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Abstract—Over the past decade, various methods for detecting
side-channel leakage have been proposed and proven to be
effective against CPU side-channel attacks. These methods are
valuable in assisting developers to identify and patch side-
channel vulnerabilities. Nevertheless, recent research has revealed
the feasibility of exploiting side-channel vulnerabilities to steal
sensitive information from GPU applications, which are beyond
the reach of previous side-channel detection methods.

Therefore, in this paper, we conduct an in-depth examination
of various GPU features and present Owl, a novel side-channel
detection tool targeting CUDA applications on NVIDIA GPUs.
Owl is designed to detect and locate side-channel leakage in
various types of CUDA applications. When tracking the execution
of CUDA applications, we design a hierarchical tracing scheme
and extend the A-DCFG (Attributed Dynamic Control Flow
Graph) to address the massively parallel execution in CUDA,
ensuring Owl’s detection scalability. After completing the initial
assessment and filtering, we conduct statistical tests on the
differences in program traces to determine whether they are
indeed caused by input variations, subsequently facilitating the
positioning of side-channel leaks. We evaluate Owl’s capability to
detect side-channel leaks by testing it on Libgpucrypto, PyTorch,
and nvJPEG. Meanwhile, we verify that our solution effectively
handles a large number of threads. Owl has successfully identified
hundreds of leaks within these applications. To the best of our
knowledge, we are the first to implement side-channel leakage
detection for general CUDA applications.

Index Terms—side-channel detection, GPU, CUDA applications

I. INTRODUCTION

GPU has become an important part of modern computer

architecture. The high parallel computing capability of GPUs

has enabled an increasing number of compute-intensive ap-

plications to be deployed on them using computing platforms

such as CUDA (Compute Unified Device Architecture) [1]

and OpenCL [2]. Moreover, with the rise of AI applications

such as ChatGPT [3] and Stable Diffusion [4], an increasing

amount of private data is being processed on GPUs.

Corresponding Author: Weizhong Qiang. This work was supported in
part by National Key Research and Development Program of China (Grant
No. 2022YFB4501500 and 2022YFB4501502) and National Natural Science
Foundation of China (Grant No. 62272181).

However, in recent years, researchers have discovered that

GPUs are also vulnerable to side-channel attacks. Some studies

have successfully applied existing side-channel attack methods

of CPUs to GPUs, like Prime-Probe [5], while others have cre-

ated new attack surfaces utilizing specific GPU mechanisms.

For instance, an attacker can exploit the memory coalescing

mechanism of NVIDIA GPUs to launch side-channel attacks

and steal cryptographic keys from AES operations [6].

Several hardware-based strategies have been proposed to

mitigate microarchitectural side-channel leakage [7]–[11].

However, their applicability is limited by the requirement

for hardware modifications. More prevalent approaches are

at the software level, primarily focused on eliminating mi-

croarchitectural traces associated with sensitive information in

programs [12], [13].

Identifying and locating potential side-channel leakages

in applications have sparked heated research in academia,

which is a crucial step in patching vulnerabilities [14]–[17].

Unfortunately, existing side-channel leakage detection tools

solely focus on CPU applications and have yet to cover GPU

applications. Furthermore, we argue that the proposed methods

cannot be effectively applied to detecting side-channel leakage

in GPU applications.

On the one hand, current static-analysis-based methods

typically model information flow [18]–[20], but GPU pro-

grams have different code patterns that pose unique challenges

for such solutions. Symbolic-execution-based methods [21],

[22] are also less effective in analyzing large-scale programs.

On the other hand, dynamic analysis-based methods [14],

[16], [17], [23] cannot capture the execution trace in GPUs

and cannot cope with huge amount of GPU threads. For

example, DATA [14], [24] claims to support multi-threading

trace tracking. Specifically, it directly records the trace of each

thread and performs differential analysis. However, the mem-

ory consumption increases proportionally with the number of

threads, hindering its adoption towards thread-intensive CUDA

applications.

Therefore, we present Owl, a side-channel leakage detection

tool for CUDA applications. Overall, Owl is able to locate
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Fig. 1: NVIDIA Ampere architecture.

GPU side-channel leakages on numerous types of CUDA ap-

plications, including cryptographic applications, deep learning,

multimedia processing, etc. Owl records the basic blocks and

memory addresses accessed from all threads of an executing

GPU application. Then, Owl constructs A-DCFGs from the

program traces and leverages the generated A-DCFGs for

differential detection and leakage analysis.

In summary, the contributions of this paper are as follows:

• We present Owl 1, a side-channel leakage detection tool

for CUDA applications that analyzes and locates side-

channel leakage in various CUDA applications.

• We devise a method for GPU program trace collection,

capturing the control flow information and memory ac-

cesses of each GPU thread within a CUDA application

and integrating them into a single A-DCFG.

• We introduce a novel side-channel leakage testing method

based on A-DCFG, which identifies basic blocks with

control flow leaks and instructions with data flow leaks.

This paper is organized as follows: Section II explains nec-

essary background information. Section III discusses related

works on GPU side-channel attacks, as well as side-channel

detection on both CPU and GPU. Section IV discusses side-

channel leakages in GPUs, our threat model, and provides

an overview of Owl. Section V,VI,VII present the detailed

designs of Owl’s key phases. Section VIII evaluates Owl

and analyzes the experimental results. Section IX discusses

possible side-channel leakage countermeasures. Section X

concludes this paper.

II. BACKGROUND

A. NVIDIA GPU

NVIDIA GPUs are widely recognized and extensively used,

boasting a well-established ecosystem. In the Ampere architec-

ture [25], as shown in Fig. 1, GPUs typically consist of three

1https://github.com/OwlCudaSCDetector/Owl.git
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Fig. 2: Threads organization in a CUDA kernel.

key memory components: global memory, constant memory,

and texture memory. Global memory serves as a shared storage

space accessible to all threads in a kernel. While sharing

similar functionality, constant memory is limited to read-only

access. Texture memory, on the other hand, is dedicated to

storing and loading 2D and 3D image data, mainly used for

texture mapping in graphics rendering.

The Ampere architecture incorporates numerous graphics

processing clusters (GPCs), which encompass texture units,

raster units, and streaming multiprocessors (SMs). The SMs

are vital organizational units within GPUs, where four process

blocks are responsible for performing core computational

operations. The process blocks within an SM share an L1

instruction cache and an L1 data cache, while the L2 cache is

shared among all SMs.

B. CUDA

NVIDIA GPU’s universal architecture adopts the CUDA [1]

programming model, which distributes tasks to multiple

threads for parallel execution to make full use of the parallel

processing capability of GPUs. For functions that utilize

CUDA for accelerated parallel execution (i.e. kernel func-

tions), additional thread organization is required to achieve

optimal computation efficiency. A kernel function, simply

called a kernel, is a GPU function invoked from the CPU

code.

The organizing of threads in CUDA is depicted in Fig. 2.

In the CUDA programming model, a thread serves as the

smallest execution unit, and each thread has its own thread

ID and execution context, and can access resources such

as global memory, shared memory, and registers. Multiple

threads collectively form a block with shared memory, en-

abling thread cooperation and synchronization. For larger-

scale parallel computations, blocks can be further organized

into a grid following a two-dimensional or three-dimensional

pattern. To schedule the thread’s execution, every 32 threads

are grouped into a warp, where threads within a warp execute
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the same instructions but operate on different data (i.e. SIMD,

Single Instruction, Multiple Data). A cooperative thread array

(CTA) is an alias for a block, and the SM dynamically assigns

warps to different CTAs to maximize hardware resource usage

and improve parallel efficiency.

In CUDA programming, the device code executes on the

GPU device, specifically designed for parallel computing tasks

within CUDA kernels. The host code runs on the host CPU and

is responsible for controlling the entire system and launching

the device code. Both host and device code perform data

transfer and synchronization operations to ensure the stability

and efficiency of the entire system’s operation.

Unlike in the host, when executing conditional branches in

the device, CUDA does not use jump operations but instead

employs a method known as predicated execution to control

thread branch execution. Specifically, each thread in a warp

utilizes a bit to indicate whether the thread is in an active

state. Only threads that satisfy the condition execute the

corresponding basic block of the conditional branch.

III. RELATED WORKS

A. Side-Channel Attacks on GPU

Modern web browsers usually require hardware acceleration

for certain computing tasks, such as leveraging GPUs to accel-

erate webpage rendering. Existing studies have demonstrated

recovering viewed webpages by monitoring memory usage and

access patterns [26]–[28]. Timing side-channel attacks have

also been proven feasible on cryptography applications like

AES and can be leveraged to recover cryptographic keys [6],

[29]–[33]. Similar to CPU counterparts, unsafe implementa-

tions of RSA’s modular exponentiation algorithm can lead

to the leakage of private keys [34], [35]. Additionally, GPU

side-channel attacks have expanded to deep learning models,

stealing their network structure and hyperparameters. Side-

channel leakages of these models are then utilized for model

extraction attacks (MEA). Prior side-channel attack techniques

typically involve contention of GPU resources [26], [36], [37]

such as PCIe detection [38]–[41] and PCIe congestion [42],

[43]. Other works have targeted GPUs in smartphones [44],

AR/VR systems [45] to infer user’s inputs, gestures, and other

sensitive information.

B. Side-Channel Leakage Detection

To our knowledge, a qualified side-channel detection tool

for CUDA applications should meet the following four re-

quirements: � Binary analysis; � Diverse targets; � Accurate

leakage positioning; and � Scalability. The rest of this section

explains these requirements in detail and whether existing

works have addressed them.

� Binary Analysis. Given that side-channel vulnerabilities

in programs are often intricately linked to microarchitecture,

binary analysis can offer certain advantages to their detection.

On the one hand, binary analysis is more accurate for analyz-

ing assembly code and can be applied to closed-source code.

On the other hand, the compilation and optimization process

can introduce side-channel leakages that do not initially exist

in the source code [50], [51]. Therefore, a majority of works

choose binary analysis [14]–[16], [52]–[55], while only a few

focus on detecting vulnerabilities in scripting languages [48].

Some studies examine the intermediate representation (IR)

of programs that facilitates cache analysis [22], [47], [56],

but similar to source code analysis, they also face challenges

in program transformation resulting from compilation and

optimization.

� Diverse Targets. The scope of sensitive information

that needs protection extends beyond cryptographic keys. For

instance, image processing applications that handle sensitive

user data [49], including medical image processing, as well as

the layered architecture and hyperparameters of deep learning

models are also critical assets that require protection. Quite a

few studies have primarily focused on detecting potential key

leakage in cryptography applications [15], [57]–[63]. Some

works have analyzed deep learning models and utilized side-

channel detection tools to identify adversarial inputs for classi-

fication networks [21]. Additionally, a recent study Manifold-

SCA [49] has highlighted the significance of media data, such

as text, images, and videos in side-channel analysis.

� Accurate Leakage Positioning. Leakage positioning is

essential for fixing side-channel vulnerabilities. Unfortunately,

most static detection tools rely on cache models to calculate in-

formation leakage and cannot achieve precise positioning [20],

[22], [52], [54]. In contrast, dynamic detection tools are rel-

atively more suitable for vulnerability positioning. It is worth

noting that excluding differences caused by non-deterministic

factors is crucial for accurate side-channel analysis [14], [17],

[49]. Specifically, relying solely on deterministic observations

can generate false positives attributed to non-deterministic

factors (e.g. oblivious RAM [64]) in the secret inputs.

� Scalability. Side-channel detection tools should be highly

scalable, making them available to practical applications of

various sizes and areas. Methods with high technical limita-

tions, such as abstract interpretation [19], [20], and symbolic

execution [15], [21], [52], [55], [59], face great challenges

in analyzing huge programs. Others are restricted to regular

single-threaded programs and do not consider complex multi-

threaded programs [14], [16], [17]. Although DATA [14], [24]

supports multi-threaded programs, it only records and conducts

differential analysis on the trace of individual threads, thus

limited to programs with few threads.

In addition, we assess the feasibility of existing works

on CUDA applications. As for �, binary analysis strategies

for CPU applications cannot be directly adopted for CUDA

applications due to architectural differences, and the accu-

racy of source-code-based and IR-based solutions declines

evidently [22], [46], [48]. As for �, cryptographic algorithms

are not the primary concerns on GPUs; instead, targets such as

multimedia processing and deep learning models require more

security attention. A majority of previous approaches [14]–

[16], [20], [22], [46]–[48] are confined to certain application,

hindering their wider adoption. As for �, although dynamic

detection approaches [16], [21], [47]–[49] perform much better

at locating program leaks than static ones [20], [22], [46], they
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TABLE I: Existing side-channel leakage detection works∗.

Blazer [46]CaSym [22]CacheD [15]DATA [14]CANAL [47]HyDiff [21]MicroWalk [16]Microwalk-CI [48]Manifold-SCA [49]CacheQL [17] Owl
� � �� � � �� � � � � � �
� � � � � � �� � � �� �� �
� � � �� � �� �� �� �� �� � �
� �� � � �� � � � � � � �
∗�, ��, � denote unable to support, partially support, and fully support.

often fail to consider the impact of non-deterministic factors

on the detection results. As for �, almost all existing methods

lack scalability for parallel programs. Although a subset of

static detection works do not consider program execution

and may be available to CUDA applications, varying CUDA

code patterns can hamper their effectiveness. Some dynamic

detection tools [14], [24] consider multi-threaded programs yet

with only a few threads. As a result, we claim that existing

works do not satisfy the aforementioned requirements and are

inadequate for CUDA applications, thus novel side-channel

leakage detection tools for this scenario are urgently needed.

IV. OVERVIEW

A. Side-Channel Leakage on CUDA

CUDA applications are typically designed to execute in

parallel in order to fully leverage the capabilities of GPUs.

These applications often utilize a significantly larger number

of threads compared to CPUs. However, the increasing number

of threads may bring significant volatility to side-channel anal-

ysis. More specifically, due to the parallel execution in GPUs,

the secret input may be divided into segments and processed in

multiple threads. As a result, if attackers only obtain leakages

from part of the threads, they cannot fully reconstruct the

complete secret input. Additionally, attackers cannot determine

whether the differences in control/data flow on a particular

thread are brought by the inputs or the observations from

different threads, as each segment may be different.

Another difference comes from the software architecture of

CUDA application. The entire CUDA application consists of

host code and device code, and they run on CPU and GPU re-

spectively. The device code is wrapped into a kernel and called

in host code as a function with arguments. During execution on

the GPU, calling different kernel functions or passing different

arguments leads to variations in the control/data flow of the

host code. This implies that the leakage in CUDA programs is

intricate, not only bound to the device code but also potentially

extends to the related host code.

Control and data flow leakage are two main types of side-

channel leakage. However, we believe that the two types

should be reconsidered for CUDA applications, as the impact

of the host code and device code on the GPU differs. Next, we

further categorize control flow leakage and data flow leakage.

Host control flow leakage and host data flow leakage oc-

cur on the host code. The presence of input-dependent control

or data flow in the program introduces variations in program

behavior, resulting in different microarchitectural states on

the CPU and forming a side-channel leakage. For example,

execution of different branches in the if-else statement may

lead to host control flow leakage, and accessing arrays may

lead to host data flow leakage. The above two types of leakage

have been extensively studied and discussed in academia,

targeting which a plethora of detection methods have been

proposed.

Kernel leakage also occurs on host code, but its impact

extends to GPUs. This type of leakage often arises when

the host code, during GPU-related operations, exhibits input

dependencies, such as invoking different types or quantities of

kernels under certain conditions. For instance, it may invoke a

kernel within an if statement while invoking another kernel (or

not invoking any) within an else statement. Compared to host

leakage, kernel leakage propagates differences in the control

and data flow of the host code to the microarchitecture of

GPUs, which can be observed by GPU attackers. Generally,

differences between kernels are relatively distinguishable to

the attacker. Therefore, an attacker can easily obtain informa-

tion about which and how many kernels are being executed in

the program. In most cases, kernel leakage is coarse-grained

so an attacker can only obtain a rough understanding of the

victim’s control flow. However, under certain settings, some

sensitive information such as hyperparameters of DNN models

is still susceptible to leakage.

In contrast, device control flow leakage and device data
flow leakage occur on device code and do not influence CPU

states. Similar to the host leakage, device leakage is derived

from input-dependent control and data flow in the device code.

The use of if-else statements, for loops, and accessing arrays

may also introduce device leakage. However, due to several

special mechanisms (e.g., CUDA predicated execution), there

are differences between CPUs and GPUs in their leakage

formation.

In this paper, we focus on kernel leakage, device control

flow leakage, and device data flow leakage, due to their direct

relation to GPUs. Nevertheless, the hardware architecture of

GPUs and the software architecture of CUDA bring several

new challenges to detecting the three types of leakage.

An initial challenge is the large number of threads in

the device code that significantly increases the difficulty in

tracking and recording execution traces. For individual threads

executing in the GPU, we need to track and record their execu-

tion contents. However, when the number of threads increases,

so does the amount of data that needs to be recorded. In

extreme cases, if a CUDA application fully occupies the GPU,

it can spawn millions of threads simultaneously, exploding the

amount of information that needs to be recorded.

Another challenge caused by massive threads is trace anal-

ysis. As previously mentioned, the differences observed in
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the execution of individual threads do not necessarily indicate

the presence of side-channel leakage. However, current side-

channel leakage analysis mainly addresses single-threaded

programs, and can not work effectively on CUDA applications.

Take DATA for instance, it makes differential analysis on all

traces in multi-threaded programs, implying that, to ensure

accuracy, it must correctly identify thread traces with the same

context from two sets of traces. However, as CUDA applica-

tions are often featured with massive threads, considerably

high analysis overhead (n times differential analysis for n
threads) makes it a daunting task for solutions like DATA.

The software architecture of CUDA applications also poses

challenges to side-channel leakage detection. Although the

device code alone executes in the GPU, its invocation and ar-

guments are controlled by the host code. Therefore, execution

details of the host code should also be covered, particularly

when it comes to kernel leakage, which is directly caused by

variances in control and data flow within the host code. Con-

sidering the above requirements, we need to implement cross-

hardware trace tracking for CUDA applications to accurately

record the variations in program control flow across CPU and

GPU.

B. Threat Model

In order to cover as many side-channel leaks as possible, we

consider a powerful side-channel attacker [14]. We assume that

the attacker can observe accurate, fine-grained, and noise-free

information targeting microarchitectural components within

the GPU (e.g., network-on-chip [65]) as well as the mem-

ory hierarchy (e.g., caches [5]). Consequently, the attacker

can construct complete runtime traces of the program (i.e.,

sequences of instructions, basic blocks, accessed memory

addresses) based on the observations. We assume that the

attacker can conduct offline analysis to establish the mapping

between the secret inputs and the corresponding execution

traces, thus the former can be recovered by observing the latter.

Furthermore, we consider the attacker can disable or bypass

the address space layout randomization (ASLR) of NVIDIA

GPUs.

Out of Scope. We only concentrate on side-channel leaks

on the GPU, thus we do not consider side-channel attacks

targeting data transmission channels (e.g., PCIe).

C. The Design of Owl

Owl is a differential-based side-channel leakage detection

tool targeting CUDA applications. Owl’s insight lies in its

ability to overcome the previously mentioned challenges,

enabling side-channel leakage detection for CUDA programs.

To obtain the correct trace of a CUDA application, we

employ two different instrumentation tools to track the CUDA

application separately, Pin [66] for the host code and NVBit

[67] for the device code. Both of them are dynamic binary

instrumentation tools so that the program’s original behavior

remains unaffected.

To address the challenges posed by multi-threading, we

adopt a special A-DCFG. Similar to regular DCFGs, we

use nodes to represent basic blocks, and edges to represent

transitions from one basic block to another. Additionally, we

enhance the nodes to record all memory accesses in every

thread, capturing information such as when and where the

accesses occurred. Similarly, the edges contain information

about the transitions in every thread. Hence, we can eliminate

redundant information within threads, effectively addressing

the issue of data explosion caused by multi-threaded tracking.

Furthermore, by performing differential analysis on the A-

DCFG instead of individual thread traces, we can analyze

the execution information of the entire program rather than

focusing on a specific thread. This approach greatly reduces

the computational overhead of the analysis process while

improving its accuracy.

The whole process of Owl consists of three phases, namely

the trace recording phase, the duplicates removing phase, and

the leakage analysis phase, as shown in Fig. 3.

Trace Recording Phase. During this phase, we refer to

user-provided inputs to collect the program’s execution traces,

including the kernels called, the basic blocks executed, and the

memory accessed by the program. We reconstruct the trace of

each kernel into an A-DCFG, then multiple A-DCFGs form

the program trace from each user-provided input; afterward,

these traces are initially handled and assessed.

Duplicates Removing Phase. In this phase, we eliminate

the inputs that generate duplicate traces. In CUDA applica-

tions, different inputs may also produce identical observations,

thus removing duplicate traces is vital for more efficient

leakage analysis. At this point, we decide whether the program

exhibits side-channel leakage by examining whether all inputs

generate identical traces.

Leakage Analysis Phase. During this phase, we expect

to confirm that the differences discovered in the previous

phase are genuinely derived from the inputs rather than the

random factors during program execution, which are non-

deterministic observations mentioned in Section III; later we

identify exact locations of leakage in the program. Specifically,

we repeatedly execute the program with fixed and random

inputs and then record the traces, on which we subsequently

perform leakage tests. By repeatedly executing fixed inputs,

we are able to distinguish differences resulting from random

factors. Then, we compare traces from fixed and random inputs

in order to identify their respective side-channel leakage.

Ultimately, we label the kernels and basic blocks that fail the

leakage tests as containing actual side-channel leakage.

Overall, Owl provides a new solution for detecting GPU

side-channel leakage in CUDA applications. Firstly, Owl

implements GPU side-channel leakage detection, including

both control flow leakage and data flow leakage, in order to

pinpoint leakage locations inside the program. Secondly, Owl

diminishes the interference of random factors during program

execution, thereby effectively reducing the false positive rate.

Thirdly, Owl supports various types of CUDA applications, in-

cluding cryptographic applications, deep learning frameworks,

multimedia applications, etc.
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In the following sections, we describe Owl’s key phases in

detail.

V. RECORDING TRACES

A. Tracing

As mentioned earlier, CUDA programs exhibit a more

complex software architecture. To obtain accurate and detailed

trace information, we employ different tracing strategies at

various levels of program execution. We divide the whole

execution process of CUDA applications into three levels. The

top-level (i.e., program level) involves the program calling

CUDA kernels during host code execution. The second level

(i.e., kernel level) involves each kernel dispatched to GPUs,

which is executed in warps concurrently. As warps are the

smallest scheduling units in CUDA programming, we can

simplify the CUDA software architecture by abstracting the

execution process into multiple warps while ignoring other

CUDA concepts such as blocks. Consequently, the third level

(i.e., warp level) involves each warp accessing basic blocks

and memory addresses. We track three levels of execution

accordingly:

Program Level. At the program level, since we are not

concerned with the trace information from the CPU side,

we only track CUDA-related information in the host code,

focusing on memory allocation and kernel invocations. Here

we define S as the secret input, k as a kernel function, and P as

the tested CUDA program. We write the device code sequence

during P execution as P = (k1, k2, . . . , kn), and its execution

trace can be denoted as TP = (Tk1
, Tk2

, . . . , Tkn
), where each

Tki corresponds to each invocation of kernel ki. Although

we consider parallel execution in GPUs, we do not consider

parallel execution in CPUs, thus TP is in chronological order.

Kernel Level. Every kernel generates multiple warps and

executes in parallel on GPUs. In practice, due to hardware

resource limitations (i.e. core number) and user customization,

some warps may queue up and wait for others to complete,

potentially resulting in another type of side-channel leakage.

However, we only consider code-related leakage and exclude

this type of leakage because of its volatility due to different

hardware scales and user settings. Henceforth, we consider

all warps under different blocks in a kernel as executing

simultaneously. We define Wk as the set containing all warps

generated by kernel k, which can be presented as Wk =
{w1, w2, . . . , wm}. Therefore, the corresponding trace set of

Wk will be TWk
= {Tw1

, Tw2
, . . . , Twm

}.

Warp Level. A CUDA warp consists of multiple threads

executing in parallel. However, due to predicated execution,

there is no need to record them separately. If a thread within a

warp does not need to execute a specific instruction, it will wait

for other threads to complete the execution of that instruction

instead of executing other instructions. This approach is em-

ployed to avoid warp divergence. Hence, whether a particular

instruction is executed by one thread within a warp does not

affect the control flow of the entire warp.

However, one active thread should be taken into account

if it executes memory-accessing instructions that incur side-

channel leakage. Therefore, we utilize a mapping to record

the actual memory accesses performed by all threads within

that warp, which holds pairs of addresses and the number of

accesses.

Here, Tw = (Tb1 , Tb2 , . . . ) records order of basic block bi
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accesses in the current warp where each Tbi corresponds to

a basic block within the warp’s associated kernel. Each Tbi

consists of Tm, the memory record of each memory access

instruction in the bi, while Tm contains information about the

memory address m and the total counts c of each accessed

memory.

B. Reconstruct

After obtaining information about each kernel invocation

and thousands of threads, Owl integrates the thread traces

within each kernel into a single A-DCFG. A-DCFG is ex-

tended from DCFG [68] with extra information on nodes and

edges, as described below:

• Similar to DCFG, each node N in our A-DCFG corre-

sponds to a basic block bi of the kernel, yet we extend the

node with memory access information. N records mem-

ory access information at multiple instructions, where

multiple memory records mj for each instruction. mj is

a compilation of memory records generated by different

warps during the j-th access to the basic block.

• Also similar to DCFG, we use edges to capture the tran-

sitions between basic blocks. Each edge is unidirectional

and maintains information about the starting basic block,

ending basic block, and the number of times the edge has

been traversed. Additionally, we also record information

about the previous edge in each edge, which will be

used in leakage analysis. Similarly, we overlay all warps’

transitions at the same basic blocks into a single edge.

• Our A-DCFG may have multiple start nodes and end

nodes, as different warps may execute different code

regions in the same kernel. Also, we do not record edges

or nodes that are not executed.

By reconstructing traces into A-DCFGs, we can remove

duplicate information from the traces, such as identical control

flow and memory accesses, significantly reducing our mem-

ory assumption while facilitating Owl in analyzing programs

with massive threads. Fig. 4 shows an example of A-DCFG

formation: Different warps share the identical control flow

transitions and their memory accesses with the same target

address position are aggregated accordingly. Note that multi-

threading related information such as the count of each control

flow transition (numbers beside the arrows) is not dropped

after the aggregation, but still preserved in the A-DCFG.

C. Implementation

We leverage NVBit [67], a dynamic binary instrument

framework designed for GPU applications, to record traces of

CUDA applications. During kernel startup, NVBit modifies the

target binary by replacing the original instruction with a jump

instruction that towards a trampoline code. In the trampoline

code, NVBit first saves the thread context, then executes the

user-defined instrumentation function, restores the program

context, executes the original instruction, and finally jumps

back. As the kernel code is modified, each launched thread

executes our instrumentation function, which allows Owl to

capture information from all threads. To avoid unnecessary

noise, we also disable the ASLR of both host and device.

When tracing kernel function information at the program

level, we find that using the initial address of the kernel

function is not reliable for distinguishing kernel functions.

Specifically, the kernel function address provided by NVBit

during runtime mismatches the address invoked in the user

code due to the compiler wrapping of the source kernel func-

tion, whose entry is replaced with the wrapping function. After

completing a series of operations, it then jumps to the actual

kernel function startup code. This leads to the following issues:

1) We are unable to distinguish kernel functions based on their

addresses, as they are all launched by cuLaunchKernel2

at the same address. Nevertheless, this problem can be re-

solved by obtaining the parameters of cuLaunchKernel.

2) Furthermore, we are also unable to distinguish different

invocations of the same kernel function at different positions,

as their parameters are identical. This can lead to erroneous

results in our subsequent analysis of kernel internals, such as

analyzing different kernels or kernels in different contexts. To

address this, we use the call stack during the invocation of

cuLaunchKernel as an identifier for the kernel function.

This approach resolves the two aforementioned issues since

the differences between different kernel functions and their

invocation positions are reflected in their call stacks.

Additionally, similar to programs running on a CPU,

CUDA applications also need to request memory allocation

to store data, which is typically accomplished by invoking

cudaMalloc3 in the host code, and the memory address

returned from cudaMalloc is affected by the memory

layout, which can result in changes to accessed memory

addresses. Therefore, we instrument the host code through

Pin [66] to obtain memory addresses and sizes to be allocated

at cudaMalloc call sites, and convert memory addresses to

offsets during tracing.

When tracing at the kernel level, NVBit sends trace infor-

mation for all warps to the monitor. In the monitor, we identify

different warps using both warp IDs as well as block IDs (warp

IDs are unique in different blocks), and maintain the context

of their traces.

At the warp level, we instrument two conditions in the

CUDA kernel: basic block accesses and memory accesses.

Upon entering a new basic block, the kernel sends the basic

block ID which is the offset of the basic block inside the

kernel, as well as the warp ID and block ID. When memory

accesses occur, the kernel sends the target memory addresses

and memory types4, allowing for precise comparisons in our

subsequent analysis.

2This denotes a family of kernel launch functions: cuLaunchKernel,
cuLaunchKernel_ptsz, etc.

3This represents a family of memory allocation functions: cudaMalloc,
cudaHostAlloc, cudaMallocHost, cudaMallocManaged,
cudaMallocAsync, and cudaMallocFromPoolAsync, etc.

4According to NVBit, we categorize memory types into the follow-
ing groups: None, Local, Generic, Global, Shared, Constant,
Global_to_Shared, Surface, Texture.
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int foo(int key, int array[]) {
int value;
while (key != 0) { �

if (key & 0x1) { �
value += array[key]; �

}
key = key >> 1; �

}
return value; �

}
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Fig. 4: An example of A-DCFG formation.

VI. FILTERING TRACES

We expect to achieve two goals in this phase. Firstly, we

expect to determine whether the program has potential side-

channel leakage; secondly, we wish to extract inputs with

particular traces and filter redundancy inputs in order to reduce

the time cost in the leakage analysis phase.

In general, we achieve the targets by comparing each pair

of traces to examine their consistency. We consider inputs that

generate identical traces as the same class and believe that

inputs of the same class have equal side-channel characteristics

and do not leak side-channel information. Hence, we randomly

select one input from each class for leakage analysis to avoid

redundancy. On the one hand, we consider the program as

side-channel leakage-free when there is only one class which

implies that all traces are identical; on the other, we consider

two traces as different (i.e., showing potential side-channel

leakage) as long as they involve distinct kernel calls or if the

A-DCFGs within the same kernel are different.

However, one possible case is that the initial user-provided

inputs may not exhibit the side-channel leakages in the pro-

gram. To mitigate this issue, the user can add more initial

inputs. As extra initial inputs mean more execution path

coverage, Owl is more likely to discover potential side-channel

leakages in the program. Also, the overhead brought by

additional inputs is controlled because inputs of the same class

are filtered and not forwarded to the leakage analysis phase.

VII. LEAKAGE ANALYSIS

In the leakage analysis phase, we determine whether the

differences in the execution traces are statistically input-

dependent and identify their types and locations. More specifi-

cally, we repeatedly execute the program and record its traces

with fixed inputs filtered in the previous phase and random

inputs. Afterward, we compile the traces into various types of

histograms, which are subsequently used for leakage testing.

The leakage testing statistically checks whether histograms

follow the same distribution.

A. Evidence

Before conducting distributed testing, we merge multiple

traces obtained from repeated executions into a single piece

of evidence. Generally, we generate two types of evidence,

Efix and Ernd. Efix is derived from fixed inputs, which are

traces produced by filtered user inputs and then merged. Ernd,

on the other hand, is obtained by merging traces from random

inputs. The merging process is shown as follows:

1) We utilize the Myers algorithm to compare two trace

sequences from Efix and Ernd, then we align the

sequences referring to kernel invocations.

2) For identical kernel invocations, we increment their

invocation count and merge their DCFG as well. The

algorithm for merging DCFGs is similar to the one used

in the trace recording phase for merging warp traces.

We aggregate information from each node and edge in

the two DCFGs.
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3) For distinct kernel invocations, we directly add them to

the evidence.

Efix and Ernd contain the statistical features of the pro-

gram’s traces under fixed and random inputs, respectively. The

input dependency may yield differences in the features, which

is in line with our purpose. For instance, input-dependent

memory accesses can lead to variations in the distribution of

memory addresses and access frequencies between fixed and

random inputs. However, the differences can also stem from

non-deterministic factors within the program (e.g., random

numbers). Therefore, we employ distribution testing to exclude

differences in the evidence that are not genuinely input-

dependent.

B. Distribution Test

Previous works [69], [70] have widely used Welch’s t-test

for the distribution test, but we use Kolmogorov-Smirnov (KS)

test for a more generic assumption that does not require the

traces to satisfy a normal distribution.

We assume Xf = {x1, x2, . . . , xn} and Yf =
{y1, y2, . . . , ym} are two independent random samples of

feature f generated from Efix and Ernd, and the empirical

distribution functions are denoted as

FY (t) =
1

m

m∑
i=1

Iyi≤t FX(t) =
1

n

n∑
i=1

Ixi≤t (1)

where I is the indicator function. The null hypothesis of the

KS statistics is that X and Y belong to the same probability

distribution and the KS statistic DX,Y is calculated as

DX,Y = sup |FX(t)− FY (t)| (2)

We reject the null hypothesis if the KS statistic DX,Y

exceeds the significance threshold Dn,m, which means the

deviation of both samples is significant. The significance

threshold is calculated as

Dn,m =

√
− ln(

α

2
) · 1

2
·
√

n+m

n ·m (3)

where α is the confidence interval from 0 to 1.

Usually, we use p-value and compare it with the confidence

level α, and the p-value of KS test is calculated as

pX,Y = 2e−2(DX,Y )2 n·m
n+m (4)

We consider X to have a significant deviation from Y if

pX,Y < (1 − α) and consider it as a failed test. The success

of the test indicates that the feature probability distribution

of fixed inputs resembles that of random inputs, in other

words, it is random factors rather than inputs that introduce

the differences.

C. Leakage Test

During the leakage test, we employ feature extraction meth-

ods tailored to various types of leaks.

For kernel leakage, after obtaining two pieces of evidence

merged from fixed-input traces and random-input traces re-

spectively, we determine the presence of kernel leakage by

comparing the differences in their kernel invocations. The

differences include: 1) unaligned kernel invocations (i.e., the

invocation is present in one while absent in another). 2) the

aligned kernel invocations with different invocation counts.

The differences reveal whether the program has vulnerabilities

in the host code that may cause GPU side-channel information

leakage.

For aligned kernels, we further analyze their inner execu-

tion. To verify the existence of device control flow leakage
in the kernel, we firstly extract the control flow information of

each node in the A-DCFG. Considering node N is executed

n times, and each execution generates a pair of 2-tuples

(src, dst), indicating the transition from one basic block to

another (We consider the src of the first basic block and the

dst of the last basic block as a special type of basic block.).

Thus, we can use two vectors to represent the src and dst of

N , shown as:

I = (x1, x2, x3, . . . , xk),

k∑
i=1

xi = n (5)

O = (y1, y2, y3, . . . , yp),

p∑
j=1

yj = n (6)

where xi and yj represent the respective counts of each type of

src and dst. Thus, for N , there exists a control flow transition

matrix Ak×p that satisfies:

I1×k ·Ak×p = O1×p (7)

According to the calculation formula of the matrix, yi =
a1ix1 + a2ix2 + · · · + akixk, representing the probability

distribution of the source of a specific output control flow.

As I does not necessarily satisfy full column rank, A would

have infinite solutions. However, we can construct a feasible

solution by counting the number of each type of (src, dst).
Referring to the control flow transition matrix, we can model

the changes in program control flow under multi-threading

scenarios and deploy differential analysis towards them.

To identify device control flow leakage, we generate a

control flow transition matrix for every node in the A-DCFG

and compile the matrices into histogram Hcf . In every Hcf ,

the x-axis represents the control flow and the y-axis represents

the corresponding element in the control flow transition matrix

Ak×p.

H = (a11, a12, . . . , a1p, a21, . . . , akp) (8)

If a pair of control flow transition matrices from the fixed

and random inputs fail the distribution test, we conclude that

there is a device control flow leakage in the basic block, and

consider the current basic block as the leakage location.

Regarding device data flow leakage, we focus on mem-

ory access differences at the same instruction. The his-

togram Hi
addr records the address offsets of accessed mem-

ory (x-axis), as well as the number of times each ad-

dress is accessed (y-axis). For every instruction’s memory

records (m1,m2, . . . ,mn) in N , we compile them into
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(H1
addr, H

2
addr, . . . , H

n
addr), and we compare every pair of in-

structions from fixed and random inputs following the memory

access order. However, for different inputs, the access count

for each instruction may vary, so memory accesses in the

extra instruction accesses do not have counterparts to form

comparison pairs. Note that such differences are essentially

due to control flow rather than data accesses, so we refer to

them as control flow leakage. Besides, these extra basic block

accesses are reflected in their control flow transition matrix

where we can simply exclude them during the previous control

flow leakage tests. For the remaining usual cases (i.e., memory

access differences come from a pair of instruction accesses),

we claim the existence of device data flow leakage if any

instruction’s Haddr fails the distribution test.

VIII. EVALUATION

As described in Section III, we believe that a side-channel

detection tool for CUDA applications should have sufficient

scalability to detect various types of real-world programs and

accurately locate the leakage positions to help developers

identify vulnerabilities. Therefore, we evaluate Owl to answer

the following research questions: RQ1: Can Owl identify side-

channel leakage in CUDA applications? How accurate does

Owl’s detection work? RQ2: What is the memory overhead of

Owl, and can it effectively scale to analyze GPU applications

with a large number of threads? Although existing tools are not

specifically designed for CUDA applications, we would like

to explore their effectiveness and ask the RQ3: Are existing

tools applicable to CUDA applications?

A. Evaluation Setup

For the following experiments, we execute 100 times for

both fixed and random inputs in the leakage analysis phase,

and set the confidence level to 0.95. The details of our

experiment platform are listed in Table II.

We evaluate Owl in various types of CUDA programs,

including a cryptographic application, Libgpucrypto, a popular

deep learning framework, PyTorch, and a closed-source image

processing tool, nvJPEG.

TABLE II: Parameters of the experiment platform.

Description Value
CPU Intel i9-12900 @ 2.40GHz
GPU NVIDIA RTX A4000
OS Ubuntu

Kernel 6.1.22
NVIDIA driver 525.105.17

CUDA 12.0

B. Answer to RQ1

TABLE III: Leaks detected by Owl.

Programs Kernel leaks D.F. leaks C.F. leaks
Libgpucrypto 0/0 66/69 7/7

PyTorch 8/8 8/11 6/8
nvJPEG 0 45 98

To answer RQ1, we conduct detection on Libgpucrypto5’s

AES and RSA encryption, several functions6 in PyTorch, as

well as the encoding and decoding processes of the nvJPEG,

followed by manual analysis of the detected leaks to determine

whether they are related to secret inputs, to assess Owl’s

accuracy. Table III shows the results.

In evaluating Libgpucrypto’s AES and RSA encryption,

Owl initially reports all the 18 control flow leaks, 173 data

flow leaks, and zero kernel leaks. However, we find that

some leaks at different basic blocks point to the same code

location, which we attribute to loop unrolling performed by

the CUDA compiler. Therefore, we further examine and filter

these locations and screen the results into 7 control flow leaks

and 69 data flow leaks. Through manually analyzing the 76

detected leaks, we confirm that 7 control flow leaks and 66

data flow leaks indeed depend on secret inputs, such as array

accesses during table lookups in AES, as well as if-else
branches in RSA.

As for PyTorch, we have identified 8 control flow leaks, 11

control flow leaks and 8 kernel leaks, among which 6 control

flow leaks, 8 data flow leaks, and 8 kernel leaks have input

dependence. We find that the optimizations for the special

tensor in PyTorch cause these leaks. For example, one kernel

leakage lies in the tensor serialization process, where PyTorch

calls kernels based on whether the tensor is zero: Non-zero

tensors trigger additional kernel calls. Besides, we find that the

leaks are locally attached to a few functions, while most func-

tions are leakage-free. We believe there are two primary rea-

sons: Firstly, many functions in PyTorch are purely numerical

computation functions, characterized by constant execution,

thus do not exhibit side-channel leaks. Secondly, the predicate

execution can mitigate side-channel leakages. In Libgpucrypto,

as the keys are consistent in every thread, all threads execute

the same control flow even if control flow dependency on the

key exists. In contrast, secret inputs (e.g., tensors) in PyTorch

are partitioned so the threads receive different secret inputs.

However, according to predicated execution, even if there are

different control flows within a warp, each thread in the warp

will go through all basic blocks, thus revealing no informa-

tion of the control flow. Take PyTorch’s max_pool2d for

example, a recent study [71] has reported side-channel leakage

in the CPU implementation of max_pool2d. Although the

implementation of max_pool2d in CUDA is nearly identical

to its CPU counterpart, it does not exhibit any control flow

leakage in our findings.

In evaluating nvJPEG, we process image data from the

COCO-2014 dataset [72] to a fixed size, from which we

randomly select as secret inputs. For the encoding process

in nvJPEG, we have identified 98 control flow leaks, 45

data flow leaks, and zero kernel leaks, but none is found in

the decoding process. Unfortunately, due to the absence of

nvJPEG’s source code, we are unable to conduct more detailed

5https://github.com/lwakefield/libgpucrypto
6Including Tensor.__repr__, avgpool2d, maxpool2d, tanh,

relu, sigmoid, softmax, conv2d, linear, crossentropy,
mseloss, nllloss.
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Fig. 5: The growth of Owl’s trace size by input size.

analysis. Nevertheless, we have already disclosed our findings

to NVIDIA.

Overall, Owl has identified hundreds of side-channel leaks

within Libgpucrypto, PyTorch, and nvJPEG. In simple appli-

cations like Libgpucrypto, Owl achieves a 96% accuracy rate,

while in a large-scale projects like PyTorch, Owl achieves

81%. Furthermore, the case of max_pool2d in PyTorch

demonstrates Owl’s sufficient ability to distinguish side-

channel leakage from GPU to CPU, thereby reducing the false-

positive rate. We also analyze the false positives generated by

Owl and find that they usually reside in trivial parts of the

code, such as thread synchronization (i.e., _syncthreads).

The primary factor of false positives is that these parts may be

indirectly affected by the inputs and Owl’s distribution testing

would fail to eliminate non-determinism in them. Notably, the

evaluation of nvJPEG validates Owl’s applicability towards

side-channel leakage detection for closed-source software.

This is particularly crucial in the CUDA ecosystem, where

a majority of influential tools are closed-source, such as

cuDNN and cuBLAS. Users of these closed-source programs

are often left desperate for side-channel protection, as program

providers usually overlook side-channel issues.

C. Answer to RQ2

For this part of evaluation, we use PyTorch, nvJPEG, and

a dummy program as the test subjects. The reason we do

not test Libgpucrypto is that the number of threads of it is

not modifiable. Therefore, we design a dummy program that

performs random array accesses to simulate the S-box lookup

operation in the AES algorithm. We gradually raise the number

of running threads by increasing the input size and record the

corresponding trace size, the results of which are shown in

Fig. 5.

When tracing the dummy program, the trace size initially

increases with the thread number, but the growth becomes

plateau later. The previous growth is primarily due to the pro-

liferation of new memory accesses. When fewer threads run-

ning, different threads mostly access non-overlapping memory

locations, thus the increase of threads generally means more

new accesses and greater trace sizes. However, as the thread

number continues to grow, memory addresses accessed by

threads become repetitive and the number of distinct memory

accesses gradually saturates. At this point, thanks to Owl’s

ability to merge duplicate memory accesses and reduce data

redundancy, the trace size will end up stabilized.

However, we receive a different pattern on nvJPEG, where

nvJPEG’s trace size persistently grows in proportion with the

increase of the input size. As we add the thread number

by increasing the input size to where each thread may only

process a single pixel of the image, different threads would

still access non-overlapping memory addresses. Arguably, the

effectiveness of Owl’s merging strategy may diminish when

newly added threads contribute significant new memory ac-

cesses. Nevertheless, Owl still successfully manages to record

the trace of the nvJPEG program, including 128,000 threads

(i.e., 100x1000 resolution), using only approximately 200MB

of memory.

When testing PyTorch, we find that most functions in

PyTorch behave similarly to nvJPEG, i.e., their trace sizes

increase linearly with input size. However, we find that the

Tensor.__repr__ function does not increase its thread

count with input growth. The function only uses a fixed

number of threads to access individual data in the matrix so

its trace size remains constant.

According to the evaluation results shown in Fig. 5, we

observe that size of traces for memory allocations and kernel

invocations does not changed with increasing input size. This

outcome is primarily because both events occur within the

host code. Specifically, the former is typically used to allocate

memory space on the GPU for storing input-related data. In

Owl, we record this using the starting address and size, so the

record of memory space allocation remains constant regardless

of the input size. The latter is usually initiated through the

cuLaunchKernel. Generally, regardless of changes in input

size, the kernel is only called once rather than multiple times.

Therefore, for Owl, the main scalability challenges arise from

tracing the executions within the kernels.

The evaluation result demonstrates three distinct patterns of

trace size growth: � fixed threads, where thread number is

independent of the input, such as Tensor.__repr__; �
volatile threads with limited memory accesses, similar to the

dummy program; � volatile threads with unlimited memory

access, like nvJPEG. From the evaluation results, Owl copes

well with � and �, meaning that regardless of the input, the

trace size is reasonable and manageable. As for �, Owl’s

approach indeed has limitations, as the proliferation of new

memory accesses makes it challenging to control the trace size.

Fortunately, since Owl can eliminate control flow redundancy

and repeated memory accesses among multiple threads, it still

remains highly effective in analyzing thread-intensive CUDA

programs.

Table IV shows Owl’s performance. Notably, the analysis

time and memory consumption for PyTorch are significantly
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TABLE IV: Performance of Owl during the analysis of Libgpucrypto, PyTorch, and nvJPEG. Sizes and time in Trace Collection
are per trace. RAMs in Total are the maximum memory used during the analysis.

Trace Collection Evidence Collection Distribute Test TotalFunction
Size(MB) Time(s) Traces Time(s) Traces Time(ms) RAM(GB) Time(min.)

AES 19.64 5.02 200 0.932 200 132.84 1.16 19.0
Libgpucrypto

RSA 250.42 15.60 200 4.602 200 39.65 2.32 52.8
Tensor. repr 0.21 49.30 200 0.009 200 0.39 9.55 164.4

avgpool2d 0.02 46.60 200 0.002 200 0.05 9.49 155.3
maxpool2d 0.02 46.46 200 0.002 200 0.05 9.50 154.9

tanh 0.02 46.45 200 0.002 200 0.04 9.49 154.9
relu 0.02 46.43 200 0.002 200 0.04 9.49 154.8

sigmoid 0.02 46.34 200 0.002 200 0.04 9.49 154.5
softmax 0.03 46.37 200 0.003 200 0.07 9.48 154.6
conv2d 2.81 61.61 200 0.052 200 0.46 12.74 205.4
linear 2.22 48.91 200 0.045 200 0.31 10.93 163.1

crossentropy 0.09 47.09 200 0.004 200 0.12 9.52 157.0
mseloss 0.04 46.99 200 0.003 200 0.10 9.52 156.6

PyTorch

nlloss 0.07 46.54 200 0.003 200 0.05 9.48 155.2
encoding 10.78 6.91 200 0.130 200 1.91 0.96 23.1

nvJPEG
decoding 5.85 4.48 200 0.137 200 0.84 0.92 14.9

higher than those for Libgpucrypto and nvJPEG, yet the trace

size is much smaller for PyTorch. This abnormal increase

in time and memory consumption is primarily due to Owl’s

tracing mechanism, which entails the tracing of the Python

virtual machine during the analysis of PyTorch. Additionally,

since Owl’s tracing of kernels operates in parallel, it demon-

strates commendable performance when tracking applications

like nvJPEG, which utilize a large number of threads.

D. Answer to RQ3

We answer this research question by evaluating two typical

tools: DATA [14], a dynamic analysis tool, and haybale-

pitchfork [73], a tool based on LLVM IR analysis.

DATA utilizes Pin to monitor execution traces, but it cannot

effectively detect side-channel leaks within CUDA kernels

because it fails to observe traces inside the GPU. However, our

evaluation showcases DATA’s potential in identifying kernel

leaks, as they are essentially originated from control-flow leaks

of the host code.

For haybale-pitchfork, given that CUDA source code can be

converted into LLVM IR, we attempt to cover its detection to

CUDA kernels. However, this results in a substantial number

of false positives, where we discover that it erroneously

flags array accesses determined by thread IDs (a common

practice in CUDA programming) as potential side-channel

leaks. Furthermore, it misidentifies control flow leaks as it

fails to account for predicate execution.

According to our evaluation of DATA and haybale-

pitchfork, we argue that existing tools are generally ineffective

in identifying side-channel leaks of CUDA programs, particu-

larly those related to the device code. To summarize, tools

relying on dynamic and binary analysis are insufficient in

monitoring kernel operations; and tools based on source code

or LLVM IR analysis have yet to consider CUDA-specific

characteristics such as multi-threading, leading to considerable

false positives.

IX. COUNTERMEASURES

Side-channel leakages have been widely used to launch

model extraction attacks [5], [37], [38], [41], [74]. Exist-

ing work has proposed some relevant defense measures,

including modifying hardware to eliminate memory access

leakages [11], [38] and implementing DNN model obfusca-

tion [13], [75], [76]. However, not all obfuscation strategies

can guarantee sufficient security [75]. More general defense

methods have also been proposed, such as hardware iso-

lation [8], clearing microarchitectural information [7], and

hiding secret-data-dependent memory access patterns [12].

The scatter-gather scheme has initially been used for CPU

side-channel protection, and some work has applied it to

encryption algorithm implementations on GPUs [77].

X. CONCLUSION

In this paper, we propose Owl, a side-channel leakage

detection tool specifically designed to identify side-channel

leakages in CUDA applications, addressing the current ab-

sence of GPU side-channel leakage analysis solutions. Owl

captures the kernels launched within CUDA applications and

integrates the traces of multiple threads for each kernel into

a single A-DCFG, enhancing the accuracy and scalability

of the detection process. We propose a statistical testing

method based on A-DCFG to locate potential side-channel

leaks in a program. Lastly, we evaluate Owl on Libgpucrypto,

PyTorch, and nvJPEG, the results of which demonstrate that

Owl can effectively identify and locate real side-channel leaks

in the programs. Moreover, we believe that our DCFG-based

dynamic detection approach can also be applied to other

similar SIMT architectures, as is not coupled with any specific

features of CUDA or NVIDIA device.
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