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Abstract

This paper addresses problems in computational creative

discovery, either autonomous or in synergetic tandem with

humans. A computer program generates output as a com-

bination of base primitives whose interpretation must lie

outside the program itself. Concepts of combinatoric and

creative emergence are analysed in relation to creative out-

puts being novel and appropriate combinations of base

primitives, with the conclusion that the choice of the gen-

erative process that builds and combines the primitives is

of high importance. The generalised concept of an artifi-

cial ecosystem, which adapts concepts and processes from

a biological ecosystem at a metaphoric level, is an appro-

priate generative system for creative discovery. The fun-

damental properties of artificial ecosystems are discussed

and examples given in two different creative problem do-

mains. Systems are implemented as pure simulation, and

where the ecosystem concept is expanded to include real

environments and people as ecosystem components, offer

an alternative to the ‘software tool’ approach of conven-

tional creative software.

Keywords: Artificial ecosystems, Combinationalism,

Emergence.

“Theories are important and indispensable be-

cause without them we could not orientate our-

selves in the world — we could not live. Even

our observations are interpreted with their help.”

— Karl Popper, The Myth of the Framework

1 Introduction

We are interested in problems of computational creative

discovery where computer processes assist in enhancing

human creativity or may autonomously exhibit creative

behaviour independently. The intention is to develop ways
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of working with technology that achieve creative possi-

bilities unattainable from any existing software tools or

methods. These goals will be addressed here in the con-

text of artistic creation, however the results may be appli-

cable to many forms of creative discovery.

Darwinian evolution has been described as the only

theory with the “explanatory power for the design and

function of living systems. . . accounting for the amaz-

ing diversity and astonishing complexity of life” (Nowak,

2006). Evolutionary synthesis is a process capable of

generating unprecedented novelty, i.e. it is creative. It

has been able to create things like prokaryotes, eukary-

otes, higher multicellularity and language through a non-

teleological process of replication and selection. We

would like to adapt, on a metaphoric level, the mech-

anisms of biological evolution in order to develop new

approaches to computational creativity. In Biology, the

physical processes of replication and selection take place

in an environment, populated by species that interact with

and modify this environment, i.e. an ecosystem. Pro-

cesses from biological ecosystems serve as inspiration for

computational artificial ecosystems. The aim is to struc-

ture these artificial ecosystems in such a way that they ex-

hibit novel discovery in a creative context rather than a

biological one.

We consider creativity in terms that it involves the gen-

eration of something novel and appropriate (i.e. unex-

pected, valuable) to the particular aesthetic domain. Van

Langen et. al. conclude the necessary conditions for any

artificial creative system must be the ability to interact

with its environment, learn, and self-organise (van Lan-

gen et al., 2004). In this paper, the aim is for creative

discovery by machines, or humans and machines working

synergistically, rather than a computational model of hu-

man creativity or knowledge-based models for a particular

domain.

Before looking at how artificial ecosystem concepts

can be used as processes for creative discovery, the next

section examines how such processes fit into computa-

tional creative discovery in general.

2 Combinationalism

A major controversy regarding computational creativity

relates to the concept of ‘combinationalism’: the under-

standing that “creativity is the creative combination or re-
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combination of previously existing elements” (Dartnall,

2002). This understanding is based on the intuition that

one cannot create something new from nothing, hence we

require a “combination or recombination of what we al-

ready had” — the opposing view being that creativity be-

gins with knowledge, skill and abilities, and emerges from

these faculties through interaction with the environment.

The challenge is to account for how these cognitive prop-

erties give rise to creative output (McCormack, 2005b).

Clearly, many creative outputs are indeed a combi-

nation of basic primitives organised in a new way. Let

us consider an arbitrary system that generates some cre-

ative output from a fixed set of indivisible, distinct prim-

itives (basic building blocks, fundamental units). We

will call this set of n distinct primitives V , i.e.: V =
{p1, p2, . . . , pn}. A generative process, G selects ele-

ments from V to make S ∈ V r, an output composed by

some permutation of primitives from V . We will assume

that:

• the ordering of primitives in S is important;

• repetitions of primitives are permitted;

• The size of S is fixed1 and |S| = r, where r > 0.

The process of generating S from V by G is denoted:

V
G−→ S

Denote each specific possibility, Si, i = 1, 2, . . . , nr

(since there are nr possibilities for S) and Q ∈ S∗ =
{S1, S2, · · · , Snr} the set of all possible outputs. Further,

let us defineQG ⊆ Q the set of all outputs generated byG.

The conceptual space,C, is defined as the base primitives,

V and the rules for combining them, i.e.: C = 〈V,G〉.
As a simple example, let us suppose V is a set of mu-

sical notes, i.e. V = {A,B,C,D,E, F,G} and r = 12,

so each S is a 12 note melody composed from the notes

in V . In this case nr = 13, 841, 287, 201. Clearly, for

non-trivial problems the number of possibilities for S is

very large, in many cases beyond astronomical propor-

tions such as the estimated number of particles in the uni-

verse.

This vast space of potential combinatorial possibili-

ties for S illustrates why such systems are said to display

combinatoric emergence, that is, configurations generated

by G appear to express new properties or structures not

found in the individual primitive components p. Note that

such new properties or structures are generally observed,

not defined quantitatively (Baas, 1994; Dorin and McCor-

mack, 2002).

While the potential output generated by G may be

vast, any individual output S can only be composed of

elements from V . In the case of our musical example, we

could generate a large number of melodies from V, but

none of those melodies could contain the note C], for ex-

ample, because it is not a member of V .

2.1 Creative Emergence

In the case of what is termed creative emergence, it is pro-

posed that fundamentally new primitives enter the system,

1Arbitrary size outputs are possible by incorporating an
empty primitive into V , i.e. V ∪ {∅}.

opening up a new set of possibilities that were not pre-

viously possible (Cariani, 1991, 1997). In more formal

terms, this process modifies the conceptual space:

C  CΛ

WhereCΛ is the new conceptual space. According to Bird

(2004), in an analogy with letters generating words, cre-

ative emergence “involves expanding the alphabet of let-

ters by transforming the underlying generative system as

well as combining the letters into new words” (Fig. 1).

In the terminology used in this paper, creative emergence

can introduce new members into V , i.e.: V ⇒ V Λ. The

introduction of new primitives in V would by necessity

involve some transformation of G, since by definition G
only knows how to generate things from the original V .
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Figure 1: Combinatoric and creative emergence (redrawn

from (Bird, 2004))

A computational system that combines primitives

must provide a semantic interpretation for the members

of V . For example, the symbol ‘A’ must be interpreted as

a musical note before it can represent music. It is easy to

generate additional primitive symbols that can be added to

V , but seemingly impossible to computationally discover

new interpretations for those symbols, because the inter-

pretation of those symbols is done outside of the software

itself (by a listener in the case of a musical example).

There are two conclusions to be drawn from this dis-

cussion. The first, rather obviously, is that in any com-

binatorial system, you will only get combinations of the

base primitives for which you provide an a priori inter-

pretation. The knowledge of how to interpret symbols is

provided by the programmer, not the program (the com-

puter can only differentiate one symbol from another).

The second point is that a combinatorial approach is

still a useful one if we get our base primitives right. As

we have seen, the scope of possibilities is very large in

any practicable system. Composers, for example, seem in

the main content with composing from a fixed set of base

primitives. Architects can design great architecture from

a fixed set of building materials. Any digital image can be

made by combining pixels in the right order.
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3 Generative processes for Creative
Discovery

At this point, we have said nothing about the quality or

utility of G and the output it generates. Having a vast

range of possibilities in a combinatorial system represents

only a potential for actually finding good combinations.

It is trivial to construct a generative process, G that can

generate all the possible members of Q (i.e. QG = Q).

Each combination Si generated by G will be new, so find-

ing novelty is not the problem, it is finding appropriate

novelty. The exponential expansion of possibilities, de-

pendent on n and r, means that for any non-trivial system,

brute-force methods such as an iterative or random search

will not be practical.

Ideally, we would like a generative process that finds

the creatively interesting combinations and avoids the un-

interesting ones. For many domains the proportion of

what we might be inclined to call “interesting” is likely to

be extreemly small. Randomly sampling individual mem-

bers fromQ is not, in general, a useful strategy for finding

the appropriate members of that set.

If our approach is to relegate creative discovery to

being a search or optimisation problem, then a num-

ber of general algorithms already exist for this task, e.g.

(Michalewicz and Fogel, 1999). One popular choice has

been the use of Evolutionary Computing (EC) methods,

such as genetic algorithms, evolution strategies or genetic

programming.

Standard EC methods require an explicit evaluation of

fitness, that is a comparative ranking between possible so-

lutions in order to determine the composition of the popu-

lation for the next generation. For creative discovery, this

is a difficult problem for two reasons:

• evaluation of the quality of creative output is highly

subjective and context dependent, relying on much

domain specific knowledge that is difficult to quan-

tify;

• the type of knowledge and evaluation necessary de-

pends specifically on the creative task or activity be-

gin simulated, i.e. it is difficult to generalise or ab-

stract.

It is for these reasons (and many others) that machine rep-

resentable fitness functions for “creativity”, or “aesthet-

ics” have largely unsuccessful (though not for want of try-

ing, e.g. (Birkhoff, 1933)).

Evaluation of subjective criteria is relatively easy for

humans, so a natural approach incorporate human evalu-

ation of fitness into the algorithm. Interactive Evolution

(also know as aesthetic selection or aesthetic evolution)

have found wide application and popularity for a variety

of problems in creative discovery (Takagi, 2001). In this

approach, the problem of finding machine-representable

fitness functions for aesthetic or subjective properties is

circumvented in favour of human fitness evaluation and

ranking. While this is a popular method, it is not without

significant problems (Dorin, 2001; McCormack, 2005b).

These problems include: difficulty in fine-grained eval-

uation; limited population sizes; slow evaluation times;

poor balancing between exploration and exploitation (one

of the GA’s main benefits as a search method (Eiben and

Smith, 2003, p. 29)).

The central question addressed by this paper, then, is

this: in a combinatorial system, how can we search and

optimise using EC techniques without an explicit fitness

evaluation, either by human or machine? That is, what

kinds of processes, G are best suited to creative discov-

ery from a combinatorial system? The answer proposed

here is through the use of an artificial ecosystem approach.

This approach is detailed in the following sections.

4 Artificial Ecosystems

The design of environments from which creative be-

haviour is expected to emerge is at least as important as the

design of the individuals who are expected to evolve this

behaviour. The Artificial Ecosystem as a generalised evo-

lutionary approach for creative discovery. Natural ecosys-

tems exhibit a vast array of complex phenomena, includ-

ing homeostasis, food-webs, wide causal dependencies

and feedback loops, even (controversially) evolution at the

ecosystem level (Swenson et al., 2000). Species within the

ecosystem compete for resources in order to survive and

reproduce. Typical co-operative and competitive evolu-

tionary strategies are observed, such as mutualism, sym-

biosis, predation and parasitism. To be glib, it could be

said that the ecosystem has a lot of interesting features go-

ing for it. We would like to harness some of these features

for the purposes of creative discovery — the discovery of

novelty in a system without explicit teleology.

The concept of an artificial ecosystem used here is for-

mative and based on abstractions of selected processes

found in biology. We are interested in developing gen-

eral algorithms for creative discovery. These algorithms

are based on dynamic evolutionary processes observed in

biological ecosystems. Just as genetic algorithms are not

a simulation of natural selection, the artificial ecosystem

algorithms presented here are not intended to simulate real

biological ecosystems. The ecosystem is viewed as a dy-

namic, complex system, essential for selection and a driv-

ing force behind biological novelty when established with

the appropriate conditions. We would like to harness the

novel potential of ecosystem processes at a metaphoric

level and apply them to creative processes of interest to

humans.

4.1 Simulated Ecosystem Studies

Simulated artificial ecosystems have been well studied in

the sciences. A number of artificial life models employ the

concept of an abstract or simplified ecosystem. This con-

cept of the artificial ecosystem was introduced in (Con-

rad and Pattee, 1970). A population of independent soft-

ware agents interact within a programmer-specified artifi-

cial physics and chemistry. Agent interaction is simplis-

tically analogous to that which occurs in a real ecosys-

tem. Agents must gain sufficient resources from their en-

vironment in order to survive and reproduce. Typically,

a number of successful survival strategies will emerge

(niches) often with inter-dependencies between individual

species (e.g. symbiosis and parasitism). Similar artificial
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ecosystem methods have been useful in modelling prob-

lems in economics (Arthur et al., 1997), ecology (Mitchell

and Taylor, 1999) and social science (Epstein and Axtell,

1996).

The majority of such systems focus on single-niche,

homogeneous environments, and operate at evolutionary

time-scales, simulating the evolution a single species over

time. This focus, and the use of minimal, broad assump-

tions is primarily for the purposes of verification and val-

idation (Adami, 2002). Artificial life agents adapt their

behaviour through an evolutionary process to best fit their

(typically homogeneous) environment.

Ecological models, on the other hand, tend to oper-

ate on far smaller time scales, simulating periods typi-

cally ranging from hours to several decades, with a focus

on fitness seeking through organisational changes or be-

havioural adaptation of an individual species. This level of

simulation reflects the practical questions asked by ecolo-

gists in relation to real ecosystems, whereas artificial life

research tends to focus on abstract evolutionary dynam-

ics. Important to both styles of investigation is the emer-

gence of macro phenomena or properties from micro in-

teractions. The micro interactions (typically interacting

agents) being formally specified in the model; the macro

properties an emergent outcome of the simulation.

4.2 Processes for Artificial Ecosystems

In many artificial ecosystem models, the designers of the

model are driven by specific applications or outcomes, so

the mechanisms, abstractions and terminology differ be-

tween systems. This section attempts to define both prop-

erties and concepts for general artificial ecosystems. They

are positioned at a “middle level” of abstraction: for ex-

ample an individual is an indivisible unit, it is not repre-

sented as a combination of self-organising sub-units, even

though this might be possible. In any agent or individual-

based model there is always a conflicting tension between

model complexity, model validation and simulation out-

comes. In contrast to ecological models, the focus of cre-

ative discovery is on the suitability and sophistication of

creative outcomes, not the verification of models with em-

pirical data or their validation in terms of answering ques-

tions not explicit in the original model (Grimm and Rails-

back, 2005). This allows us some creative licence in our

interpretation, but we would still hope for some (at least)

semi-formal validation of any general ecosystem models

for creative discovery.

While not an essential characteristic of ecosystem

models, the use of evolution and the operation on evo-

lutionary time scales is an assumption of the ecosystem

models proposed here. This does not preclude the possi-

bility of the model operating at other time scales.

The basic concepts and processes for artificial ecosys-

tems are:

• the concepts of genotype and phenotype as used in

standard EC algorithms. A genotype undergoes a

process of translation to the phenotype. The geno-

type and phenotype form the basis of an individual

in the model;

• a collection of individuals represent a species and the

system may potentially accommodate multiple, inter-

acting species;

• spatial distribution and (optionally) movement of in-

dividuals;

• the ability of individuals to modify and change their

environment (either directly or indirectly as a result

of their development within, and interaction with, the

environment);

• the concept of individual health as an abstract scalar

measure of an individual’s success in surviving

within its environment over its lifetime;

• the concept of an individual life-cycle, in that an in-

dividual undergoes stages of development that may

affect its properties, physical interaction and be-

haviour;

• the concept of an environment as a physical model

with consistent physical rules on interaction and

causality between the elements of the environment;

• an energy-metabolism resource model, which de-

scribes the process for converting energy into re-

sources that may be utilised by species in the envi-

ronment to perform actions (including the production

of resources).

For populations to evolve, there must be some kind of

selection pressure that implicitly gives some species a

higher reproduction rate than others, creating an implicit

measure of fitness (Nowak, 2006, Chapter 2). Let us as-

sume any given environment has finite resources and a to-

tal population carrying capacity, κ. Species compete for

finite resources. These resources are used by individuals

to better their reproductive success, until the total popu-

lation reaches κ. Hence, those able to discover success-

ful strategies for efficiently exploiting those resources are

able to reproduce at a higher rate, dominating the popula-

tion. In contrast to EAs with explicit fitness functions,

selection is implicit: successful strategies (individuals)

emerge in response to the challenges set by the environ-

ment. Moreover, in locating and processing resources,

species may alter the environment itself. In this case,

adaptation is a dynamic process involving feedback loops

and possibly delicate balances.

Individuals maintain a scalar measure of “health”

which indicates the success of the individual during its

lifetime. This is roughly akin to a fitness measure in tra-

ditional EC algorithms. If the health level of an individ-

ual falls to zero, the individual dies and is removed from

the population (normally returning its resources to the en-

vironment). Health is normally affected by the individ-

ual’s ability to acquire resources from the environment

(which may include other individuals). Other internal fac-

tors, such as age, may also change an individual’s health

measure.

In the context of problem solving, individual species

may represent competing or co-operating parts of a global

solution. This is highly suitable when many different

combinations of components may form equally good so-

lutions (e.g. notes or phrases forming a musical composi-

tion). When using standard EC methods for search or op-

timisation, the challenge faced is in choosing appropriate
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Figure 2: Schematic overview of Colourfield

genotype representations, selection methods, and fitness

functions. The challenge for artificial ecosystems is in

the design of environments and the interaction of species

within them.

An example of a simple artificial ecosystem model fol-

lows.

4.3 Colourfield

Colourfield is a simple one-species ecosystem of colour

patterns. It consists of a one-dimensional discrete world

of fixed width, populated by individuals (Fig. 2). Each

space in the world is called a cell and may be occupied by

at most one individual. Individuals occupy one or more

cells and are represented visually as lines of colour. A

population of individuals produces a field of one or more

colours.

An individual’s genome is a fixed-length array of real

numbers representing: the natural colour (hue, satura-

tion, lightness: HSL); propensity to change to the natural

colour, and to the colour of the individual to the left and

right of this individual (a normalised weight); propensity

to grow into empty neighbouring cells. Each individual in

the population maintains a separate state, which consists

of: the age of the agent, health, current resources held,

number of cells currently occupied, and current colour.

All individuals begin with no colour (black) and at-

tempt to acquire resources to reach their target colour (a

weighted sum, as determined by the genome, of the nat-

ural colour and the current colours of neighbours). Re-

sources are required to change and maintain a particular

colour, proportionate to the rate of change. If a neigh-

bouring cell is empty, the individual may “grow” into that

cell, the propensity to grow determined by the genome.

The more cells occupied, the more resources are required

to change colour, but the greater the contribution to the

overall colour histogram of the world (detailed shortly).

Let the current colour of individual i in RGB colour

space be the vector Ci = (ri, gi, bi) and the width wi.

The resources required by the individual are:

ri = w2
i

(
k0 + k1 log

(
d||Ci||
dt

))
+ k2

dwi

dt
,

where k0, k1and k2 are constants.

Individuals receive resources from the environment

via a feedback process based on the composition of the

world. At each timestep, a histogram of chroma and in-

tensity values for the world is built. This histogram, Ht

is used as a basis for delivering resources to the world.

A total resource Rt for the timestep t, is calculated via a

function f : Rn → R:

Rt = f(Ht)

and then distributed equally to all the cells in the world,

e.g.:

rk,t+1 = rk,t +
Rt

n
, k = 1, 2, . . . , n

where n is the size of the world. Individuals that occupy

more cells therefore receive a greater amount of resources,

as they make a greater contribution to the histogram.

A number of different versions of the function f have

been tested. These include: favouring chroma values with

peaks at equal division, maximising chroma or intensity

variation; matching a normal distribution; matching his-

tograms based on paintings recognised for their skilful use

of colour.

Given sufficient resources, and following a period of

“growth” an individual may reach its desired colour and

width (which may be dependent on the individual’s neigh-

bour states). At this time, it may choose to reproduce,

either by crossover with an immediate neighbour, or — if

there are no neighbours — by mutation. In the case of two

immediate neighbours, the mating partner is selected with

probability weighted to the normalised Euclidean distance

between the colour of the individual and its neighbours, so

individuals are more likely to mate with others who pro-

duce colours similar to themselves. Offspring are placed

in the nearest empty cell, or if none exists, they replace

parent cells. If there are insufficient resources, the agent

is unable to maintain its target colour, causing it to fade

and eventually die.

Over time, the system evolves to maximise the pro-

duction of resources according to the composition of the

histogram, which is determined by the size and colour

of all the individuals in the world. The system exhibits

novel colour patterns with patterns of stasis followed by

large-scale change as new optimal configurations are dis-

covered. Due to the configuration of co-dependencies,

Colourfield exhibits classic ecosystem phenomena such

as parasitism (a rogue colour contributing little to re-

source production but “feeding off” other resource pro-

ducing colours) and mutualism (co-operative combina-

tions of colours mutually contributing to high resource

production).

Colourfield is a simple experiment in adapting ecosys-

tem concepts to a simple creative system. It demonstrates

creative discovery in a limited domain (creative relation-

ships between fields of colour).
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4.4 Tools and Ecosystems

The concept of an ecosystem as a mechanism for cre-

ative discovery is not limited to the simulation of ecosys-

tems within the computer. In a creative context it is use-

ful to consider human-machine interaction as forming an

ecosystem, replacing the concept of machine as creative

tool. This discussion is similar to that used by Di Scipio

(2003) and the approach used in the design of the Eden

system, discussed in Section 4.5.

Humans have always worked with tools. Physical

tools are useful because: (i) they enable a manipulation

of the environment (a chisel sculpts wood); (ii) their con-

straints focus the user to their proper function (a pencil is

used for drawing on surfaces); and (iii) their organisation

encompasses knowledge (we cannot imagine in our mind

the correct positioning of a slide rule to evaluate the mul-

tiplication of two numbers, yet by physically using a real

slide rule it is easy).

Today, computer use is widespread in many areas of

creative production, but this use is almost exclusively in

the role of “computer as a tool”. Moreover, many of

the metaphors used by software tools borrow from phys-

ical counterparts or historical lineage (e.g. Adobe Photo-

shop is a “digital darkroom”, Paint programs use a “vir-

tual paint brush”, etc.). Often these metaphors are poorly

translated or simply lack the physicality of their real coun-

terparts (playing a “virtual piano” is just not as good as the

real thing).

COMPUTER

analysis composition

interpretation

OUTPUT
sound or image 

response

USER
gesture or 

intent

computer  as  tool

COMPUTER

evolution

control
signals

processing

self-
observation

noise

user
output

medium

environment

sensors

ecosystem: system + environment

Figure 3: Computer use as a tool (top) and as part of an

ecosystem (bottom)

The ecosystem approach does not conceptualise the

machine as an object. Rather, the processes, both internal

and external, are conceived as interdependent, connected

components, which self-organise into a system. Compo-

nents innately seek to replicate themselves within a noisy

environment. With a limited carrying capacity, those com-

ponents best able to fit the environment dominate the pop-

ulation.

When the system interacts with the environment, it

forms an ecosystem. The environment is the medium

in which the system develops, and in a creative context

may be the creative medium itself (e.g. sound, light, 3D

form, and so on). In this mode of working, interdependent

processes form an evolutionary, dynamical system, with

adaptive behaviour to environmental conditions including

the ability to interfere with, and modify, the environment.

The machine becomes a synergistic partner in a collabo-

rative creative process, as opposed to a passive tool ma-

nipulated by a user. As shown in Fig. 3, the computer,

the physical environment and the user all form part of a

coupled feedback system.

The powerful properties of tools outlined above are

still preserved in the ecosystems scenario, along with ad-

ditional features not normally associated with the human

creative use of tools:

1. Manipulation of the environment: components are

able to manipulate their environment, moreover due

to the recursive coupling (Ashby, 1952) between sys-

tem and environment we gain additional properties

such as homeostasis (the ability for self-maintenance

of particular dynamic configurations in changing ex-

ternal conditions) and system ‘memory’ through en-

vironmental modification.

2. Constraints are created by the environment: evo-

lutionary adaptations are fitness seeking, leading to

novel solutions imposed by the constraints, not de-

termined by explicit fitness functions as is the case

with conventional EC methods.

3. Organisation encompasses knowledge: the dynamic

configuration of system components represents the

knowledge of the system. As this configuration is

dynamic and adaptive, the system is able to ‘learn’.

We are interested in new properties and interactions

being indirectly implemented: arising as emergent by-

products of carefully designed interdependencies between

system components.

There are three important considerations in this inter-

active ecosystem approach to creativity: (i) the design of

the individual system components and their interdepen-

dencies; (ii) the metaphors used in interpreting the func-

tion of components and their dependencies; and (iii) the

composition of the environment in which the system in-

teracts. A careful analysis of these considerations remains

on-going research.

4.5 Eden: an evolutionary sonic ecosystem

Eden is a artwork installation that makes extensive use of

the concepts discussed in this paper. The details presented

here focus on the ecosystem aspects of the work. For

detailed technical descriptions, see (McCormack, 2001,

2005a).

The work consists of a complex artificial ecosystem

running in real-time on a two-dimensional lattice of cells.

This world is projected into a three-dimensional environ-

ment, approximately 6m x 6m (see Fig. 4). The ecosystem
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Figure 4: Installation view of Eden

consists of three basic types of matter: rocks, biomass,

and evolving agents. If a rock occupies a cell, agents or

biomass may not. Agents attempting to move into a cell

occupied by a rock will “feel” pain and suffer energy loss.

Biomass provides a food source for the agents.

Biomass is modelled on an extended Daisworld model

(Lenton and Lovelock, 2001), with growth rate, βi for in-

dividual biomass element i, a Gaussian function of local

temperature at the location (x, y) of the element, Tx, y:

βi = e−0.01(22.5−Tx,y)2 .

The Eden world exists on an imaginary, Earth-like planet,

orbiting a sun with a period of 600 days. The orbit ec-

centricity and polar orientation result in seasonal varia-

tions of temperature, thus affecting biomass growth. As

with Lenton and Lovelock’s model, the system exhibits

self-regulation and stability under a range of conditions.

However, overpopulation by agents may reduce biomass

to negligible levels, resulting in a temperature increase.

The increased temperature lowers the growth rate of the

biomass, leading to agent extinction and a dead planet.

The system detects such conditions, at which time the

planet is “rebooted” to initial conditions and a fresh batch

of agents and biomass seeded into the world.

Agents are oriented, omnivorous, autonomous, mobile

entities with a collection of sensors and actuators con-

trolled by a learning system, based on classifier systems

(a version of Wilson’s XCS (Wilson, 1999)). Agents are

able to metabolise biomass into energy, which is required

to perform actions via the agent’s actuators. Possible ac-

tions include: eating, resting, moving, turning left or right,

singing, attacking whatever occupies the cell in front of

the agent, mating. The energy cost of these actions varies

according to the action (attacking costs more energy than

resting, for example), and to physical factors, such as the

mass of the agent (mass also increases the power of at-

tacking — a big, heavy agent is more likely to injure or

kill a smaller agent). If an agent’s energy (health) level

falls to 0, the agent dies. Dead agents may be eaten by

other agents for a certain time period following death.

Agent sensors are both internal (enabling introspec-

tion) and external (enabling sensation of the environ-

ment). They include: sensation of cell contents within

the Moore neighbourhood of the agent; sound intensity

and frequency arriving at the agent’s location according

to a simple physical model; introspection of pain; intro-

spection of low energy (health). The LCS evolves sets of

rules based on past experience and performance of suc-

cessful rules. At regular periods the agent’s health and re-

source acquisition differentials are examined and a credit

or penalty is provided to those rules used since the pre-

vious evaluation. A positive differential pays credit pro-

portional to its magnitude, likewise a negative differential

penalises. Successful rules gain credit and so are more

likely to be selected in the future. Rules that consistently

receive penalty are eventually removed.

Rules evolve during an agent’s lifetime, with a penalty

imposed on energy for large rule sets to encourage effi-

ciency. Two agents may mate — the resultant offspring

inherit the most successful rules of their parents, hence

the system uses Lamarkian evolution.

The Eden environment is visualised and sonified in

the installation space. The two-dimensional world is pro-

jected onto two translucent screens, configured in an ‘X’

shape. This enables people experiencing the work to move

freely around the screens at close range, examining details

of the world as it updates in realtime. The sounds made

by the agents are spatially mapped to four speakers located

at the two corners of each screen. This rough spatialisa-

tion permits the listener to approximately locate the sound

source within the Eden world. The bandwidth devoted to

sound is much higher than any other sensory information

used by the agent. Agents are able to differentiate and

make sound over a range of frequency bands, giving rich

opportunities for the use of sound in an ecosystem context.

In addition to the internal ecosystem model, the Eden

world is also connected to the physical world of the instal-

lation space via an infrared video camera which tracks the

presence and motion of people looking and listening to the

artwork2. The presence of people in the installation space

influences the growth of biomass in the virtual space. The

longer people spend with the work, the more food is likely

to grow in the virtual environment. The rationale for this is

driven by the idea that the more interesting people find the

work, the longer they will stay. If they find the work un-

interesting, they will not spend much time with it. A good

way to maintain people’s interest is to produce sounds,

moreover, interesting, changing sounds.

Over time, the agents evolve to make complex sounds

in order to maintain their food supply. The agents have

no specific knowledge of people in the environment, how-

ever, by making interesting combinations of sounds they

attract and maintain the interest of the human audience in

the environment3. This interest translates to a more stable

supply of food, hence improving chances of survival in

the environment. Therefore, Eden is a symbiotic ecosys-

tem, which includes the human audience experiencing the

work.

2The original version of the work used infrared distance sen-
sors.

3When shown in a gallery environment, it is important to re-
member to compensate for opening hours, otherwise the popula-
tion dies out each night when the gallery is closed!
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5 Conclusions

In contrast with previous attempts to model creativ-

ity, which have applied psychological, cognitive, or

knowledge-based models of human creativity, the ecosys-

tem approach sees creativity as an emergent phenomenon

of dynamic interaction between interconnected, self-

organising components and their environment. These

components and their environment may be internal to

computer simulation (as in the Colourfield system) or part

of a system that incorporates humans and the physical en-

vironment (as with the Eden system).

Combinatorial systems do not practically impose the

limitations that might be suggested by the opposing con-

cepts of combinatoric and creative emergence. Necessar-

ily, all base primitives must contain an interpretation that

lies outside the software itself. What is important is the

process used to derive a creative result from a set of base

primitives. The goal is to enable the synergistic explo-

ration of new conceptual spaces in creative partnership

with the machine. In the artificial ecosystem approach,

this can be achieved by developing a formal understand-

ing of the appropriate design of components, their inter-

connections, and the environment in which they operate.
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