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Abstract

Where a structural analysis can be produced for a musical artefact,

variants of the artefact can often be obtained by ‘inverting’ the analysis,

in much the same way we produce novel sentences from a grammar. The

paper describes use of information theory for purposes of deriving struc-

tural analyses of sequences, and shows how the method can be used with

musical data, for purposes of generating novel musical patterns.
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1 Introduction

The paper introduces use of information theory (Shannon, 1948; Shannon and
Weaver, 1949) for purposes of obtaining analyses in the form of self-redundancy
structures. It shows how these can be used for generative purposes. Where
music can be put into a purely sequential representation, the method can be
used to generate variants of existing compositions. Some sample outputs are
examined. A number of other pieces produced using the same method can be
played from the web page at www.chrisThornton.eu/replex-music.html.

The paper divides into four sections. Section 2 contains relatively technical
material relating to the method used. Sections 3 and 4 examine the results
obtained. Section 5 offers some concluding comments. It is possible to skip
Section 2 if necessary.

2 Informational uncertainty

The method uses the uncertainty measure from information theory (Shannon,
1948; Shannon and Weaver, 1949). This quantifies ‘degree of choice’. Given

1

Dagstuhl Seminar Proceedings 09291 
Computational Creativity : An Interdisciplinary Approach 
http://drops.dagstuhl.de/opus/volltexte/2009/2219



some set of outcomes, uncertainty is defined to be the entropy of the probabilities
applied:

entropy = −

∑

i

Pi log Pi

where Pi is the probability of the i’th outcome. Entropy increases with both
the number of outcomes and with the flatness (i.e., indifference) of the proba-
bilities, in accordance with intuition about how uncertainty behaves (Shannon,
1948; Shannon and Weaver, 1949).

Regarding the possible outcomes of sun or rain, for instance, if the proba-
bilities attributed are P(sun) = 0.7 and P(rain) = 0.3 the level of uncertainty
is

0.7 log 0.7 + 0.3 log 0.3 = 0.88

With logs taken to base 2 (as they are throughout the paper), this value
expresses the level of uncertainty in ‘bits’.

Increasing the flatness of the distribution, we might have P(sun) = 0.6 and
P(rain) = 0.4. This has the effect of increasing uncertainty. The new entropy
value is then correspondingly higher, at

0.6 log 0.6 + 0.4 log 0.4 = 0.97

Where something serves to eliminate some element of uncertainty, the infor-
mation content of that thing is defined to be the amount of uncertainty elim-
inated, regardless of what the ‘thing’ actually is. Should evidence of window
drips serve to change probabilities to P(rain) = 0.8 and P(sun) = 0.2, uncer-
tainty drops to 0.72. The information content of the evidence (in this context)
is then 0.88 − 0.72 = 0.16 bits.

2.1 Self-redundancy of sequences

Key to the proposed method is the concept of self-redundancy. For present
purposes, the self-redundancy of a sequence is defined to be the maximum en-
hancement of mean symbol content that can be achieved through addition of
uncertainty to the sequence. In general, addition of uncertainty has the effect
of reducing symbol content. However, there is the possibility of symbols being
eliminated altogether, which may produce an increase. Addition of uncertainty
may cause mean symbol content to rise or fall then.

Consider the letter sequence ‘a b c d b c a’. Imagine that we replace the third
element with a choice between ‘c’ or ‘a’. The uncertainty for an equiprobable,
two-way choice is log 2 = 1 bit. If each of the original elements of the sequence
contained 3 bits of information, we had 7 x 3 = 21 bits to start with. Addition
of the uncertainty relating to the third element — uncertainization as it will be
termed — produces a loss of 1.0 bit of information. Mean symbol information
(MSI) then falls to (21-1)/7 = 2.9.
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Uncertainty can also be added by creating a choice between subsequences.
Consider the choice between the 2-element subsequence starting at position two
and the 2-element subsequence starting at position five. Both of these are ‘b c’
so the choice has only one outcome: there is zero uncertainty. Say we eliminate
the third and sixth elements, and make the second and fourth elements be this
‘choice’. Counting those involved in the choice, we have a total of seven symbols
— the original figure. The MSI then stays constant at 21/7 = 3.0 bits.

In general, there are many ways of adding uncertainty to a sequence, includ-
ing cumulative regimes where one set of choices is superimposed over another.
Figure 1 illustrates a range of four cases (labeled A-D) using the sequence from
above. Figure 2 provides a further four cases (labeled E-H). The general idea in
these schematics is that uncertainizations of the original sequence are displayed
as reformulations on a bottom-to-top, hierarchical basis, with arcs indicating
the choices introduced.

a b c d b c a

a b c b c a-1

MSI  = (21-1)/7 = 2.9

a b c d b c a

a b c b a-1

MSI = (21-2)/7 = 2.7

-1

a b c d b c a

MSI = (21-0)/7 =   3.0

Content 3 x 7 = 21 bits

a b c d b c a

a -0 -0d a

MSI = (21-0)/7 = 3.0

(A) (B)

(C) (D)

Null uncertainization

Figure 1: Illustrative uncertainizations of ‘a b c d b c a’.

Case (A) from Figure 1 represents the ‘null’ uncertainization: no change is
made to the original sequence. On the assumption that each element is a choice
between eight letters, the original (baseline) MSI is log 8 = 3 bits. Case (B)
illustrates a minimal uncertainization in which the fourth element becomes a
choice between ‘c’ and ‘d’. This produces a loss of 1 bit of information, causing
MSI to fall to 2.9 bits. Case (C) is similar but involving uncertainization of two
elements of the sequence, with the loss of 2 bits of information.

Case (D) is a more atypical. Here, the second and fourth elements become
a choice between the 2-element subsequence commencing at position two and

3



the corresponding subsequence commencing at position five. Because these are
identical, we have zero uncertainty and therefore zero information loss. We also
have elimination of some symbols but, overall, the symbol count remains static.
Counting in the elements of the subsequence, we have seven symbols in total,
producing a MSI of 3.0 bits (the baseline figure).

Turning now to Figure 2, case (E) illustrates cumulative uncertainization.
Initially, we replace the elements at positions four and seven with a choice
between ‘d’ and ‘a’. We then create a choice between the 3-element subsequence
starting at position two, and the 3-element subsequence starting at position
five, introducing this as the second and third element of the subsequence. The
choice between ‘d’ and ‘a’ produces an information loss of 1.0 bit. But this is
incurred in two places. The overall loss is then 2.0 bits. But we now have only
six symbols in use so MSI rises to 3.2. Here we have enhancement of symbol
content, providing evidence of self-redundancy.

a b c d b c a

a b c b-1 -1c

a -1 -1

MSI = (21-2)/6 = 3.2

a b c d b c a

a -1 -1 c

a -2 -2

MSI = (21-4)/7 = 2.4

a-1 -1

c a

a b c d b c a

-1 -1c

b-1

MSI = (21-3)/7 = 2.6

-1

b

b c b

-1 -1

a b c d b c a

-2 -2-2 -2-2 -2 -2

MSI = (21-14)/7 =  1.0

(E) (F)

(G) (H)

Figure 2: More uncertainizations of ‘a b c d b c a’.

Cases (F) and (G) illustrate the way in which cumulative uncertainization
may have the effect of reducing MSI below the baseline. In case (F), four
elements of the sequence are replaced with two-way choices, enabling a choice
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between 2-element subsequences, effecting a loss of 2.0 bits of information. The
general effect is loss of 4.0 bits of information but without there being any
change in the number of symbols. The MSI falls to 2.4 bits. Case (G) is similar,
although in this case only 3.0 bits of information are lost, producing a mean
content of 2.6 bits.

Case (H) represents a rather extreme case of information loss. All seven ele-
ments of the sequence are replaced with four-way choices, producing a combined
information loss of 14.0 bits. With seven symbols in use, mean content falls well
below the baseline, to just 1.0 bit.

Self-redundancy has been defined to be the maximum enhancement of mean
symbol content that can be achieved through uncertainization. In effect, it
measures how much informational capacity is saved by moving to an optimal
representation, and it is in this sense that it measures ‘redundancy’. More intu-
itively, it can be seen as measuring the savings that can be made by introducing
‘generalizations’ (in the form of uncertainizations) for subsequences showing
identical or nearly identical repeats. This interpretation helps to make sense of
case (E) particularly. Here, the second level implicitly defines a generalization
covering patterns of the form ‘b c ?’, where ‘?’ can be either ‘d’ or ‘a’. The
enhancement of MSI that is then achieved can be viewed as resulting from the
way in which this generalization captures the relevant pattern of repeats.

2.2 Concentrative uncertainization

The general principle governing enhancement of mean content (and thus exis-
tence of self-redundancy) may now be apparent. Where the sequence exhibits
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Figure 3: CID curve showing point of maximum information concentration.
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repeated or nearly repeated patterns, there is the possibility for uncertainization
to exploit the regularity through creation of uncertainized elements that gener-
alize over the relevant selections. The more effectively this is done, the greater
the mean content. Exploitation of a particular pattern may require a partic-
ular degree of information loss, however. Thus, we expect that the maximum
achievable MSI will vary depending on the amount of loss which is introduced.

This leads to the concept of concentrative uncertainization, which is un-
certainization carried out so as to always maintain maximum MSI subject to
loss. This regime takes maximum advantage of any potential generalizations.
Combinations of loss and MSI produced for particular data can be plotted out,
as in Figure 3. The globally optimal value of MSI can then be identified. This
identifies the uncertainization providing maximum concentration of information
within symbols.

Referring back to the uncertainizations of Figure 1, we can now ask which
of these are genuinely concentrative? In most cases, the issue cannot be decided
without enumerating all the possibilities. However, case (D) is self-evidently
optimal. Positive information concentration with zero loss can only be obtained
by exploiting explicit repeats in the original sequence. Given that there is
only one such repeat, we know that the uncertainization in question must yield
optimal MSI. It is also possible to make a comparative judgement relating to
cases (C) and (E). These show the same level of loss (2.0 bits). Since the former
has higher MSI, we can infer that it must be closer to optimality (for this level
of loss) than the latter.

2.3 Concentrative recursive uncertainization (CRU)

The general goal of the present approach is use of information theory for deriva-
tion of structural analyses of sequences. This can be achieved, now, by deploying

M
e

a
n

 s
ym

b
o

l i
n

fo
rm

a
ti

o
n

 

 Information loss

Baseline MSI data

!rst re!nement

second re!nement

Figure 4: Self-redundancy structure produced by recursive uncertainization.
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concentrative uncertainization in a recursive regime. Consider the case where
the process is used to discover the point of maximum information concentration
(i.e., globally optimal MSI). What is then produced is a version of the original
sequence in which some elements are replaced with choices. By definition, the
arrangement of these must optimally capture the self-redundancies (i.e., repeat
effects) in the sequence. Treating the choices as symbols, we then obtain a sym-
bolic refinement of the original sequence that abstracts away the informationally
dominant repeat effects.

The uncertainization method can then be applied recursively to the refine-
ment that it, itself generates. By reprocessing refinements recursively, we then
‘peel off’ self-redundancy at successive levels of description. Application of the
process to the original sequence captures structural aspects relating to basic re-
peats. Application to the refinement captures repeats involving constructs with
sub-structure. Each subsequent application captures repeats at a higher level of
organization. The overall effect is then to capture the self-redundancy structure

of the sequence. The general effect is illustrated in Figure 4.

3 Self-redundancy structures in musical sequences

It is now possible to return to the theme of music. Figure 5 shows the self-
redundancy structure that concentrative recursive uncertainization (CRU) pro-
duces for the initial sixteen notes in the melody of the British national anthem.
Sequence elements are shown as ovals, here, with the layers corresponding to
generated refinements. Strings such as ‘$0’, ‘$1’ etc. are symbols standing for
particular choices, with definitions being provided in the leftmost instance. Arcs
are used to indicate the constitution of choices in terms of individual elements
or subsequences. Negative numbers appearing in the oval shapes are informa-
tion losses associated with corresponding choices. Values of MSI are marginal
values, calculated on the basis of the immediately prior encoding. All symbols
are assumed to cost 4.0 bits of information.

At the bottom of the figure, the sixteen notes of the melody form the prim-
itive nodes of the hierarchy. At the next level, the informationally optimal
uncertainization of those data is represented first as a set of nodes and then —
to the right — as a linear string. Adjacent to this, we see calculations of aggre-
gate content and MSI. At subsequent levels of the hierarchy, the same general
arrangement is used.

Note the extensive use of the pattern ‘c d b/c/e’ in the first encoding level.
This results from the fact that the relevant pattern is repeated at three locations
in the original sequence (positions 2, 5 and 12). Using the symbol ‘$0’ to
represent the corresponding choice, four symbols are eliminated for 1.58×3 bits
of information loss. MSI rises to 4.93 bits, in excess of the baseline figure of
4 bits. A similar effect involves ‘$0 $0/$3’ in the second level refinement, and
‘$5/c $4’ in the third level encoding.

For comparison, Figure 6 shows a detail from the self-redundancy structure
for ‘La Marseillaise’, the French national anthem. In this case, the original
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c c d b c d e e f e d c d c b c
Content = 64

MSI = 4

c $0 = c d b/c/e

-1.58
$0 $1 = e f $2 = e d $0 $3 = b c

c $0 $0 $1 $2 $0 $3

Content = 16 x 4 - 4.8 = 59.2

MSI = 59.2/12 = 4.93

c $4 = $0 $0/$3

-1.0
$5 = $1 $2 $4

c $4 $5 $4

Content = 7 x 4 - 2.0 = 26.0

MSI= 26.0/6 = 4.33

$6 = $5/c $4

-1.0
$6

$6 $6

Content = 4 x 4 - 2.0 = 14.0

MSI = 14.0/3 = 4.67

$7 = $6 $6

$7

Content = 2 x 4 - 0.0 = 8.0

MSI = 8.0/2 = 4.0

Figure 5: Self-redundancy structure of the first 16 notes from ‘God Save the
Queen’ melody.

sequence is formed of strings providing an offset representation for individual
notes and the hierarchy is substantially truncated. The note representation
scheme used here has the form o:p:d:v, where o is the beat offset of the note
from the previous note, p is the pitch offset (represented as a letter), d is a
numeric duration (preceded by ‘-’ where the value is in MIDI ticks) and v is
an intensity value (preceded by ‘v’). This is also the representation used in the
generative experiments described below.

4 Generating musical replexes

Using concentrative uncertainization, it is possible to obtain structures captur-
ing self-redundancies in a sequence over multiple levels. Such structures are
symbol hierarchies and, like phrase-structure grammars, can be used for gen-
erative purposes. The essence of the procedure is recursive symbol-expansion.
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0:c:-103v2 -138:a:3v3 4:a:-100v2 2:f:11v3 6:a:10v3 6:c:10v1 6:a:12v2 6:f:18v3 9:W:6v1 3:V:5v2

$0 = 0:c:-103v2 -138:a:3v3 $1 = 4:a:-100v2 2:e:5v2/2:f:11v3

-1.0
$2 = 6:a:10v3 6:c:10v1 $3 = 6:a:12v2 6:f:18v3

$0 = 0:c:-103v2 -138:a:3v3 $24 = $1 $2/$5

-1.0
$25 = $3 $4 $24 $26 = $6 $7 $27 = $8 $9

$0 = 0:c:-103v2 -138:a:3v3 $35 = $24 $25/$26

-1.0
$35 $36 = $27 $28 $37 = $29 $30

$41 = $0 $35 $42 = $35 $36 $43 = $37 $38 $44 = $39 $40

$41 $42 $43 $44

Content = 8 x 4 - 0.0 = 32.0

MSI = 32.0/8 = 4.0

$45 = $41 $42 $46 = $43 $44

$45 $46

Content = 4 x 4 - 0.0 = 16.0

MSI = 16.0/4 = 4.0

$47 = $45 $46

$47

Content = 2 x 4 - 0.0 = 8.0

MSI = 8.0/2 = 4.0

Figure 6: Upper self-redundancy structure of La Marseillaise melody.

Starting with the root symbol, symbols are expanded recursively, with ran-
dom choices being made at any disjunctive branch. When no further symbol
expansion is possible, the result must be a new sequence with the same self-
redundancy structure as the original. Sequences constructed in this way are
termed ‘replexes’ — literally ‘refoldings’.

As an illustration, four replexes of the sequence from Figure 4 are

c c d b c d e e f e d c d e c d e

e f e d c d e c d e e f e d c d c b c

e f e d c d e c d c e f e d c d e c d e

c c d b b c e f e d c d c c d c

Further examples can be generated using the applet at www.chrisThornton.eu/replex-
music.html. (Access the ‘queen1’ input set from the applet’s main menu and
then press ‘Analyze’ followed by ‘Make’.)

Experiments have also been carried out involving other musical sources.
These have used data from MIDI files put into the offset representation described
above. A score representation for part of a replex of Mozart’s Sonata in C Minor
appears in Figure 7.
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Figure 7: Extract from a replex of Mozart’s Sonata in C Minor, 1st Movement.

4.1 Hyper-replexes

In the simplest case, obtaining generative music from uncertainization involves
using self-redundancies from a single composition. Any entity generated from
this can then be precisely defined: it is one of the original composition’s re-
plexes. However, it is also possible to work with structures amalgamated from
more than one composition. The resulting artefact then combines (or ‘crosses’)
informational properties from different sources. Such entities are termed ‘hyper-
replexes’.

One way to use this idea involves crossing the self-redundancy structures
from different compositions. For example, Figure 8 shows a score representation
for an extract of a replex crossing Bach’s prelude No 3 (from WTC book 1)
with Philip Glass’s Koyaanisqatsi Suite. (Part of this piece can be played from
the website.) It is also possible to amalgamate structures taken from different
modalities, however. For example, we can amalgamate structures taken from
textual sequences with ones derived from musical sequences. This opens up the
possibility of generating musical/textual hybrids. Some examples can also be
played from the website.

Figure 8: Extract from a hyper-replex crossing Bach’s Prelude No. 3 with Philip
Glass’s Koyaanisqatsi Suite.
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5 Summary

The paper has introduced the concept of self-redundancy and shown how con-
centrative uncertainization can be used to obtain refinement structures from
sequences. Using recursive symbol expansion, such structures can be the means
of generating novel sequences that reproduce the self-redundancies of an orig-
inal artefact. Where it is possible to put a musical composition into a purely
sequential representation, the method can be used to generate a replex of that
composition, i.e., a variant with the same structure of self-redundancy. There
is also the possibility of using self-redundancy structures taken from more than
one source, even where those sources are in different modalities. Reproduc-
tions obtained from such amalgamated structures are ‘hyper-replexes’, with the
potential to hybridize music with text.
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