was done using sodium citrate-based, heat-induced antigen 

retrieval at pH 6.0. The Dako EnVision G/2 double stain system was used for blocking, 

staining, and development using rabbit anti-Ki67 antibody (Abcam ab15580 at 1:300) and 

mouse anti-GFAP antibody (Dako M0761 at 1:100).

RNA in situ hybridization

Human tissue was obtained from the Massachusetts General Hospital according to an 

Institutional Review Board-approved protocol (1999P008145) and informed consent was 

obtained from all patients. ViewRNA technology (Affymetrix) was used for manual format 

RNA in situ hybridization. Tissue sections mounted on glass slides were stored at − 80 °C 

until they were used for hybridization. Slides were baked at 60 °C for 1 h, then denatured at 

80 °C for 3 min, deparaffinized with Histoclear and ethanol dehydration. RNA targets in 

dewaxed sections were unmasked by treating with pre-treatment buffer at 95 °C for 10 min 

and digested with 1:100 dilution protease at 40 °C for 10 min, followed by fixation with 

10% formalin for 5 min at room temperature. Probe concentrations were 1:40 for both type 1 

(red) and type 6 (blue) probe sets, except that the ApoE probe was used at 1:80 dilution. The 

probe was incubated on sections for 2 h at 40 °C and then washed serially. Affymetrix 

Panomics probes included ApoE (type 6, catalogue number VA6-16904 and type 1, 

catalogue number VA1-18265), OMG (type 1, catalogue number VA1-18161), Sox4 (type 6, 

catalogue number VA6-18162), CCND2 (type 6, catalogue number VA6-18266), Ki-67 (type 

1, catalogue number VA1-11033). Signal was amplified using PreAmplifier mix QT for 25 

min at 40 °C followed by Amplifier mix QT for 15 min at 40 °C, and then signal was 

hybridized with labelled probe at 1:1,000 dilution for 15 min at 40 °C. Colour was 

developed using Fast Blue substrate for Type 6 probes and Fast Red substrate for Type 1 

probes for 30 min at 40 °C. Tissue was counterstained with Gill’s haematoxylin for 25 s at 

room temperature followed by mounting with ADVANTAGE mounting media (Innovex). 

For quantification of compartments by ISH, at least 1,000 cells were counted in 

representative areas of the tumours.

Fluorescent in situ hybridization (FISH)

The probes used in this study consisted of centromeric (CEP) and locus-specific identifiers 

(LSI) probes. CEP probes included: CEP2 (2p11.1-q11.1, spectrum orange), CEP4 (4p11-

q11, spectrum aqua), CEP9 (9p11-q11, spectrum aqua), CEP12 (12p11.1-q11, spectrum 

green), CEP17 (17p11.1-q11.1, spectrum aqua) and Y (Yp11.1-q11.1, spectrum green) all 

obtained from Abbott Molecular, Inc. (Des Plaines, IL). LSI probes were1p36/1q25 and 

19q13/19p13 dual-colour probe set (Abbott), and bacterial artificial chromosome 

RP11-351D16 (10q11.21, spectrum red or green; CHORI, Oakland, CA).

FISH was performed as described previously30. Briefly, 5-μm sections of formalin-fixed, 

paraffin-embedded tumour material were deparaffinized, hydrated, and pretreated with 0.1% 
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pepsin for 1 h. Slides were then washed in 2× saline-sodium citrate buffer (SSC), 

dehydrated, air dried, and co-denatured at 80 °C for 5 min with a three-colour probe panel 

and hybridized at 37 °C overnight using the Hybrite Hybridization System (Abbott). Two 2-

min post-hybridization washes were performed in 2× SSC/0.3%NP40 at 72 °C followed by 

one 1-min wash in 2× SSC at room temperature. Slides were mounted with Vectashield 

containing 4′,6-diamidino-2-phenylindole (Vector, Burlingame, CA, USA). Entire sections 

were observed with an Olympus BX61 fluorescent microscope equipped with a charge-

coupled device camera and analysed with Cytovision software (Applied Imaging, Santa 

Clara, CA).

Human NPC culturing

Human NPCs were dissociated from the subventricular zone of 19 week fetal tissue and 

resulting neurospheres were expanded in a 1:1 mixture of DMEM/F12 and Neurobasal A 

(Invitrogen), supplemented with B27 lacking vitamin A, EGF, FGF, and heparin. Single live 

NPCs were isolated by FACS from a passage 8 culture and sorted into 96-well plates 

containing Buffer TCL (Qiagen) + 1% β-mercaptoethanol. For differentiation assays, NPCs 

were plated in chamber slides coated with poly-d-lysine and laminin, and proliferation 

media was exchanged over a period of 3 days with base media supplemented with either 1% 

FBS, 1% FBS + 60 ng ml−1 T3, or FBS + 100 nM trans-retinoic acid and 10 ng ml−1 NT3. 

Multipotency was confirmed by indirect immunofluorescence after 7 days of differentiation 

with GFAP (Abcam ab53554), Olig2 (Millipore AB9610), and Neurofilament (Aves).

Single-cell RNA-seq data processing

Expression levels were quantified as Ei,j = log2(TPMi,j/10 + 1), where TPMi,j refers to 

transcript-per-million for gene i in sample j, as calculated by RSEM31. TPM values are 

divided by 10, since we estimate the complexity of single-cell libraries in the order of 

100,000 transcripts and would like to avoid counting each transcript ~ 10 times, as would be 

the case with TPM, which may inflate the difference between the expression level of a gene 

in cells in which the gene is detected and those in which it is not detected.

For each cell, we quantified two quality measures: the number of genes for which at least 

one read was mapped, and the average expression level of a curated list of housekeeping 

genes. We then conservatively excluded all cells with either fewer than 3,000 detected genes 

or an average housekeeping expression (E, as defined above) below 2.5. For the remaining 

cells we calculated the aggregate expression of each gene as log2(average(TPMi,1...n)+1), 

and excluded genes with an aggregate expression below 4, leaving a set of 8,008 analysed 

genes. For the remaining cells and genes, we defined relative expression by centering the 

expression levels, Eri,j = Ei,j-average[Ei,1...n]. Centring was performed within each tumour 

separately in order to decrease the impact of inter-tumoural variability on the combined 

analysis across tumours.

CNV estimation

Initial CNVs (CNV0) were estimated by sorting the analysed genes by their chromosomal 

location and applying a moving average to the relative expression values, with a sliding 

window of 100 genes within each chromosome, as previously described6. To avoid 
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considerable impact of any particular gene on the moving average, we limited the relative 

expression values to [− 3,3] by replacing all values above 3 by 3, and replacing values below 

− 3 by − 3. This was performed only in the context of CNV estimation. For visualization 

purposes, in order to include the two chromosomes with fewest analysed genes 

(chromosome 18 and 21 with 105 and 75 genes, respectively), we extended the moving 

average to include up to 50 genes from the flanking chromosomes (for example, the first 

window in chromosome 18 consisted of the last 50 genes of chromosome 17 and the first 50 

genes of chromosome 18, whereas the 51 through 56 windows in that chromosome consisted 

only of chromosome 18 genes). This initial analysis is based on the average expression of 

genes in each cell compared to the other cells and therefore does not have a proper reference 

which is required to define the baseline. However, we detected a cluster of cells that have 

higher values at chromosome 1p and 19q, which we know are deleted in the six tumours, 

and that have consistent ‘CNV patterns’ across the genome, despite the fact that they 

originate from all three tumours. We thus defined these as the non-cancer cells and used the 

average CNV estimate at each gene across these cells as the baseline. The non-cancer cells 

included both microglia and oligodendrocytes, which differed in gene expression patterns 

and therefore also in CNV estimates (for example, the MHC region in chromosome 6 had 

consistently higher values in microglia than in oligodendrocytes and cancer cells). We 

therefore defined two baselines, as the average of all microglia and the average of all 

oligodendrocytes, and based on these the maximal (BaseMax) and minimal (BaseMin) 

baseline at each genomic position. The final CNV estimate of cell i at position j was defined 

as:

Principal component analysis

We performed principal component analysis (PCA) for the relative expression values of all 

cancer cells (as defined by CNV analysis) from the three tumours combined. The covariance 

matrix used for PCA was generated using an approach outlined in ref. 32 to decrease the 

weight of less reliable ‘missing’ values in the data. The basis of this approach is that due to 

the limited sensitivity of single-cell RNA-seq, many genes are not detected in particular cells 

despite being expressed. This is particularly pronounced for genes expressed at low levels, 

and for cells with low library complexity (that is, for which relatively few genes are 

detected), and results in non-random patterns in the data, whereby cells may cluster based on 

their complexity and genes may cluster based on their expression levels, rather than ‘true’ 

co-variation. To mitigate this effect, we assign weights to missing values, such that the 

weight of Ei,j is proportional to the expectation that gene i will be detected in cell j given the 

average expression of gene i and the total complexity (number of detected genes) of cell j.

To further verify that the PCA results are not driven by library complexity, we compared the 

PCA results to those of shuffled data. We iteratively swapped the expression of individual 

genes between pairs of cells with similar complexities, swapping each gene in each cell at 

least once. In that way we shuffled the data and removed the biological clustering, but 
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maintained the distribution of complexities across cells, as well as the distribution of 

expression levels for each gene. PCA over the shuffled data defined the complexity-based 

effect, as evident by a Pearson correlation of 0.96 between the PC1 cell scores and their 

complexities (in the original data this correlation is only 0.41). We then compared PC1 gene 

scores between the original and the shuffled data (Extended Data Fig. 2f). Although PC1 

gene scores of most genes are comparable between the two analyses, the loadings of the 

oligodendrocyte and astrocyte gene sets (Supplementary Table 1) were highly affected. 

Oligodendrocyte genes were originally associated with highly positive PC1 scores, and their 

scores are significantly decreased upon shuffling (97% of the oligodendroglial genes were 

among the 5% genes with the most decreased loadings, P < 10−32); similarly, astrocytic 

genes were originally associated with negative PC1 scores, and their scores are significantly 

increased upon shuffling (all astrocytic genes were among the 5% of genes with the most 

increased loadings, P < 10−32). As a result, none of the genes with highest and lowest PC1 

scores (after shuffling) overlap with our oligodendroglial and astrocytic gene sets. Thus, 

complexity does not account for the association of PC1 with the differentiation programs. 

Similarly, complexity clearly does not account for the PC2 and PC3 stemness program, as 

PC2 cell scores are positively correlated with complexity (R = 0.27), whereas PC3 cell 

scores are negatively correlated with complexity (R = − 0.24) and stemness genes were 

defined as those associated with both PC2 and PC3.

PC1-associated genes and lineage scores

The top correlated genes with PC1 scores (across all tumour cells) were defined as PC1-

associated genes. We focused on the genes with an absolute correlation value above 0.35, but 

note that other thresholds gave similar results (not shown). Of those genes, the subset that 

was differentially expressed by at least threefold between oligodendrocyte (OC) and 

astrocyte (AC) mouse cells9, and for which the two comparisons were consistent (that is, 

PC1-positively correlated genes with higher OC expression, and PC1-negatively correlated 

genes with higher AC expression) were defined as the OC and AC lineage gene sets. 

Lineage scores were then calculated as the average relative expression of the lineage gene 

set minus the average relative expression of a control gene set, that is, Lini,j = 

average[Er(Gj,i)] − average[Er(Gj
cont,i)], in which Lini,j is the score of cell i to lineage j, Gj 

is the gene set for lineage j and Gj
cont is a control gene set for lineage j. The control gene set 

was defined by first binning all 8,008 analysed genes into 25 bins of aggregate expression 

levels and then, for each gene in the lineage gene set, randomly selecting 100 genes from the 

same expression bin. In this way, the control gene set has a comparable distribution of 

expression levels to that of the lineage gene set and the control gene set is 100-fold larger, 

such that its average expression is analogous to averaging over 100 randomly selected gene 

sets of the same size as the lineage gene set. The final lineage score of each cell was defined 

as the maximal score over the two lineages, LINi = max(Lini OC, Lini AC). For visualization 

purposes where the two lineage scores are shown in a single axis, we first assigned random 

scores within (0–0.15) to all cells with LIN < 0, to avoid having many overlapping cells at x 
= 0. Second, we assigned negative scores to the cells with higher AC than OC scores (that is, 

a cell with AC and OC scores of 0.1 and 1, respectively, would be assigned a lineage score 

of 1, wheresa a cell with AC and OC scores of 1 and 0.1 would be assigned a lineage score 

of −1).
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PC2 and PC3 associated genes and stemness scores

Both PC2 and PC3 were associated with intermediate values of PC1 (Extended Data Fig. 2c) 

and therefore with presumably less differentiated cells, and both were correlated with a 

shared set of genes, but distinguished by their correlation with cell ‘complexity’. We 

considered their sum as a potential stemness program. To detect potential stem-related 

genes, we chose the top 100 most positively correlated genes with PC2 + PC3 scores across 

all cancer cells from the three tumours. The 100 candidate genes were then restricted to (1) 

genes that are positively correlated with both PC2 and PC3, which primarily excluded 

ribosomal protein genes that were only correlated with PC2; (2) genes for which the average 

relative expression among the stem-like cells was above average. Stemness scores for each 

cell, stem(i), were then defined as the average relative expression of the stemness gene-set 

(Gstem) minus the average of a control gene set ( ) and minus the lineage score of cell i:

Assignment of cells to four subpopulations: stem/progenitor-like, undifferentiated, OC-like 
and AC-like

Cells were scored for the three programs defined above (two lineage scores and a stemness 

score) and assigned to the subpopulation that corresponds to their highest scoring program, 

if the maximal score was above 0.5 and was higher by 0.5 than the score for the other 

programs. Cells in which the maximal score did not pass these thresholds were assigned to 

the undifferentiated subpopulation, for which we did not detect a specific expression 

program. We note that the expression programs are continuous and thus it is difficult to 

assign every cell to a discrete subpopulation. Nevertheless, most cells are highly biased 

towards one of the three states, and the overall estimates are consistent between analysis of 

single-cell RNA-seq data and tissue staining experiments (Extended Data Fig. 8c and 

Supplementary Table 3). Furthermore, very few cells (~ 1% on average, and 5% at most) 

scored for two programs simultaneously (with the same threshold of 0.5, Supplementary 

Table 3).

Cell cycle analysis

Analysis of single-cell RNA-seq in human (293T) and mouse (3T3) cell lines20, and in 

mouse haematopoietic stem cells21 revealed in each case two prominent cell cycle 

expression programs that overlap considerably with genes that are known to function in 

replication and mitosis, respectively, and that have also been found to be expressed at G1/S 

phases and G2/M phases, respectively, in bulk samples of synchronized HeLa cells33. We 

thus defined a core set of 43 G1/S and 55 G2/M genes that included those genes that were 

detected in the corresponding expression clusters in all four datasets from the three studies 

described above (Supplementary Table 2). As expected, the genes in each of those 

expression programs were highly co-regulated in a small fraction of the oligodendroglioma 

cells, such that some cells expressed only the G1/S or the G2/M programs and other cells 

expressed both programs (Extended Data Fig. 6a). Plotting the average expression of these 

programs revealed an approximate circle (Fig. 3a), which we hypothesize describes the 
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progression along the cell cycle. Putative cycling cells were identified by at least a twofold 

upregulation and a t-test P value < 0.01 for either the G1/S or the G2/M gene set compared 

to the average of all cells. Although we cannot confidently define the regions that 

correspond to each phase of the cell cycle in an automatic way, we manually defined four 

regions in the apparent circle and assigned them to approximate cell cycle phases.

Analysis of whole-exome DNA sequencing data

Output from Illumina software was processed by the Picard processing pipeline to yield 

BAM files containing aligned reads (bwa version 0.5.9, to the NCBI Human Reference 

Genome Build hg19) with well-calibrated quality scores34,35. Sample contamination by 

DNA originating from a different individual was assessed using ContEst36. Somatic single 

nucleotide variations (sSNVs) were then detected using MuTect37. Following this standard 

procedure, we filter sSNVs by (1) removing potential DNA oxidation artefacts38; (2) 

removing events seen in sequencing data of a large panel of ~ 8,000 TCGA normal samples; 

(3) realigning identified sSNVs with NovoAlign (http://www.novocraft.com) and performing 

an additional iteration of MuTect with the newly aligned BAM files. sSNVs were finally 

annotated using Oncotator39. Sample purity and ploidy, as well as Cancer Cell Fraction 

(CCF) of identified sSNVs were determined by ABSOLUTE25. Genome-wide copy-ratio 

profiles were inferred using CapSeg. Read depth at capture targets in tumour samples was 

calibrated to estimate copy ratio using the depths observed in a panel of normal genomes. 

Next, we performed allelic copy analysis using reference and alternate counts at germline 

heterozygous SNP sites.

Mutation calling in single cells

sSNVs that were identified by WES were examined in single-cell RNA-seq data by the 

mpileup command of SAMtools40. The fraction of cells in which we identified these 

mutations was, on average, only 1.3% of the expected fraction estimated by ABSOLUTE. 

This low sensitivity primarily reflects the low coverage of the RNA-seq reads over the 

transcriptome of single cells. Accordingly, sensitivity was correlated with the expression 

levels of the genes that harbour the mutations, and reached 20.4% for the top 10% most 

highly expressed genes. Sensitivity was also affected by heterozygosity and allele-specific 

expression, as in some heterozygote mutant cells we might only sequence the wild-type 

allele.

We used a targeted sequencing approach to increase our sensitivity for three specific 

mutations in MGH54 which were identified by WES but detected in very few cells by 

single-cell RNA-seq. We designed primers flanking these three mutations (in ZEB2, 

EEF1B2 and DNAJC4), PCR-amplified single cell cDNAs (frozen stocks of product from 

the pre-amplification reaction of the Smart-seq2 protocol) and sequenced the amplified 

material. This approach was applied for 1,056 cells from MGH54. Mutant cells were defined 

as those with at least 50 reads that mapped to the mutant allele as defined by WES, and for 

which the fraction of mutant reads was at least 20% of all reads and fivefold higher than the 

overall rate of mutant reads (in order to exclude a low rate of mutant reads due to PCR or 

sequencing errors). The mutations detected by this criteria were highly consistent with those 
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identified from single-cell RNA-seq (P < 10−5, hypergeometric test) and uncovered 19 

additional mutant calls (three for ZEB2, three for EEF1B2 and 13 for DNAJC4).

We next focused on the 23 subclonal mutations for which (1) the estimated clonal fraction 

by ABSOLUTE was at most 60%; (2) at least three cells were identified as harbouring the 

mutation; and (3) at least one cell was identified as having a wild-type allele of the mutant 

gene. For each of those 23 mutations we plotted the lineage and stemness scores of all 

mutant cells to examine their distribution of expression states (Fig. 4 and Extended Data Fig. 

9). Note that for these mutations we detected on average 9.4% of the expected fraction by 

ABSOLUTE.

To estimate the frequency of false-positive errors we defined, for each mutation that is 

detected by WES and analysed by RNA-seq mutation calling, (i) ‘expected mutations’: the 

number of events in which we find the exact mutation reported by WES; and (ii) ‘false 

mutations’, the number of events in which we find a mismatch in the same exact site but to a 

different base than expected by WES (there are 2 such possible bases). This approach 

focuses on the exact genomic context of the real mutations to obtain a reliable estimate of 

the false positive rate. This estimate is half the number of false mutations divided by the 

number of expected mutations (given 4 bases, one of which is wild type, there are two types 

of false mutations but only one type of expected mutations). The result of this analysis was 

an estimated average false positive rate of 0.85%, suggesting that the confidence of each 

detected mutation is, on average, higher than 99%. Accordingly, even in the most extreme 

case (for example, ZEB2) where only a single mutant cell is detected in one of the 

compartments of the hierarchy, we still have a 99% confidence that the mutation is 

represented in that compartment.

Mutation-detecting qPCR and analysis of CIC mutations

To detect CIC mutations in single cells from MGH53, we performed qPCR using 

SuperSelective PCR primers, which are highly specific to single base changes due to a loop-

out sequence adjacent to the mutant base (http://legacy.labroots.com/user/webinars/

details/id/95). The following qPCR primers were designed to target the c.4543 C > T, p.1515 

R > C mutation on CIC cDNA which had been identified as subclonal in MGH53 via whole-

exome sequencing analysis. Wild-type-specific forward primer: 5′-
CCCTCCAAGGTTTGTCTGCAGccattcGAGGTGC-3′; mutant-specific forward primer: 

5′-CCCTCCAAGGTTTGTCTGCAGccattcGAGGTGT-3′; universal reverse primer: 5′-
tcgGGCAGCCTGCATGATCTT-3′.

The specificity of the single cell qPCR primers was validated by two approaches: (1) qPCR 

on artificial templates differing by only the mutant base; and (2) qPCR on cDNA of single 

MGH53 tumour cells for which RNA-seq already detected mutant or wild-type reads. These 

positive control reactions were highly consistent between duplicates and with the mutation 

status as inferred from RNA-seq: qPCR identified 7 out of 7 mutant cells and 12 out of 15 

wild-type cells, while the remaining three cells had no qPCR signal, and therefore all qPCR 

signal was consistent with RNA-seq data. We also took advantage of the fact that CIC is 

located on chr19q which is deleted in MGH53 cancer cells and therefore each cell only 

contains one CIC allele (loss-of-heterozygosity, LOH). Thus, in a single MGH53 cancer 
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cell, we expect evidence of either mutant or wild-type CIC, but not both. Indeed, all cells 

with a signal in the positive control assay showed a difference in Ct values of at least 5 

between mutant and wild-type reactions, consistent with LOH.

cDNA was taken from frozen stocks of product from the preamplification reaction of the 

Smartseq2 protocol. 1 μl from each well of cDNA was used as template for a second round 

of Smartseq2 preamplification and bead purification in order to increase overall signal 

downstream. qPCR was performed with the Fast Plus EvaGreen qPCR Master Mix Low Rox 

(Biotium 31014-1) according to the manufacturer’s instructions with the sole modification 

of adding EDTA to a final reaction concentration of 1.6 mM to enhance primer selectivity. 

Cp ≥ 33 were considered negative signal; Cp < 33 was considered positive signal.

We performed SuperSelective qPCR on cDNA from 467 single MGH53 tumour cells. Of 

these, 61 cells had signal in both replicates for either mutant or wild type primers, but never 

for both. These were used to define 28 mutant CIC cells and 27 wild-type CIC cells, after 

excluding 6 cells which did not pass the single cell RNA-seq quality control filters.

To identify genes regulated by the CIC mutation, we compared the 28 mutant CIC cells and 

27 wild-type CIC cells and identified genes with at least twofold average expression 

difference and P < 0.01 (before correction for multiple hypothesis testing) based both on a 

permutation test and a t-test. To further filter the list of differentially expressed genes we 

also compared the mutant CIC cells to the 671 unresolved cells (in which we did not detect 

signal for either mutant or wild-type alleles by qPCR and by RNA-seq). As the fraction of 

CIC mutants was estimated as 30% by ABSOLUTE, we expect the unresolved cells to be a 

mixture of about one-third mutant CIC cells and about two-thirds wild-type CIC cells, and 

thus CIC-regulated genes should also differ between this mixture and the CIC mutants but to 

a lesser extent; we used a threshold of 1.5-fold difference between the average expression in 

CIC mutants and in unresolved cells. The resulting set of differentially expressed genes is 

given in Supplementary Table 5. We simulated this analysis with 1,000 randomly selected 

sets of cells (to replace the mutant CIC and wild-type CIC cells) and found an average of 

only five upregulated genes by the same criteria, suggesting a false discovery rate lower than 

0.1 for the genes upregulated by the CIC mutation.

Data availability

Data generated for this study are available through the Gene Expression Omnibus (GEO) 

under accession number GSE70630.
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Extended Data

Extended Data Figure 1. Single-cell RNA-seq analysis of human oligodendroglioma samples
a, Experimental workflow. b, Clinical information of the main and validation patient cohorts 

analysed in this study. Asterisk indicates a borderline result of chromosome 1p loss based on 

clinical testing. c, ISH (top left) and FISH (all other panels) in a representative tumour 

(MGH36). All our cases retain ATRX protein expression by ISH (top left) and show loss of 

chromosomes arms 1p (bottom left) and 19q (top right) by FISH. In addition, tumour-

specific CNVs identified by single-cell RNA-seq were confirmed by FISH (for example, loss 

of chromosome 4 in MGH36, bottom right panel). d, Distributions of the total number of 

sequenced paired-end reads per cell (grey) and of paired-end reads that were mapped to the 

transcriptome and used to quantify gene expression (black).
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Extended Data Figure 2. Diversity of expression programs in oligodendroglioma
a, Two populations of non-cancer cells identified in oligodendroglioma. Selected genes that 

are differentially expressed among the two populations of non-cancer cells that lack CNVs 

(Fig. 1b, top), including markers of microglia (top) and oligodendrocytes (bottom). b, 

Expression programs in microglia cells from three tumours. The heat map shows relative 

expression of genes (rows) across microglia cells (columns). Above the dashed line are 

microglia markers expressed in all microglia cells and below the line are the genes of a 

microglia activation program, which is variably expressed, and includes cytokines, 

chemokines, early response genes and other immune effectors. This latter gene set might 
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reflect a microglia activation program that could either be a general microglia program or 

potentially specific to the context of oligodendroglioma. Microglia cells (n = 235) (columns) 

are rank ordered by their relative expression of the activation program. The tumour of origin 

of each cell is colour-coded as indicated in the top row. c, PC2 and PC3 are associated with 

intermediate values of PC1. PC1 scores are shown along with PC2 (top) and PC3 (bottom) 

scores for cells in each of the three tumours profiled at high depth. The red line indicates 

local weighted regression (LOWESS) with a span of 5%, which demonstrates that PC2 and 

PC3 values tend to be highest in intermediate values of PC1 and to decrease in either high 

PC1 (that is, oligodendrocyte-like cells) or low PC1 (that is, astrocyte-like cells). d, 

Consistency of PCA across tumours. Shown are the Pearson correlations in gene loadings 

(over all analysed genes) between the top three PCs in PCA of the three tumours profiled at 

high depth (y axis, as shown in Fig. 1) and the top four PCs in alternative PCA of either all 

six tumours (left), as well as of PCA of each individual tumour (right). PC1–3 are highly 

consistent between the three-tumour and six-tumour PCAs (R > 0.9); PC1 is highly 

consistent (R > 0.8) between the three-tumour analysis and all other analysis. e, PC1 (x axis) 

and PC2 plus PC3 (y axis) scores of malignant cells from each of the three tumours profiled 

at intermediate depth, showing consistent patterns with those shown in Fig. 1d. f, 
Distribution of differences in PC1 loadings between the original PCA and the shuffled PCA 

(see description in the Methods section for principal component analysis) for all genes 

(black), oligodendrocyte-like (OC-like) genes (blue) and astrocyte-like (AC-like) genes 

(green). This analysis demonstrates that oligodendrocyte-like and astrocyte-like gene sets are 

highly skewed in the original PCA and their loadings are not recapitulated by shuffled data 

reflecting the effect of complexity.
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Extended Data Figure 3. The stemness program in oligodendroglioma
a, Cell–cell correlation matrix based on all analysed genes across all malignant cells in 

MGH54 (n = 1,174). Cells are ordered by average linkage hierarchical clustering, and 

coloured boxes indicate distinct clusters. Clusters are marked based on the identity of 

differentially expressed genes as OC-like (blue), AC-like (yellow), cycling (pink) stem-like 

(purple) and intermediate cells that do not score highly for any of those expression programs 

(orange). b, Most differentially expressed genes. Shown is the average expression in each of 

the OC-like, AC-like, stem-like and intermediate cell clusters (columns) of differentially 

expressed genes (rows) defined by comparing cells from each of the OC-like, AC-like and 
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stem-like clusters to cells from the remaining clusters with a t-test. Similar genes are 

highlighted as in Fig. 1 (OC-like: OMG, OLIG1, OLIG2, SOX8; AC-like: ALDOC, APOE, 

SOX9; Stem-like: SOX4, SOX11, CCND2, SOX2). Stem-like genes also include CTNNB1, 

USP22, and MSI1. c, Overlap with human GBM stemness program. We previously6 

identified a GBM stemness program and determined the association of each gene with that 

program by the correlation between the expression of that gene and the average expression 

of the stemness program’s genes across individual cells (‘CSC gradient’) in each of five 

GBM tumours. Shown is the average correlation (x axis) of each analysed gene (green dots) 

across the five cases and the P values of those correlations as determined with a t-test (y 
axis). Genes identified in the oligodendroglioma stemness program (this work) are marked 

in black and are significantly enriched for the GBM stemness genes (1.5 × 10−4, 

hypergeometric test), defined as those with P < 0.05 and an average correlation above 0.1. d, 

Preferential expression of the oligodendroglioma stemness program in neurons but not in 

OPCs. Genes expressed in the oligodendroglioma single cells were divided into six bins 

(bars) based on their relative expression (log2-ratio) in stem-like cells with high PC2/3 and 

intermediate PC1 scores compared to all other cells. Each panel shows for each bin the 

average relative expression in each of three normal brain cell types (y axis) based on data 

from the Barres laboratory RNA-seq database9,18: mice oligodendrocyte progenitor cells 

(mOPC, top), mouse neurons (mNeurons, middle), and human neurons (hNeurons, bottom). 

Relative expression of each gene in each cell type was defined as the log2-ratio between the 

respective cell type divided by the average over AC, OC and neurons. Error bars denote 

standard error as defined by bootstrapping. Asterisks denote bins with significantly different 

relative expression (in the respective normal cell type) compared to all genes expressed in 

oligodendroglioma, based on P < 0.001 (by t-test) and average expression change of at least 

30%. e, Correlation with mouse activated NSC program. Shown is the distribution of 

correlation values (x axis) of either all genes (grey) or genes from the oligodendroglioma 

stemness program (black) with the expression program of mice NSC activation states, as 

previously quantified by ‘pseudotime’, across single mouse NSCs19. The average correlation 

of the NSC activation program genes with oligodendroglioma stemness genes is 

significantly higher than with all other genes (P = 3 × 10−6; t-test). f, Correlation with 

human NPC program. Shown is the distribution of correlation values (x axis) of either all 

genes (grey) or genes from the oligodendroglioma stemness program (black) with an 

expression program of human NPCs identified by PCA (Extended Data Fig. 4). Each gene’s 

correlation to the average expression of the NPC program genes was calculated across single 

human NPCs. The average correlation with oligodendroglioma stemness genes is 

significantly higher than with all other genes (P = 2 × 10−35, t-test).
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Extended Data Figure 4. Analysis of human NPCs
a–d, Differentiation potential of human SVZ NPCs. Human SVZ NPCs isolated from 19-

week-old fetuses form neurospheres in culture (a), and can be differentiated to neuronal 

(neurofilament, b), oligodendrocytic (OLIG2, c), or astrocytic (GFAP, d) lineages in vitro. 
Scale bars, 25 μm (a), 10 μm (b–d). We note that although OLIG2 can represent different 

cell types, it is expressed at a low level in the fetal NPCs before differentiation (an average 

log2(TPM + 1) of 0.82, compared to a threshold of 4 that we use to define expressed genes 

in our analysis, and with zero cells with expression above this threshold). Thus, the 

undifferentiated NPCs do not express OLIG2, and we interpret the expression of OLIG2 as a 

sign of oligodendroglial lineage differentiation. e, f, Single-cell RNA-seq analysis of NPCs. 

Tirosh et al. Page 21

Nature. Author manuscript; available in PMC 2017 November 10.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



e, NPCs have an expression program similar to the oligodendroglioma stemness program. 

Heat map shows the expression of genes (rows) most positively (top) or negatively (bottom) 

correlated with PC1 of a PCA of RNA-seq profiles for 431 single NPCs, across NPC cells 

(columns) rank ordered by their PC1 scores. Selected genes are indicated, and a full list of 

correlated genes for PC1 and PC2 is given in Supplementary Table 2. f, NPC cell scores for 

PC1 (y axis) and PC2 (x axis). PC2 correlated genes are associated with the cell cycle. Cells 

with the highest PC1 scores tend to be non-cycling (low PC2 score), indicating that while 

the stemness program is coupled to the cell cycle in oligodendroglioma, it is decoupled from 

the cell cycle in NPCs.
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Extended Data Figure 5. Developmental hierarchy in oligodendroglioma
a, Shown are plots as in Fig. 2d for each of the six tumours with cycling cells coloured as in 

Fig. 3. b, Lineage and stemness scores for three tumours with high-depth profiling, coloured 

based on sequencing batches, demonstrating the lack of considerable batch effects. c, For 

each of the three tumours profiled at high depth (horizontal panels) and for the two lineages 

(vertical panels), we calculated the significance of co-expression among sets of AC-related 

(top panels) or OC-related (bottom panels) genes within limited ranges of lineage scores 

(between the value of the x axis and that of the y axis). Significance was calculated by 

comparison of average co-expression to that of 100,000 control gene-sets with similar 
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number of genes and distribution of average expression levels, and is indicated by colour. 

The significant co-expression patterns within limited ranges of lineage scores suggest that 

variability of lineage scores in these ranges cannot be driven by noise alone, and implies the 

existence of multiple states within each lineage, presumably reflecting intermediate 

differentiation states (see Supplementary Note 2). d, Characterization of tumour 

subpopulations by histopathology and tissue staining. Top/middle panels denote two 

predominant lineages of AC-like and OC-like cells. Shown are MGH53 with haematoxylin 

and eosin (H&E, top left), immunohistochemistry for OLIG2 (oligodendrocyte marker, top 

right) and GFAP (astrocyte marker, middle left), as well as in situ RNA hybridization for 

astrocytic markers ApoE (apolipoprotein E, astrocytic lineage, middle right), with patterns 

similar to GFAP immunohistochemistry. Bottom panels denote stem-like cells and 

association with cell cycle. In situ RNA hybridization for the stem/progenitor markers SOX4 

and CCND2 (bottom left) and the proliferation marker Ki-67 (bottom right) in MGH36 

identifies cells positive for both markers (arrows). Immunohistochemistry for GFAP 

(arrowhead, bottom right) and Ki-67 (arrow, bottom right) shows mutually exclusive 

expression patterns. e, Consistency of MGH60 hierarchy between the full-length SMART-

Seq2 protocol used throughout this work (left panels), and an alternative protocol (right 

panels) in which only the 5′-ends of transcripts are analysed while incorporating random 

molecular tags (RMTs, also known us unique molecular identifiers, or UMIs) that decrease 

the biases of PCR amplification. Top panels: PC1 reflects an AC-like and OC-like 

distinction. Shown are heatmaps of the AC-like and OC-like specific genes (rows, as defined 

in Supplementary Table 1 and restricted to genes with average expression log2(TPM + 1) > 4 

in each data set) with cells ordered by their PC1 score. Bottom, lineage (x axis) and 

stemness (y axis) scores (defined as in Fig. 2d).
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Extended Data Figure 6. Cell-cycle analysis
a, High expression of G1/S and G2/M gene sets in a subset of cycling cells. Shown are the 

average expression (top panels, lines) or the expression of all individual genes (bottom, heat 

maps) of the G1/S and G2/M gene sets, in all cells (n = 2,594) (left) or only among the 

putative cycling cells (n = 119) (right) from the three tumours profiled at high-depth ordered 

by cell cycle expression. Dashed lines (top right) separates the four inferred phases of 

cycling cells, corresponding to light blue, blue, green and red in Fig. 3a, respectively. b, 

Estimated fraction of cycling cells (y axis) in each of 3 tumours (x axis) based on single cell 

RNA-seq (left; different phases marked by colour code as in Fig. 3a) or Ki-67 

immunohistochemistry (right). c, Variation in cycling cells between regions of the same 

tumour. Shown is Ki-67 immunohistochemistry in two regions in MGH36. Such regional 

variability in proliferation complicates direct comparisons as done in b. d, Cycling cells are 

enriched in stem-like and undifferentiated cells compared to differentiated cells. Shown is 

the percentage of cycling cells (y axis) in four bins based on stemness scores (top) or lineage 

scores (bottom). Black squares and error-bars correspond to the mean and standard deviation 

of the percentages in the three tumours profiled at high depth (MGH36, MGH53, MGH54), 

and red circles denote the percentages in individual tumours. Bins in left panel were defined 

as stemness scores below − 1.5 (n = 711), between − 1.5 and 0.5 (n = 1,100), between − 0.5 

and 0.5 (n = 939), and above 0.5 (n = 274), respectively. The first two bins are significantly 
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depleted with cycling cells, while the last two bins are significantly enriched (P < 0.05, 

hypergeometric test). Bins in left panel were defined as AC score above 1 (n = 503), AC 

score between 0.5 and 1 (n = 1,013), AC and OC scores below 0.5 (n = 1,130), OC score 

between 0.5 and 1 (n = 855), and OC score above 1 (n = 597), respectively. The third bin is 

significantly enriched with cycling cells, while the four other bins are significantly depleted 

(P < 0.05, hypergeometric test). e, Correlation between the average expression of cell cycle 

(y axis) and that of stemness genes (x axis) across molecularly defined oligodendrogliomas 

(by IDH mutation, chromosome 1p and 19q co-deletion, and absence of P53 and ATRX 
mutations) profiled by TCGA (n = 69) with bulk RNA-seq. Average expression was defined 

by centring the log2-transformed RSEM gene quantifications. Also shown are the linear 

least-square regression and Pearson correlation coefficient. f, Specific enrichment of S/G2/M 

cells compared to G1 cells among stem-like or undifferentiated cells. Shown is the 

proportion (y axis) of each marked category of cells among the stem-like or undifferentiated 

subpopulations. Significant enrichments are marked (P < 0.01, hypergeometric test).
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Extended Data Figure 7. CCND2 is associated with both cycling and non-cycling stem/progenitor 
cells
a, CCND2, but not CCND1 or CCND3, is upregulated in non-cycling stem-like 

oligodendroglioma cells. Shown are the average expression levels (y axis, log-scale) of three 

cyclin D genes (x axis) in non-cycling cells classified as OC-like cells (light blue), 

undifferentiated cells (grey) and stem-like cells (purple). CCND2 is approximately fourfold 

higher in stem-like non-cycling cells than in OC-like and undifferentiated cells (P < 0.001 by 

permutation test). Conversely, CCND1 and CCND3 are expressed at comparable levels in 

stem-like and OC-like cells. b, Upregulation of cyclin D genes in cycling cells compared to 

non-cycling cells. As in a but for up regulation (log2-ratio) in cycling cells vs. non-cycling 
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cells. CCND2 levels further increase in cycling undifferentiated and stem-like cells but not 

in OC-like cells, whereas CCND1 and CCND3 levels increase in OC-like cycling cells more 

than in undifferentiated and stem-like cycling cells. c, Distinct expression patterns of cyclin 

D genes in human brain development. Shown are the expression patterns of three cyclin D 

genes (rows) in human brain samples at different points in pre- and post-natal development, 

sorted by age (columns) from the Allen Brain Atlas15. CCND2 is associated with prenatal 

samples, whereas CCND1 and CCND3 are expressed mostly in childhood and adult 

samples. d, CCND2 is upregulated in activated versus quiescent NSCs19, both among 

cycling and non-cycling cells. Activated NSCs were partitioned into non-cycling cells 

(black) and cycling cells in the G1/S (green) or G2/M (red) phases (Methods). Expression 

difference (y axis) for each of three genes (x axis) was quantified for each of these subsets as 

the log2-ratio of the average expression in the respective subset versus the quiescent NSCs, 

and was significant for each of the three subsets (P < 0.05 by permutation test). Although 

CCND2 (left) is induced in both cycling and non-cycling activated NSCs, two canonical cell 

cycle genes (PCNA, middle; and AURKB, right) are not induced in non-cycling genes but 

were induced preferentially in G1/S and G2/M cells, respectively.

Extended Data Figure 8. Distribution of cellular states in distinct genetic clones of MGH36 and 
MGH97
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a, Stemness (y axis) and lineage (x axis) score plots for MGH36 (top) and MGH97 (bottom), 

each separated into clone 1 (left) and clone 2 (right) as determined by CNV analysis (Fig. 

1a, b). Cycling cells are coloured as in Fig. 3, with G1/S cells in blue, S/G2 cells in green, 

and G2/M cells in red. b, Colour-coded density of cells across the cellular hierarchy as 

shown in Fig. 2e, for the two clones (left: clone 1, right: clone 2) in each of the two tumours 

(top: MGH36, bottom: MGH97). c, The fraction of cells assigned to the different tumour 

compartments (y axis, Methods) based on either single-cell RNA-seq (blue) or RNA in situ 
hybridization (orange). Circles denote individual tumours; squares denote average of all 

tumours; error bars denote standard deviation across tumours, showing general agreement 

between scRNA-Seq and IHC estimates.

Extended Data Figure 9. Subclonal mutations tend to span the cellular hierarchy
Each panel shows lineage (x axis) and stemness (y axis) scores of cells in which we 

ascertained by single cell RNA-seq a mutant (red), a wild-type (blue) or none (black) of the 
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alleles. Included are mutations for which at least three cells were identified as mutants and 

that were identified by WES as subclonal (fraction < 60%). The gene names, tumour name, 

ABSOLUTE-derived fraction of mutant cells (E, expected fraction) and the fraction of cells 

detected as mutant by RNA-seq (O, observed) are also indicated within each panel. We note 

that identification of a wild-type allele (blue) does not imply a wild-type cell because 

mutations may be heterozygous, and thus cells could contain both alleles while only one 

may be detected by single-cell RNA-seq. The observed fraction of mutations (O) is much 

lower than expected (E) due to limited coverage of the single-cell RNA-seq data, as well as 

due to heterozygosity. The vast majority of mutations (20 of 22) are distributed across the 

hierarchy and span multiple compartments. Two remaining mutations (H2AFV and 

EIF2AK2) appear more restricted to the ‘undifferentiated’ region (intermediate lineage and 

stemness scores), which could reflect our limited detection rate of mutant cells and/or a bias 

of the mutation to a particular region. To test the significance of potential biases in the 

distribution of mutations we calculated, for each mutation, a Euclidean distance among all 

pairs of mutant cells (based on their lineage and stemness scores), and compared the average 

pairwise distances among mutant cells to that among randomly selected subsets of the same 

number of cells. None of the mutations were significant with a false discovery rate (FDR) of 

0.1, although this could reflect our limited statistical power and we cannot exclude a 

potential bias. The apparent bias of mutant cells to the OC lineage over the AC lineage (that 

is, positive versus negative lineage scores) reflects the lower frequencies of AC-like cells 

compared to OC-like cells in MGH53 and MGH54 (MGH53: 17% AC versus 39% OC; 

MGH54: 23% AC vs. 45% OC); this bias is also observed for the detection of wild-type 

alleles (blue) demonstrating that there is no bias against mutation detection in the AC 

lineage.

Tirosh et al. Page 30

Nature. Author manuscript; available in PMC 2017 November 10.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Extended Data Figure 10. Loss-of-heterozygosity event in MGH54 reveals two clones that span 
the cellular hierarchy
a, Chromosome 18 loss of heterozygosity (LOH) in MGH54. Allelic fraction analysis of 

MGH54 SNPs from WES shows an imbalance (red and blue dots) in the frequency of 

alternative alleles in chromosome 1p, 19q, as well as chromosome 18, despite the normal 

copy number at this chromosome (Fig. 1a). This is consistent with an LOH event in which 

presumably one copy of chromosome 18 was deleted, and the other copy amplified. The 

weaker imbalance compared to chromosomes 1p and 19q further suggests that this is a 

subclonal event. b, Each of two clones defined by chromosome 18 LOH status spans the full 

hierarchy. Shown are the lineage (x axis) and stemness (y axis) scores for each cell from 

MGH54 (n = 1,174) classified as pre-LOH (red), post-LOH (blue) and unresolved (black) 

based on RNA-seq reads that map to SNPs in the minor (that is, deleted) chromosome. Both 

the pre- and post-LOH clones span the different tumour subpopulations. Pre-LOH cells were 

defined as all cells with reads that map to minor alleles in chromosome 18; post-LOH cells 

were defined as all cells with reads that map to at least five different major alleles, but no 

reads that map to minor alleles in chromosome 18; all other cells were defined as 

unresolved.
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Figure 1. Single-cell RNA-seq of cancer and non-cancer cells in six oligodendrogliomas
a, CNV profiles inferred from scRNA-seq (top) and DNA whole-exome sequencing (WES) 

(bottom) of oligodendrogliomas. Cells (rows, n = 4,347) are ordered from non-tumoural 

cells (NT, n = 303) to cancer cells (n = 4,044), ordered into six oligodendrogliomas. b, In 

MGH36 and MGH97, cells are ordered by CNVs, with zoomed in view shown. c, PCA of 

malignant cells. Shown are PC1 (x axis) versus PC2 and PC3 (y axis) scores of cells from 

three tumours based on a single combined PCA. d, Astrocyte-like and oligodendrocyte-like 

signatures. Relative expression of genes correlated most positively (bottom) or negatively 

(top) with PC1, in cancer cells from each of the three tumours (marked as in c), ranked by 

PC1 scores. Selected astrocyte (AC) and oligodendrocyte (OC) marker genes are 

highlighted. e, Relative expression of the mice orthologues of the genes shown in d (log2-

ratio of the respective cell type compared to the average of oligodendrocyte, astrocyte, OPC 

and neurons)9.
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Figure 2. Stemness expression program and a developmental hierarchy in oligodendroglioma
a, Average relative expression of genes most highly correlated with PC2 and PC3 (top), and 

selected astrocyte and oligodendrocyte genes (bottom), in stem-like cells, undifferentiated 

cells, oligodendrocyte-like and astrocyte-like cells (Methods). Genes were sorted by relative 

expression in stem-like cells. b, Stemness genes are preferentially expressed in early human 

brain development. Relative expression of PC2 and PC3 putative stemness genes (top) and 

oligodendrocyte and astrocyte marker genes (bottom) across 524 human brain samples 

(Allen Brain Atlas). Samples are ordered in columns by age, from prenatal (left) to adult 

(right). c, The stemness program is correlated to mouse activated NSC and human NPCs. 

Pearson correlation coefficients between the expression of PC2 and PC3 genes (rows) and 

expression programs of mouse NSC activation19 (left) and human NPCs (right) across single 

cells from the respective datasets (Extended Data Figs 3e, f and 4). d, Inferred 

developmental hierarchy in oligodendroglioma cells (n = 4,044). Lineage and stemness 

scores (Methods) of malignant cells from the six tumours. Grey lines indicate the 

‘backbone’ used in e and Extended Data Fig. 8b. e, Colour-coded density of cells (fraction 

of cells within a Euclidean distance of 0.3) from each tumour across the backbone of the 

hierarchy.
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Figure 3. Cycling cells are enriched among oligodendroglioma stem/progenitor cells
a, Classification of cells (n = 4,044) to non-cycling (black) and categories of cycling cells 

(colour-coded by approximated phase as per inset) based on the relative expression of gene-

sets associated with G1/S (x axis) and G2/M (y axis). b, c, Only stem/progenitor cells are 

cycling. b, Hierarchy plot, as in Fig. 2d, for MGH54 cells (n = 1,174), with cycling cells 

colour-coded as in a. c, Hierarchy plot for the six tumours, with each cell colour-coded 

based on the fraction of neighbouring cells (within Euclidean distance of 0.3) that are 

cycling. d, Immunohistochemistry for astrocytic marker (GFAP) in MGH54, with expression 

in subset of cells (left). In situ RNA hybridization shows mutually exclusive expression of 

astrocytic (APOE, arrowhead) and oligodendrocytic (OMG, arrow) markers, and of stem/

progenitor (CCND2, arrowhead) and APOE (arrow) markers, but co-expression of stemness 

(SOX4) and cell cycle (Ki-67) markers (arrowhead) (middle). Double 

immunohistochemistry for GFAP (red, arrows) and Ki-67 (brown, arrowheads), showing 

mutual exclusivity (right).
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Figure 4. Intra-tumoural genetic heterogeneity and association with gene expression states
a–d, Cells were classified into genetic subclones based on CNVs (a, b) or CIC point 

mutation status (c, d), and examined for differences in gene expression states. a, Two CNV 

clones (green and grey) in MGH36 and MGH97 mapped to the cellular hierarchy defined by 

lineage (x axis) and stemness (y axis) scores. b, Percentages of cycling cells (x axis) and of 

stem/progenitor cells (y axis) in clone 1 (green) and clone 2 (grey) of MGH36 (square) and 

MGH97 (diamond). c, Cells were classified using mutation-specific qPCR as wild-type CIC 
(green), mutant CIC (orange) or CIC status not detected (black) and mapped to the cellular 

hierarchy. The fraction of mutant CIC cells as observed by qPCR (O) and as expected by 

ABSOLUTE (E) is indicated. d, An expression signature for mutant CIC cells. Shown is a 

heatmap of relative expression levels for CIC-dependent genes (rows) in mutant CIC cells 

(right) and wild-type CIC cells (left). Selected gene names are indicated.
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