Efficient hidden surface removal for ob jects

with small union size

M.J. Katz, M.H. Overmars, M. Sharir

RUU-CS-91-31
August 1991

Utrecht University

B So
; (.2 Department of Computer Science
\f,, \(ﬁn Padualaan 14, P.O. Box 80.089,

4771 '3\» 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31- 30 - 531454




Efficient hidden surface removal for objects

with small union size

M.J. Katz, M.H. Overmars, M. Sharir

Technical Report RUU-CS-91-31
August 1991

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands



ISSN: 09243275



Efficient Hidden Surface Removal for Ob jects
with Small Union Size*

Matthew J. Katz!  Mark H. Overmarst = Micha Sharir$

Abstract

Let S be a set of n non-intersecting objects in space for which we want
to determine the portions visible from some viewing point. We assume that
the objects are ordered by depth from the viewing point (e.g., they are all
horizontal and are viewed from infinity from above). In this paper we give
an algorithm that computes the visible portions in time O((U(n) + k)log? n),
where U(n') is a super-additive bound on the maximal complexity of the
union of (the projections on a viewing plane of) any n’ objects from the
family under consideration, and k is the complexity of the resulting visibility
map. The algorithm uses O(U(n)logn) working storage. The algorithm is
useful when the objects are “fat” in the sense that the union of the projection
of any subset of them has small (i-e., subquadratic) complexity. We present
three applications of this general technique: (i) For disks (or balls in space)
we have U(n) = O(n), thus the visibility map can be computed in time
O((n + k)log? n). (ii) For “fat’ triangles (where each internal angle is at least
some fixed § degrees) we have U(n) = O(nloglogn) and the algorithm runs
in time O((nloglog n + k) log? n). (iii) The method also applies to computing
the visibility map for a polyhedral terrain viewed from a fixed point, and
yields an O((na(n) + k)log n) algorithm.

*Work by Mark Overmars has been partially supported by the ESPRIT Basic Research Action
No. 3075 (project ALCOM) and by the Dutch Organisation for Scientific Research (N.W.0.).
Work on this paper by Matthew Katz and Micha Sharir has been supported by a Grant from the
G.LF., the German-Israeli Foundation for Scientific Research and Development. Work by Micha
Sharir has also been supported by Office of Naval Research Grant N00014-90-J-1284, by National
Science Foundation Grant CCR-89-01484, and by grants from the U.S.-Israeli Binational Science
Foundation, and the Fund for Basic Research administered by the Israeli Academy of Sciences.

tSchool of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

{Department of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, the
Netherlands.

$School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and Courant
Institute of Mathematical Sciences, New York University, New York, NY 10012, USA.



Figure 1: The visibility map of six triangles.

1 Introduction

In the past few years much attention has been given in computational geometry
to the hidden surface removal problem, one of the central problems in computer
graphics. In a typical setting of the problem we are given a collection of n non-
intersecting polyhedral or other objects in 3-space, and a viewing point v, and our
goal is to construct the view of the given scene, as seen from v.

Most solutions to the problem as applied in graphics use an “image-space” ap-
proach, in which one tries to calculate, for each pixel in the viewed image, which
object is visible at that pixel (see e.g. [28]).

Recently a considerable effort has been made to obtain efficient “object-space”
methods that try to compute a discrete combinatorial representation of the view of
the scene, whose complexity does not depend on the screen size, but only on the
combinatorial complexity of the scene. This view consists of a subdivision of the
viewing plane into maximal connected regions in each of which (some portion of) a
single object can be seen, or no object is seen. The obtained subdivision is called
the visibility map of the given collection of ob jects. See figure 1 for an example.

A major challenge in this direction is to obtain output-sensitive algorithms,
namely algorithms whose running time depends on the actual combinatorial com-
plexity, k, of the visibility map, so that if k is small the algorithms will run more
efficiently. Early object-space methods have a running time of O(n?), independent
of the complexity of the resulting visibility map |9, 17]. Other implementations
run in time O((n + I)logn), where I denotes the number of intersections between
the projected edges [10, 12, 19, 27], which may also be insensitive to the output
size (there are easy examples where I = ©(n?) but k is a constant). Another recent
technique [18] uses a randomized incremental approach, leading to expected running

2



time that is expressed as a weighted sum over the I intersection points; however,
this technique is also not output-sensitive.

The most general output-sensitive hidden surface removal method to date (for
polyhedral objects) is due to de Berg at al. [4]. Using the recent data structure
of Agarwal and Matousek [1], the method actually runs in time O(n2/3+¢k2/3) for
any arbitrarily small ¢ > 0. This method works for sets of triangles in space with
possible cyclic overlap (i.e. no depth order needs to exist). However, the method is
rather complicated. A simpler method was proposed by Overmars and Sharir [20]
(see also [26]). It computes the view of a set of horizontal triangles (or other flat
objects with a simple shape), as seen from above, in time O(nvklogn). Although
these methods are output-sensitive, the running time is still quite high. Better
results have been obtained for special cases, like axis-parallel rectangles [2, 11, 24],
c-oriented polyhedra [5, 12], polyhedral terrains [25], and unit disks [21]. In these
cases, the running time of the improved algorithms is O((n + k)polylog n).

In this paper we develop a new technique for output-sensitive hidden surface
removal. The technique is fairly general and simple, but its efficiency shows up
when the objects have the property that the union of the projections on the viewing
plane of any subcollection of j of them has small combinatorial complexity (by
‘small’ we mean o(j2), and typically close to linear in 7). We refer to objects with
this property as being “fat”. Let U(n) be a bound on the maximum combinatorial
complexity of the union of the projections of any n objects from such a family, and
suppose that U(n) is super-additive, i.e., U(n;) + U(ny) < U(ny + n2). We show
that the view of n such fat objects can be computed in time O((U(n) + k)log?n),
using O(U(n) log n) working storage. The method is simple and, hence, potentially
practical.

We present three applications of the technique:

o If the given objects are horizontal disks (or, for that matter, pairwise disjoint
balls) viewed from any fixed point, then U(n) = O(n) [14). In this case our
technique yields an algorithm with running time O((n + k) log®n).

o If the given objects are horizontal ‘fat’ triangles, namely triangles whose angles
are all at least some fixed angle 6, which are viewed from any fixed point, then
U(n) = O(nloglogn) [16]. In this case our technique yields an algorithm with
running time O((nloglogn + k) log? n).

e Finally we consider the case of viewing a polyhedral terrain from any fixed
point. Here one has U(n) = O(na(n)), where a(n) is the extremely slowly
growing inverse of Ackermann’s function [8]. In this case our technique yields
an algorithm with running time O((na(n) + k)log n). (The simpler structure
of the visibility map in this case facilitates a saving of a logn factor in the
time bound.)

Like most of the results on output-sensitive hidden surface removal (except for
the very recent methods in [4, 5]), our technique assumes a depth order among

3



the viewed objects, which is easy to compute and which excludes cyclic overlaps
among them. Problems in which such an order is not available or does not exist are
much harder to handle, especially if comparable efficiency is being sought (see e.g.
[6, 7, 22] for the extra techniques that may be required).

The paper is organized as follows. In Section 2 we describe the algorithm. In
Section 3 we analyze its run-time and show how to improve the storage to the bound
given above. In Section 4 we present the applications listed above. The paper is
concluded in Section 5 with a discussion of our results and some open problems.

A preliminary version of this paper appeared in [13]. That paper also presents a
second, more complicated method, that yields exactly the same performance bounds.

2 The algorithm

We first present a simpler version of the method where we do not optimize the
working storage. This version is really simple — it involves two divide-and-conquer
passes over the objects ordered by depth from the viewing point. At each recursive
call we compute the union, intersection, or difference of two planar regions, using
standard line-sweeping methods. In this version the working storage is O((U(n) +
k)logn). Optimizing the storage requires a more careful handling of the recursive
process.

As a first step the method sorts the objects by depth order and stores them
in this order in the leaves of a balanced binary tree 7, the nearest object in the
leftmost leaf. For each node 6 of 7 we compute the following two maps:

¢ Us — the union of the projections of the objects in the subtree 7; of T rooted
at 6.

e Vs — the visible portions of Uy, i.e. the subset of Us consisting of those points

that are not contained in the projection of any nearer object (stored in 7 to
the left of §).

Both Us and Vj are planar regions, possibly with holes. Their boundary consists
of portions of projected edges of the original objects. Clearly Vs C Us. In following
the description of the algorithm, it is helpful to visualize Us as a new nominal ob ject
obtained by “squashing” all objects stored below § onto some common in-between
plane and gluing them together. V; can be thought of as the portions of the new
object that are visible in the standard sense. See figure 2 for the tree we obtain for
the example in figure 1. At each node Us is drawn. The shaded part at each node
is Vj. '

Once we have computed V; for each node § in the tree we are done, because for
each leaf §, Vs consists precisely of those parts of the object stored in this leaf that
are visible. So reporting Vs for all leaves gives the entire visibility map (those Vj’s



Figure 2: The tree T with the regions Us and Vs (shaded).

can easily be glued together in a final step of the algorithm to obtain the global
visibility map).

Computing Uy for all nodes is quite easy. We do this in a bottom-up manner
by first computing the unions for all leaves (being the objects themselves) and then
merging unions towards the root, using the fact that

Us = U.lson(J) U Urson(&)-

Merging two unions is done by computing all intersections between their bound-
aries. Note that any such intersection point is necessarily a vertex of the overall
union. This can be done using e.g. the red-blue intersection algorithm of Mairson
and Stolfi [15] in time O( (Uison(s) +Urson(s)) log n+us), where us denotes the complex-
ity of Us. For our purpose we can as well use the standard intersection algorithm by
Bentley and Ottmann [3] (see also [23]) without increasing the overall asymptotic
time complexity.

After computing the union Us at each node, we compute V; for all nodes in a
top-down manner, starting at the root and working our way down the tree. The
method is based on the following lemma:

Lemma 2.1 The maps Vj stored at nodes § satisfy the following equations:

Vroot = Uroot

5



Vison(b‘) =VnN Ulson(&)
Vrson(&) = Vs — Ulson(&) .

Proof. The first equation is easy, because the whole union of the set of objects
is obviously visible in the sense defined above — there is no nearer object to hide
it. The second equation follows from the fact that Ulson(s) can only be covered by
objects that also cover Uj. Moreover, Ulson(s) 18 a subset of Us. V; can be interpreted
as the window through which we can see Us and, hence, the portions of Dison(s) that
can be seen are exactly those that lie inside Vs. The third equation follows from
the fact that V5 — Uison(s) consists of those points of Urson(s) that are not hidden by
objects stored to the left of § or below lson(6); by definition, these points constitute
Vrson(b')- a

We apply this lemma to compute the regions Vj, starting at the root and working
our way down. To compute Vison(s) (resp. Vison(s)) We simply compute the intersection
(resp. difference) of V5 and Ulson(s) using any of the techniques above, say the red-blue
intersection algorithm of [15]. This takes time O( (t1s0n(5) + vs) log . + Vlson(s)); Where
vs denotes the complexity of Vj. (Note that in both cases any intersection between
the boundaries of V; and Ulson(s) must be a vertex of the resulting intersection or
difference.)

This concludes the description of (the simpler version of) the algorithm. In the
following section we will slightly modify the algorithm so as to reduce its working
storage. After we have computed the regions V5 at all nodes of the tree, we simply
collect (and properly glue) the regions computed at the leaves, to construct the
whole visibility map. Note that the algorithm is very simple and only requires
as a subroutine an implementation of the red-blue intersection algorithm (or some
other intersection algorithm like the one in [3]), suitable for computing unions,
intersections, and differences between two regions in the plane.

3 Analysis of the algorithm

It immediately follows from the above description that the total time required for
the algorithm, after the initial sorting and construction of the tree (which requires
time O(n log n)), is bounded by

26: O((us + vs) log n) = O(log n)- (Zs: us + 26: vs) - (1)

So we have to estimate both 25 us and Y5 vs. As indicated in the introduction,
we assume that the objects involved are “fat” in the sense that the complexity of
the union of (the zy-projections of) any subset of n’ objects is bounded by (the
subquadratic function) U(n’) which we also assume to be super-additive. Now let
ns denote the number of objects in the subtree rooted at §. Then clearly

6



logn

dus < Y Um)=Y Y Ulng) =
') )

d=0 § at depth d
logn

>_ O(U(n)) = O(U(n)logn). (2)

d=0

Estimating v; is slightly more complicated. The bound is based on the following
lemma:

Lemma 3.1 Any vertez of V; is a vertex of Vs for some leaf §' in the subtree rooted
at 6.

Proof. V; has four different types of vertices: visible vertices of Us, visible
intersections between the boundaries of Us and the projection of a nearer object,
visible vertices of nearer objects that lie inside Uy, and visible intersections between
the (projections of the) boundaries of two nearer objects, which lie inside Us. All of
these are obviously vertices of the final visibility map. It remains to show that there
exists an object stored in the subtree rooted at 4, such that the intersection shows
up as a vertex of the individual visibility map of the object. This claim is immediate
for vertices of the first or second type, because each of them is either an original
vertex of an object stored below §, or the intersection of the boundary of such an
object with the boundary of another higher object. For a vertex v of the third or
fourth type, note that Us must be visible on some side of v in a sufficiently small
neighborhood, which means that an object stored below § is visible there. Hence v
is a vertex of Vs for the leaf ' that stores this object. O

As stated above, the collection of maps Vs over all leaves forms together the full
visibility map. Moreover, as in the proof of the preceding lemma, it is easily verified
that each vertex of the map can appear in at most two ‘leaf-regions’ V. As a result
we have:

Z Vs = O(k‘) .

§ aleaf

It follows from the above lemma, that the overall complexity of the maps Vj; on
each level of the tree is also O(k). Hence,

logn logn
dus= > u= > O(k) = O(klogn) . (3)
5 d=0 § at depth d d=0

This leads to the following result:



Proposition 3.2 Given a set of n non-intersecting objects, such that the union of
the projections on a viewing plane of any n' of them has complezity U(n'), where
U(n') is super-additive (and hopefully subgquadratic), the visibility map of the objects
can be computed in time O((U(n) + k) log® n).

Proof. This follows immediately from equation (1), plugging in the results of
equations (2) and (3). O

Remark. As noted earlier, this technique is rather general — it does not require
the objects to be polyhedral, and it only requires a (known) depth ordering of the
objects relative to the viewing point. It also applies when U(n) is large, up to
quadratic, except that the result is then much less significant.

It remains to analyze the amount of working storage required by the algorithm.
Unfortunately, using the method as described above, the amount of required working
storage becomes O((U(n) + k) logn). To reduce this we have to modify the method
slightly.

First we construct the whole tree, together with the Us’s for all nodes. All Us’s
at any particular level of the tree use O(U(n)) overall storage, so the total tree
uses so far O(U(n)log n) storage. Next we recursively traverse the tree in preorder,
computing the Vj for all nodes, in the following way:

- if 8 is a leaf, output Vj; otherwise,

- compute Vigon(s) from Ueon(s) and Vj;

- recursively treat the left subtree;

- remove Vison(s) (it is no longer required);
- compute Vigon(s) from Uieon(s) and Vs;

- recursively treat the right subtree;

- remove Vigon(s)-

As a result, at any time during the algorithm we only store the regions V; along
a single path of the tree, i.e., for at most O(log n) nodes. It remains to bound the
size of one V;. Let U be the union of the projections of all the objects that lie nearer
than Us (i.e. objects that are stored in the tree to the left of the subtree rooted at
8). Any vertex of Vj is either a vertex of Us, or a vertex of U , or an intersection
point between the boundaries of Us and U, and, hence, a vertex of U UU. The total

number of these vertices is clearly bounded by O(U(n)). This leads to our main
result:

Theorem 3.3 Given a set of n non-intersecting objects in space and a viewing point
z (that may be at infinity), such that there ezists a known (and easily computable)
depth ordering of the objects with respect to z, and such that the union of the projec-
tions of any n’ of the objects on a viewing plane has complezity U(n'), where U(n')
is super-additive (and subquadratic), then the visibility map, as seen from z, can be
computed in time O((U(n) + k)log® n), using O(U(n)log n) working storage.



4 Applications

In this section we present the three applications mentioned in the introduction. In
the first application we have a set of non-intersecting balls in space viewed from any
fixed point. Computing the view of such a set can be reduced to computing the view
from above of a set of horizontal disks. The best known result for output-sensitive
hidden surface removal in such a set is due to Sharir and Overmars [26] who give
a method that runs in time O(ny/nlogn + k). In the special case of unit disks
considered in [21] a method is given that runs in time O((n + k)log?n). Here we
apply our technique to obtain the same improved running time for the case of disks
(or balls) of arbitrary radii.

To apply our method we need a bound on the union of a set of n (arbitrary)
disks in the plane. It is well-known [14] that such a union has linear complexity, i.e.,
U(n) = O(n). Now applying Theorem 3.3 we obtain:

Theorem 4.1 Given a set of n non-intersecting balls in space, the view of this set
from any fized point can be computed in time O((n + k)log®n), using O(nlogn)
storage.

Note that the bound U(n) = O(n) applies also to pseudodisks, i.e., planar regions
with the property that the boundaries of any pair of them intersect in at most 2
points. Hence the preceding theorem can be extended to the case of objects whose
projections on the viewing plane behave like pseudodisks, assuming the shape of
each object is not too complicated.

As an application of this extension, consider the case of a set of n non-intersecting
convex homothetic objects (i.e., objects that are translated and scaled copies of a
fixed convex object). Here again, the boundaries of the projections of any pair of
the objects, in any view, intersect at most twice, so that the union has linear size.
The depth ordering can be computed as in the case of balls or disks. Hence we have:

Theorem 4.2 Given a set of n non-intersecting convez homothetic objects in space,

the view of this set from any point can be computed in time O((n + k) log?n), using
O(nlogn) storage.

Next consider a set of horizontal ‘fat’ triangles viewed from any fixed point. A
set of triangles is called fat when there exists some positive constant 8 such that any
internal angle of the triangles is at least 6. For such a set of triangles it is proven
by Matousek et al. [16] that the union has complexity at most O(nloglogn). Note
that the projections of a set of fat triangles need not in general be fat, but it is still
the case that the union of any subfamily of n’ of these projections has complexity
O(n'loglog n’). (To see this, project the triangles towards the viewing point, but
make the viewing plane horizontal.) Hence, we can apply Theorem 3.3 to obtain
the following result:



Figure 3: A polyhedral terrain.

Theorem 4.3 Given a set of n horizontal fat triangles, the view of this set
from any fized point can be computed in time O((nloglogn + k)log®n), using
O(nlog nloglogn) storage.

Finally consider the case of a polyhedral terrain ¥ with n faces, viewed from
some fixed point @ lying above it. A polyhedral terrain is the graph of a piecewise
linear continuous function z = E(z,y) (see figure 3). It has been shown in 8]
that the faces of £ can be ordered by depth with respect to a (although it might
be necessary to cut some faces of £ to ensure that the resulting order is indeed
acyclic). Cole and Sharir 8] give an efficient technique for implicitly computing
the visibility map. Reif and Sen [25] give an output-sensitive construction of the
map that runs in time O((n + k) log nlog log ). Their technique, which is based on
dynamic ray-shooting in monotone polygonal chains, is fairly complicated. Using
our much simpler algorithm we can obtain faster solutions.

To apply our technique, imagine that we replace ¥ by a collection of semi-
unbounded vertical prisms, each consisting of all points lying below a face of X.
Obviously, the visibility map from a does not change by this transformation. The
prisms have the fatness property, since the union of the projections of any n' of
them has complexity U(n') = O(n'a(n')) (see [8] for details). We can thus apply
Theorem 3.3 to the modified scene. In this case we can even improve the bound
on the running time by a factor of logn. Indeed, the regions U; and V; are all
monotone polygons, and it is easily checked that each of the Boolean operations on
them performed by the algorithm can be done in linear time. We thus have:

Theorem 4.4 The visibility map of a polyhedral terrain consisting of n faces, viewed

from some fized point above it, can be computed in time O((ra(n) + k)logn) and
working storage O(na(n)log n).

10



5 Conclusion

In this paper we have presented a new method for computing the visibility map of
a set of non-intersecting objects in 3-space. It runs in time O((U(n) + k)log?n)
and uses O(U(n)log n) working storage, where U(n') is the maximum complexity of
the union of the projections on a viewing plane of any subset of n’ of the objects,
and k is the complexity of the output visibility map. The method is quite simple,
applies to general scenes of polyhedral or other objects, where a depth ordering of
the objects is available, and is efficient whenever U (n) is small. This is the case
for sets of fat objects like disks (balls), fat triangles, homothets, and polyhedral
terrains. This condition might also occur for many sets of non-fat objects. It is
also worth noting that for any set of objects U(n) = O(n + I) where I is the
number of intersections in the projection. Hence, even for non-fat objects, the
time bound is never worse than O((n + I)log? n) which is only a factor logn worse
than the techniques in [27]. Although we did not exploit this observation, it is
interesting to note that our technique also applies when the objects can be split into
a small number of subfamilies so that within each subfamily the union complexity is
small. An example where this observation can be applied is the case of axis-parallel
horizontal rectangles (see [21] for details), although the resulting algorithm would
be inferior to the best known solutions for this case.

In the preliminary version [13] of the paper, we also presented an alternative
technique. Roughly speaking, it sweeps over all nodes of the tree T simultaneously,
maintaining the cross sections of all the sets Us, V; with the sweepline. As things
stand now, the alternative technique is considerably more complicated than the one
given here, and yields exactly the same performance bounds. Still, there might be
cases where the other technique becomes more advantageous. We refer the reader
to [13] for more details.

Of course, the main open problem that remains is to find an output-sensitive
algorithm that is efficient for general objects in space. Another open problem is to
improve still further our technique. For instance, can the running time be reduced
to O((U(n) + k)logn) (as in the case of polyhedral terrains)?

References

(1] P.K. Agarwal and J. Matousek, Ray shooting and parametric search, manuscript,
1991.

[2] M. Bern, Hidden surface removal for rectangles, J. Comp. Syst. Sciences 40 (1990),
49-69.

[3] J.L. Bentley and T.A. Ottmann, Algorithms for reporting and counting geometric
intersections, IEEE Trans. Computers 28 (1979), 643-647.

11



[4]

(5]

[6]

(7]

(8]
[9]
(10]

[11]

[12]

(13]

[14]

[18]

[16]

[17]

M. de Berg, D. Halperin, M.H. Overmars, J. Snoeyink and M. van Kreveld, Efficient
ray shooting and hidden surface removal, Proc. 7th ACM Symp. on Computational
Geometry, 1991, pp. 21-30.

M.T. de Berg and M.H. Overmars, Hidden surface removal for axis-parallel polyhedra,
Proc. 31st IEEE Symp. on Foundations of Computer Science, 1990, pp. 252-261.

M.T. de Berg, M.H. Overmars and O. Schwarzkopf, Computing and verifying depth
orders, manuscript, 1991.

B. Chazelle, H. Edelsbrunner, L. Guibas, R. Pollack, R. Seidel, M. Sharir and J.
Snoeyink, Counting and cutting cycles of lines and rods in space, Proc. 31st IEEE
Symp. on Foundations of Computer Science, 1990, pp. 242-251.

R. Cole and M. Sharir, Visibility problems for polyhedral terrains, J. Symbolic Com-
putation T (1989), 11-30.

F. Dévai, Quadratic bounds for hidden line elimination, Proc. 2nd ACM Symp. on
Computational Geometry, 1986, pp. 269-275.

M.T. Goodrich, A polygonal approach to hidden line elimination, Proc. 25th Allerton
Conf. on Communication, Control and Computing, 1987, pp. 849-858.

M.T. Goodrich, M.J. Atallah and M.H. Overmars, An input-size/output-size trade-
off in the time-complexity of rectilinear hidden surface removal, Proc. ICALP’90,
Springer-Verlag, Lecture Notes in Computer Science 443, 1990, pp. 689-702.

R.H. Giiting and T. Ottmann, New algorithms for special cases of the hidden line
elimination problem, Comp. Vision, Graphics and Image Processing 40 (1987), 188-
204.

M.J. Katz, M.H. Overmars and M. Sharir, Efficient hidden surface removal for objects

with small union size, Proc. 7th ACM Symp. on Computational Geometry, 1991, pp.
31-40.

K. Kedem, R. Livne, J. Pach and M. Sharir, On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles, Discrete Comput.
Geom. 1 (1986), 59-71.

H. Mairson and J. Stolfi, Reporting and counting intersections between two sets of line
segments, Theoretical Foundations of Computer Graphics and CAD, R.A. Earnshaw,
Ed., NATO ASI Series, Vol F-40, Springer Verlag, 1988, pp. 307-326.

J. Matousek, J. Pach, M. Sharir, S. Sifrony and E. Welzl, Fat triangles determine lin-
early many holes, Tech. Report 174/90, Eskenasy Institute of Computer Sciences, Tel

Aviv University, May 1990. Also to appear in Proc. 32nd IEEE Symp. on Foundations
of Computer Science, 1991.

M. McKenna, Worst-case optimal hidden surface removal, ACM Trans. Graphics 6
(1987), 19-28.

12



[18]

[19]

[20]

21]

[22]

23]

[24]

28]

[26]

[27]

[28]

K. Mulmuley, An efficient algorithm for hidden surface removal, I, Computer Graphics
23 (1989), 379-388.

O. Nurmi, A fast line-sweep algorithm for hidden line elimination, BIT 25 (1985),
466-472.

M.H. Overmars and M. Sharir, Output-sensitive hidden surface removal, Proc. 30th
IEEE Symp. on Foundations of Computer Science, 1989, pp. 598-603.

M.H. Overmars and M. Sharir, Merging visibility maps, Computational Geometry,
Theory and Applications 1 (1991), 35-49.

M.S. Paterson and F.F. Yao, Binary space partitions with applications to hidden
surface removal and solid modeling, Discrete Comput. Geom. 5 (1990), 485-503.

F.P. Preparata and M.I. Shamos, Computational Geometry, an Introduction,
Springer-Verlag, New York, 1985.

F.P. Preparata, J.S. Vitter and M. Yvinec, Computation of the axial view of a set of
isothetic parallelepipeds, ACM Trans. Graphics 9 (1990), 278-300.

J. Reif and S. Sen, An efficient output-sensitive hidden surface removal algorithm
and its parallelization, Proc. {th ACM Symp. on Computational Geometry, 1988, pp.
193-200.

M. Sharir and M.H. Overmars, A simple output-sensitive algorithm for hidden surface
removal, ACM Trans. Graphics, 1991, to appear.

A. Schmitt, Time and space bounds for hidden line and hidden surface algorithms,
Eurographics ‘81, pp. 43-56.

LE. Sutherland, R.F. Sproull and R.A. Schumacker, A characterization of ten hidden-
surface algorithms, Computing Surveys 6 (1974), 1-25.

13






