
Smoothed Analysis of Binary Search Trees and
Quicksort Under Additive Noise

Bodo Manthey1, Till Tantau2

1 Universität des Saarlandes, Informatik
Postfach 151150, 66041 Saarbrücken, Germany

manthey@cs.uni-sb.de
2 Universität zu Lübeck, Institut für Theoretische Informatik

Ratzeburger Allee 160, 23538 Lübeck, Germany
tantau@tcs.uni-luebeck.de

Abstract. Binary search trees are a fundamental data structure and
their height plays a key role in the analysis of divide-and-conquer al-
gorithms like quicksort. Their worst-case height is linear; their average
height, whose exact value is one of the best-studied problems in average-
case complexity, is logarithmic. We analyze their smoothed height under
additive noise: An adversary chooses a sequence of n real numbers in
the range [0, 1], each number is individually perturbed by adding a ran-
dom value from an interval of size d, and the resulting numbers are
inserted into a search tree. The expected height of this tree is called
the smoothed tree height. If d is very small, namely for d ≤ 1/n, the
smoothed tree height is the same as the worst-case height; if d is very
large, the smoothed tree height approaches the logarithmic average-case
height. An analysis of what happens between these extremes lies at
the heart of our paper: We prove that the smoothed height of binary
search trees is Θ(

p
n/d + log n), where d ≥ 1/n may depend on n. This

implies that the logarithmic average-case height becomes manifest for
d ∈ Ω(n/ log2 n). For the analysis, we first prove that the smoothed
number of left-to-right maxima in a sequence is also Θ(

p
n/d + log n).

We apply these findings to the performance of the quicksort algorithm
and prove that the smoothed number of comparisons made by quicksort
is Θ(n

d+1

p
n/d + n log n).

Keywords. Smoothed analysis, binary search trees, quicksort, left-to-
right maxima

1 Introduction

To explain the discrepancy between average-case and worst-case behavior of the
simplex algorithm, Spielman and Teng introduced the notion of smoothed anal-
ysis [11]. Smoothed analysis interpolates between average-case and worst-case
analysis: Instead of taking a worst-case instance or, as in average-case analy-
sis, choosing an instance completely at random, we analyze the complexity of
(possibly worst-case) objects subject to slight random perturbations. On the one

Dagstuhl Seminar Proceedings 07391
Probabilistic Methods in the Design and Analysis of Algorithms
http://drops.dagstuhl.de/opus/volltexte/2007/1289

2 B. Manthey, T. Tantau

hand, perturbations model that nature is not (or not always) adversarial. On the
other hand, perturbations reflect the fact that data is often subject to measure-
ment or rounding errors; even if the instance at hand was initially a worst-case
instance, due to such errors we would probably get a less difficult instance in
practice. Spielman and Teng [12] give a comprehensive survey on results and
open problems in smoothed analysis.

Binary search trees are one of the most fundamental data structures in com-
puter science and they are the building blocks for a large variety of data struc-
tures. The most important parameter of binary search trees is their height. The
worst-case height of a binary tree for n numbers is n. The average-case behavior
has been the subject of a considerable amount of research, culminating in the
result that the average-case height is α lnn − β ln lnn + O(1), where α ≈ 4.311
is the larger root of α ln(2e/α) = 1 and β = 3/(2 ln(α/2)) ≈ 1.953 [8]. Further-
more, the variance of the height is constant, as was proved independently by
Drmota [2] and Reed [8], and it is conjectured that all moments are bounded by
constants as well [9]. Drmota [3] gives a recent survey.

Beyond being an important data structure, binary search trees play a cen-
tral role in the analysis of divide-and-conquer algorithms like quicksort [5, Sec-
tion 5.2.2]. While quicksort needs Θ(n2) comparisons in the worst case, the
average number of comparisons is 2n log n−Θ(n) with a variance of (7− 2

3π2) ·
n2 − 2n log n + O(n) as mentioned by Fill and Janson [4]. Quicksort and binary
search trees are closely related: The height of the tree T (σ) obtained from a
sequence σ is equal to the number of levels of recursion required by quicksort to
sort σ. The number of comparisons, which corresponds to the total path length
of T (σ), is at most n times the height of T (σ).

Binary search trees are also related to the number of left-to-right maxima of
a sequence, which is the number of new maxima seen while scanning a sequence
from left to right. The number of left-to-right maxima of σ is equal to the length
of the rightmost path of the tree T (σ), which means that left-to-right maxima
provide an easy-to-analyze lower bound for the height of binary search trees.
Furthermore, left-to-right maxima play a role in the analysis of quicksort [10].
In the worst-case, the number of left-to-right maxima is n, while it is

∑n
i=1 1/i ∈

Θ(log n) on average.
Given the discrepancies between average-case and worst-case behavior of bi-

nary search trees, quicksort, and the number of left-to-right maxima, the question
arises of what happens in between when the randomness is limited.

Previously Studied Perturbation Models. The perturbation model intro-
duced by Spielman and Teng for the smoothed analysis of continuous problems
like linear programming is appropriate for algorithms that process real numbers.
In their model, each of the real numbers in the adversarial input is perturbed
by adding a small Gaussian noise. This model of perturbation favors instances
in the neighborhood of the adversarial input for a fairly natural and realistic
notion of “neighborhood.”

Smoothed Analysis of Binary Trees and Quicksort 3

The first smoothed analysis of quicksort, due to Banderier, Beier, and Mehl-
horn [1], uses a different perturbation model, namely a discrete perturbation
model. Such models take discrete objects like permutations as input and again
yield discrete objects like another permutation. Banderier et al. used p-partial
permutations, which work as follows: An adversary chooses a permutation of the
numbers {1, . . . , n} as sequence, every element of the sequence is marked inde-
pendently with a probability of p, and then the marked elements are randomly
permuted. Banderier et al. showed that the number of comparisons subject to
p-partial permutations is O(n

p · log n). Furthermore, they proved bounds on the
smoothed number of left-to-right maxima subject to this model.

Manthey and Reischuk [6] analyzed the height of binary search trees under
p-partial permutations. They proved a lower bound of 0.8 · (1 − p) ·

√
n/p and

an asymptotically matching upper bound of 6.7 · (1 − p) ·
√

n/p for smoothed
tree height. For the number of left-to-right maxima they showed a lower bound
of 0.6 · (1− p) ·

√
n/p and an upper bound of 3.6 · (1− p) ·

√
n/p.

Special care must be taken when defining perturbation models for discrete
inputs: The perturbation should favor instances in the neighborhood of the ad-
versarial instance, which requires a suitable definition of neighborhood in the
first place, and the perturbation should preserve the global structure of the ad-
versarial instance. Partial permutations have the first feature [6, Lemma 3.2],
but destroy much of the global order of the adversarial sequence.

Our Perturbation Model and Our Results. We continue the smoothed
analysis of binary search trees and quicksort begun by Banderier et al. [1] and
Manthey and Reischuk [6]. However, we return to the original idea of smoothed
analysis that input numbers are perturbed by adding random numbers. In our
model the adversarial input sequence consists of n real numbers in the interval
[0, 1]. Then, each of the real numbers is individually perturbed by adding a
random number drawn uniformly from an interval of size d. If d < 1/n, then the
sorted sequence (1/n, 2/n, 3/n, . . . , n/n) stays a sorted sequence. This means
that for d < 1/n the smoothed height of binary search trees (as well as the
performance of quicksort and the number of left-to-right maxima) is the same
as in the worst-case. For this reason, we always assume d ≥ 1/n in the following.

We study the smoothed height of binary search trees, the smoothed number of
comparisons made by quicksort, and the smoothed number of left-to-right max-
ima under additive noise. In each case we prove tight upper and lower bounds:

1. The smoothed number of left-to-right maxima is Θ(
√

n/d + log n) as shown
in Section 3. This result will be exploited in the subsequent sections.

2. The smoothed height of binary search trees is Θ(
√

n/d + log n) as shown in
Section 4.

3. The smoothed number of comparisons made by quicksort is Θ(n
d+1

√
n/d +

n log n) as shown in Section 5. Thus, the perturbation effect of d ∈ ω(1) is
stronger than for d ∈ o(1).

Already for d ∈ ω(1/n), we obtain bounds that are asymptotically better than
the worst-case bounds. For constant values of d, which correspond to a perturba-

4 B. Manthey, T. Tantau

tion by a constant percentage like 10%, the height of binary search trees drops
from the worst-case height of n to O(

√
n), and quicksort needs only O(n3/2)

comparisons.

2 Preliminaries

Intervals of the real axis are denoted by [a, b] = {x ∈ R | a ≤ x ≤ b}. To denote
an interval that does not include an endpoint, we replace the square bracket
next to the endpoint by a parenthesis. We denote sequences of real numbers
by σ = (σ1, . . . , σn), where σi ∈ R. For U = {i1, . . . , i`} ⊆ {1, . . . , n} with
i1 < i2 < · · · < i` let σU = (σi1 , σi2 , . . . , σi`

) denote the subsequence of σ of the
elements at positions in U .

We denote probabilities by P and expected values by E. To bound large
deviations from the expected value, we will use the Chernoff bound [7, Sect. 4.1]
a couple of times: Let X1, . . . , Xn be random variables with P(Xi = 1) = p =
1 − P(Xi = 0). Let X =

∑n
i=1 Xi. Then E(X) = pn and, for every δ > 0, we

have

P
(
X > (1 + δ) · pn

)
<

(
exp(δ)

(1 + δ)1+δ

)pn

.

Throughout the paper, we will assume for the sake of clarity that numbers like√
d are integers and we do not write down the tedious floor and ceiling functions

that are actually necessary. Since we are interested in asymptotic bounds, this
does not affect the validity of the proofs.

2.1 Binary Search Trees, Left-To-Right Maxima, and Quicksort

Let σ be a sequence of length n consisting of pairwise distinct elements. For the
following definitions, let G = {i ∈ {1, . . . , n} | σi > σ1} be the set of positions
of elements greater than σ1, and let S = {i ∈ {1, . . . , n} | σi < σ1} be the set of
positions of elements smaller than σ1.

From σ, we obtain a binary search tree T (σ) by iteratively inserting the
elements σ1, σ2, . . . , σn into the initially empty tree as follows: The root of T (σ)
is σ1. The left subtree of the root σ1 is T (σS), and the right subtree of σ1 is
T (σG). The height of T (σ) is the maximum number of nodes on any root-to-
leaf path of T (σ): Let height(σ) = 1 + max{height(σS),height(σG)}, and let
height(σ) = 0 when σ is the empty sequence.

The number of left-to-right maxima of σ is the number of maxima seen when
scanning σ from left to right: let ltrm(σ) = 1 + ltrm(σG), and let ltrm(σ) = 0
when σ is the empty sequence. The number of left-to-right maxima of σ is equal
to the length of the rightmost path of T (σ), so ltrm(σ) ≤ height(σ).

Quicksort is the following sorting algorithm: Given σ, we construct σS and
σG. To do this, all elements of (σ2, . . . , σn) have to be compared to σ1, which
is called the pivot element. Then we sort σS and σG recursively to obtain τS

and τG, respectively. Finally, we output τ = (τS , σ1, τG). The number qs(σ) of
comparisons needed to sort σ is thus qs(σ) = (n− 1) + qs(σS) + qs(σG) if σ has
a length of n ≥ 1, and qs(σ) = 0 when σ is the empty sequence.

Smoothed Analysis of Binary Trees and Quicksort 5

2.2 Perturbation Model

The perturbation model of additive noise is defined as follows: Let d = d(n) ≥ 0
be the perturbation parameter (d may depend on n). Given a sequence σ of n
numbers chosen by an adversary from the interval [0, 1], we draw a noise νi for
each i ∈ {1, . . . , n} uniformly at random from the interval [0, d]. Then we obtain
the perturbed sequence σ = (σ1, . . . , σn) by adding νi to σi, that is, σi = σi +νi.
Note that σi need no longer be an element of [0, 1], but σi ∈ [0, d+1]. For d > 0
all elements of σ are distinct with a probability of 1.

For this perturbation model, we define the random variables heightd(σ),
qsd(σ), and ltrmd(σ), which denote the smoothed search tree height, smoothed
number of quicksort comparisons, and smoothed number of left-to-right max-
ima, respectively, when σ is perturbed by d-noise. Since the adversary chooses
σ, our goal is to bound maxσ∈[0,1]n E

(
heightd(σ)

)
, maxσ∈[0,1]n E

(
qsd(σ)

)
, and

maxσ∈[0,1]n E
(
ltrmd(σ)

)
. In the following, we will sometimes write height(σ) in-

stead of heightd(σ) if d is clear from the context. Since σ is random, height(σ)
is also a random variable. Similarly, we will use ltrm(σ) and qs(σ).

The choice of the interval sizes is arbitrary since the model is invariant under
scaling if we scale the perturbation parameter accordingly. This is summarized
in the following lemma, which we will exploit a couple of times in the following.

Lemma 1. Let b > a and d > 0 be arbitrary real numbers, and let d′ = d/(b−a).
Then

max
σ∈[a,b]n

E
(
heightd(σ)

)
= max

σ∈[0,1]n
E

(
heightd′(σ)

)
.

For quicksort and the number of left-to-right maxima, we have analogous equal-
ities.

As argued earlier, if d < 1/n, the adversary can specify the sequence σ =
(1/n, 2/n, 3/n, . . . , n/n) and adding the noise terms does not affect the order of
the elements. This means that we get the worst-case height, number of compar-
isons, and number of left-to-right maxima. Because of this observation we will
restrict our attention to d ≥ 1/n.

If d is large, the noise will swamp out the original instance, and the order of
the elements of σ will depend only on the noise rather than the original instance.
For intermediate d, additive noise interpolates between average and worst case.

3 Smoothed Number of Left-To-Right Maxima

We start our analyses with the smoothed number of left-to-right maxima, which
provides us with a lower bound on the height of binary search trees as well. Our
aim for the present section is to prove the following theorem.

Theorem 1. For d ≥ 1/n, we have

max
σ∈[0,1]n

E
(
ltrmd(σ)

)
∈ Θ

(√
n/d + log n

)
.

6 B. Manthey, T. Tantau

The theorem is proved in the rest of this section by first proving an upper
bound and then proving a lower bound. In the proofs, the following notations will
be helpful: For j ≤ 0, let σj = νj = 0. This allows us to define δi = σi − σi−

√
nd

for all i ∈ {1, . . . , n}. We define Ii = {j ∈ {1, . . . , n} | i −
√

nd ≤ j < i} to be
the set of the |Ii| = min{i− 1,

√
nd} positions that precede i.

3.1 Upper Bound on the Smoothed Number of Left-To-Right
Maxima

To prove the upper bound for the smoothed number of left-to-right maxima, we
proceed in two steps: First, a “bubble-sorting argument” is used to show that the
adversary should choose a sorted sequence. Second, we prove that the expected
number of left-to-right maxima of sorted sequences is O(

√
n/d + log n).

Lemma 2. For every sequence σ and its sorted version τ , we have

E
(
ltrmd(σ)

)
≤ E

(
ltrmd(τ)

)
.

Proof. We prove the lemma by “bubble-sorting” σ. If σ is already sorted, then
there is nothing to show. Otherwise, there exist adjacent σi and σi+1 with σi >
σi+1. Our aim is to show that E

(
ltrmd(σ)

)
≤ E

(
ltrmd(τ)

)
, where τ is obtained

from σ by swapping σi and σi+1. Then the claim follows by iteratively applying
this argument.

After perturbation with ν, we obtain σ and τ , where τ i = τi + νi+1 =
σi+1 + νi+1 and τ i+1 = τi+1 + νi = σi + νi. Now we analyze the number of left-
to-right maxima of σ and τ . To do this, let δ = σi−σi+1 > 0. We distinguish two
cases. First, we condition on νi ∈ [0, d − δ] and νi+1 ∈ [δ, d]. In this case, both
(σi, σi+1) and (τ i, τ i+1) are pairs of random numbers, all of which lie uniformly
in the interval [σi, σi+1 +d]. Then the expected numbers of left-to-right maxima
of σ and τ are equal. Second, we condition on the event that νi ∈ (d − δ, d] or
νi+1 ∈ [0, δ). In either case, both σi > σi+1 and τ i < τ i+1 hold. Then σi+1

cannot be a left-to-right maximum in σ, and if σi is a left-to-right maximum in
σ, then so is τ i+1 in τ . Since the case distinction is exhaustive, the lemma is
proved.

Lemma 3. For every sequence σ of length n and all d ≥ 1/n, we have

E
(
ltrmd(σ)

)
∈ O

(√
n/d + log n

)
.

Proof. By Lemma 2 we can restrict ourselves to proving the lemma for sorted
sequences σ. We estimate the probability that a given σi for i ∈ {1, . . . , n} is a
left-to-right maximum. Then the bound follows by the linearity of expectation.
To bound the probability that σi is a left-to-right maximum (ltrm), consider the

Smoothed Analysis of Binary Trees and Quicksort 7

following computation:

P
(
σi is an ltrm

)
≤ P

(
∀j ∈ Ii : νj < σi − σi−

√
nd

)
(1)

≤ P
(
d < σi − σi−

√
nd

)
+

∫ d−δi

0

P
(
∀j ∈ Ii : νj < σi + x− σi−

√
nd

)
dx (2)

≤ δi

d
+

∫ d

0

P
(
∀j ∈ Ii : νj < x

)
dx (3)

≤ δi

d
+ P

(
∀j ∈ Ii : νj < νi

)
=

δi

d
+

1
|Ii|+ 1

. (4)

To see that (1) holds, assume that σi is a left-to-right maximum. Then σi −
σi−

√
nd must be larger than the noises of all the elements in the index range

Ii, for if the noise νj of some element σj were larger than σi − σi−
√

nd, then
σj = σj + νj would be larger than σj + σi − σi−

√
nd. Since the sequence is

sorted, we would get σj + σi − σi−
√

nd ≥ σi, and σi would not be a left-to-right
maximum.

For (2), first observe that νj < σi − σi−
√

nd is surely the case for all j ∈ Ii

if d < σi − σi−
√

nd. So, consider the case d ≥ σi − σi−
√

nd = δi + νi. Then

νi ∈ [0, d − δi] and we can rewrite P(∀j ∈ Ii : νj < δi + νi) as
∫ d−δi

0
P(∀j ∈

Ii : νj < δi + x) dx. For (3) observe that d < σi − σi−
√

nd is equivalent to
d − δi < νi and the probability of this is δi/d. Furthermore, we performed an
index shift in the integral. In (4), we replaced the integral by a probability once
more and get the final result.

We have
∑n

i=1 δi =
∑n

i=1(σi − σi−
√

nd) =
∑n

i=n−
√

nd+1 σi ≤
√

nd. The
second equality holds since most σi cancel themselves out and σi = 0 for i ≤ 0.
The inequality holds since there are

√
nd summands. We complete the proof by

bounding 1/(|Ii| + 1) = 1/ min{i,
√

nd + 1} by 1/i + 1/
√

nd and summing over
all i:

E
(
ltrmd(σ)

)
≤

n∑
i=1

δi

d
+

n∑
i=1

1
|Ii|+ 1

≤
√

nd

d
+

n∑
i=1

1
i
+

n√
nd

∈ O
(√

n/d + log n
)

.

3.2 Lower Bound on the Smoothed Number of Left-To-Right
Maxima

Let us now show a lower bound that matches the upper bound proved in the pre-
vious section. Although the sequences may consist of n arbitrary numbers from
the interval [0, 1], it suffices to consider the sorted sequence (1/n, 2/n, . . . , n/n).

Lemma 4. For the sequence σ = (1/n, 2/n, . . . , n/n) and all d ≥ 1/n, we have

E
(
ltrmd(σ)

)
∈ Ω

(√
n/d + log n

)
.

8 B. Manthey, T. Tantau

Proof. We assume that d ≥ 4/n. This is no restriction since for d < 4/n, we
immediately get a lower bound of n/4 ∈ Ω(n) in compliance with the theorem.

We give two estimates for the probability that a given σi is a left-to-right
maximum; only this time, we need to bound this probability from below. The
first estimate is simple:

P
(
σi is an ltrm

)
= P

(
∀j < i : νj + j/n < νi + i/n

)
≥ P

(
∀j < i : νj < νi

)
= 1/i.

For the second estimate, assume νi > d−
√

d/n for a given i ∈ {1, . . . , n}. Then
σj < σi for all j ∈ {1, . . . , i−

√
nd− 1} since the noise of σi is so large that σj

before σi−
√

nd can never reach σi even when a noise of d is added. This shows
that σi must be a left-to-right maximum if (a) we have νi > d−

√
d/n and (b)

we have νj < d−
√

d/n for all j ∈ Ii. The probability of (a) is 1/
√

nd and of (b)
is (1− 1/

√
nd)|Ii| ≥ (1− 1/

√
nd)

√
nd. Since d ≥ 4/n, this yields

P
(
σi is an ltrm

)
≥ 1√

nd

(
1− 1√

nd

)√
nd

≥ 1
4 ·

√
nd

.

The two estimates together yield P(σi is an ltrm) ≥ max{1/i, 1/(4
√

nd)} ≥
1
2

(
1/i + 1/(4

√
nd)

)
. By the linearity of expectation we get

E
(
ltrmd(σ)

)
≥ 1

2

n∑
i=1

1
i

+
1
2

n∑
i=1

1
4
√

nd
∈ Θ(log n +

√
n/d).

4 Smoothed Height of Binary Search Trees

In this section we prove our first main result, an exact bound on the smoothed
height of binary search trees under additive noise. The bound is the same as for
left-to-right maxima, as stated in the following theorem.

Theorem 2. For d ≥ 1/n, we have

max
σ∈[0,1]n

E
(
heightd(σ)

)
∈ Θ

(√
n/d + log n

)
.

In the rest of this section, we prove this theorem. We have to prove an upper
and a lower bound, but the lower bound follows directly from the lower bound of
Ω(

√
n/d + log n) for the smoothed number of left-to-right maxima (the number

of left-to-right maxima in a sequence is the length of the rightmost path of the
sequence’s search tree). Thus, we only need to focus on the upper bound. To
prove the upper bound of O(

√
n/d + log n) on the smoothed height of binary

search trees, we need some preparations. In the next subsection we introduce
the concept of increasing and decreasing runs and show how they are related
to binary search tree height. As we will see, bounding the length of these runs
implicitly bounds the height of binary search trees. This allows us to prove the
upper bound on the smoothed height of binary search trees in the main part of
this section.

Smoothed Analysis of Binary Trees and Quicksort 9

2 6

7

8

13

14

12

11

9

10

5

4

3

1

Fig. 1. The tree T (σ) obtained from σ = (7, 8, 13, 3, 2, 10, 9, 6, 4, 12, 14, 1, 5, 11).
We have height(σ) = 6. The root-to-leaf path ending at 11 can be divided into
the increasing run α = (7, 8, 10, 11) and the decreasing run β = (13, 12, 11).

4.1 Increasing and Decreasing Runs

In order to analyze the smoothed height of binary search trees, we introduce a
related measure for which an upper bound is easier to obtain. Given a sequence σ,
consider a root-to-leaf path of the tree T (σ). We extract two subsequences α =
(α1, . . . , αk) and β = (β1, . . . , β`) from this path according to the following
algorithm: We start at the root. When we are at an element σi of the path, we
look at the direction in which the path continues from σi. If it continues with
the right child of σi, we append σi to α; if it continues with the left child, we
append σi to β; and if σi is a leaf (has no children), then we append σi to both α
and β. This construction ensures α1 < · · · < αk = β` < · · · < β1 and the length
of σ is k + `− 1. Figure 1 shows an example of how α and β are constructed.

A crucial property of the sequence α is the following: Let αi = σji
for all

i ∈ {1, . . . , k} with j1 < j2 < · · · < jk. Then none of σ1, . . . , σji−1 lies in the
interval (αi, αi+1), for otherwise αi and αi+1 cannot be on the same root-to-leaf
path. A similar property holds for the sequence β: No element of σ prior to βi

lies in the interval (βi+1, βi). We introduce a special name for sequences with
this property.

Definition 1. An increasing run of σ is a subsequence (σi1 , σi2 , . . . , σik
) with

the following property: For every j ∈ {1, . . . , k − 1}, no element of σ prior
to σij lies in the interval (σij , σij+1). Analogously, a decreasing run of σ is a
subsequence (σi1 , . . . , σi`

) with σi1 > · · · > σi`
such no element prior to σij lies

in the interval (σij+1 , σij).

Let inc(σ) and dec(σ) denote the length of the longest increasing and de-
creasing run of σ, respectively. Furthermore, let decd(σ) and incd(σ) denote the
length of the longest runs under d-noise. In Figure 1, we have inc(σ) = 4 because
of (7, 8, 10, 12) or (7, 8, 13, 14) and dec(σ) = 4 because of (7, 3, 2, 1).

Since every root-to-leaf path can be divided into an increasing and a decreas-
ing run, we immediately obtain the following lemma.

10 B. Manthey, T. Tantau

Lemma 5. For every sequence σ and all d we have

height(σ) ≤ dec(σ) + inc(σ),

E
(
heightd(σ)

)
≤ E

(
decd(σ) + incd(σ)

)
.

In terms of upper bounds, dec(σ) and inc(σ) as well as decd(σ) and incd(σ)
behave equally. The reason is that given a sequence σ, the sequence τ with
τi = 1 − σi has the properties dec(σ) = inc(τ) and E

(
decd(σ)

)
= E

(
incd(τ)

)
.

This observation together with Lemma 5 proves the next lemma.

Lemma 6. For all d, we have

max
σ∈[0,1]n

E
(
heightd(σ)

)
≤ 2 · max

σ∈[0,1]n
E

(
incd(σ)

)
.

The lemma states that in order to bound the smoothed height of search
trees from above we can instead bound the smoothed length of increasing or
decreasing runs. To simplify the analysis even further, we show that we can once
more restrict our attention to sorted sequences.

Lemma 7. For every sequence σ and its sorted version τ , we have

E
(
incd(σ)

)
≤ E

(
incd(τ)

)
.

Proof. We sort σ successively as we already did to prove Lemma 2. Assume that
σi > σi+1 for some i and let δ = σi−σi+1 > 0. We show E

(
incd(σ)

)
≤ E

(
incd(τ)

)
,

where τ is obtained from σ by swapping σi and σi+1. Let ν denote the noise vector
added to σ and τ . Then τ i = τi+νi+1 = σi+1+νi+1 and τ i+1 = τi+1+νi = σi+νi.

We distinguish two cases. First, we condition on νi ∈ [0, d − δ] and νi+1 ∈
[δ, d]. Similar to the argument in Lemma 2, both (σi, σi+1) and (τ i, τ i+1) are pairs
of random numbers, all of which lie uniformly in the interval [seqi, seqi+1 + d],
and the expected values of incd(σ) and incd(τ) are equal.

Second, we condition on the events that νi ∈ (d − δ, d] or νi+1 ∈ [0, δ). In
either case, σi > σi+1 and τ i < τ i+1. Thus, every increasing run of σ corresponds
to an increasing run of τ : If the run of σ uses neither σi nor σi+1, this is obvious.
If the run of σ uses σi, then we get the same run of τ , where now τ i+1 is used.
The run cannot be interrupted by τ i because τ i < τ i+1. If the run of σ uses
σi+1, then we obtain a run of the same length using τ i. This run is also an
increasing run since the only difference of σ and τ is that now the larger element
τ i+1 appears after τ i. Finally, the run of σ cannot use both σi and σi+1 because
of σi+1 < σi. Thus, we have inc(σ) ≤ inc(τ), which proves the lemma.

4.2 Upper Bound on the Smoothed Height of Binary Search Trees

We are now ready to prove the upper bound for binary search trees by proving
an upper bound on the smoothed length of increasing runs of sorted sequences.
For this, we prove four lemmas, the last of which claims exactly the desired
upper bound.

Smoothed Analysis of Binary Trees and Quicksort 11

Lemma 8 deals with d = 1 and states that E
(
height1(σ)

)
∈ O(

√
n) for every

sequence σ.
Lemma 9 states that in order to bound tree heights, we can divide sequences

into (possibly overlapping) parts and consider the height of the trees induced
by the subsequences individually. A less general form of the lemma has already
been shown by Manthey and Reischuk [6, Lemma 4.1].

Lemma 10 establishes that if d = n/ log2 n, a perturbed sequence behaves
the same way as a completely random sequence with respect to the smoothed
length of its longest increasing run. The core idea is to partition the sequence
into a set of “completely random” elements, which behave as expected, and two
sets of more bothersome elements lying in a small range. As we will see, the
number of bothersome elements is roughly log2 n and since the range of values
of these elements is small, we can use the result E

(
height1(σ)

)
∈ O(

√
n) to show

that their contribution to the length on an increasing run is just O(log n).
Finally, in Lemma 11 we allow general d ≥ 1/n. This case turns out to be

reducible to the case d = n/ log2 n by scaling the numbers according to Lemma 1.
For the proofs of the lemmas, two technical terms will be helpful: For a

given real interval I = [a, b], we say that a position i of σ is eligible for I if σi

can assume any value in I. In other words, i is eligible for [a, b] if σi ≤ a and
σi + d ≥ b. Furthermore, we say that i is regular if σi actually lies inside I.

Lemma 8. For every sequence σ, we have

E
(
inc1(σ)

)
∈ O(

√
n).

Proof. Let us take a closer look at increasing runs. Every increasing run of a
sequence σ starts with a number of left-to-right maxima. However, after the first
element that is not a left-to-right maximum, the run does not contain any more
left-to-right maxima. More formally: If α1, . . . , α` is an increasing run of σ, then
there exists a k ∈ {0, 1, . . . , `} such that α1, . . . , αk are left-to-right maxima of σ
while αk+1, . . . , α` are not. Furthermore, if σi is the first left-to-right maximum
after αk, then the remaining elements αk+1, . . . , α` all lie in the interval [αk, σi].

Due to this property, it suffices to a) bound E
(
ltrm1(σ)

)
and b) bound the

maximum length of an increasing run such that the values of the elements of the
run lie between the values of two consecutive left-to-right maxima. By Lemma 3,
we have E

(
ltrm1(σ)

)
∈ O(

√
n), so let us focus on b). For the bound we prove two

claims and for the formulation of these claims the following definition is helpful:
We say that a set of numbers xi is ε-dense for an interval I if every interval
J ⊆ I of length ε contains at least one xi.

Claim 1. Let a ≤ s < b, let y1, . . . , y√n ∈ [a, s], and let x1, . . . , x√n be random
variables where xi is uniformly distributed in the interval [yi, b]. Then the xi

are
(
(b − a)n−1/4

)
-dense for the interval [s, b] with a probability of at least

1− exp
(
−Θ(n1/4)

)
.

Proof. By a scaling argument similar to Lemma 1, it suffices to consider the
case a = 0, b = 1, and s ∈ [0, 1]. We divide the interval [s, 1] into subintervals

12 B. Manthey, T. Tantau

I1, I2, . . . , Ik, where

Ij =
[
s + (j − 1) · n−1/4/2, s + j · n−1/4/2

]
and k = b(1 − s) · 2n1/4c. The interval [s + k · n−1/4/2, 1] is not covered by an
Ij if (1 − s) · 2n1/4 is not integral. But this does not cause any harm since the
length of [s + k · n−1/4/2, 1] is less than n−1/4.

Every interval J ⊆ [s, 1] of length n−1/4, which is twice the length of an
Ij , contains at least one Ij as a subinterval. Thus, if every Ij contains at least
one xi, every interval of length at least n−1/4 also contains at least one xi. The
probability that any fixed element xi does not assume a value in Ij is at most
1− n−1/4/2. Thus, and since 1 + x ≤ exp(x) for all x ∈ R, the probability that
Ij does not contain any xi is at most(

1− n−1/4

2

)√
n

≤ exp
(
−n1/4/2

)
.

Using the union bound, we obtain that the probability that there exists an
empty Ij is at most k · exp(−n1/4/2) ∈ exp

(
−Θ(n1/4)

)
.

Claim 2. Let τ = (τ1, . . . , τk) be the sequence obtained by sorting (σ1, . . . , σk),
and let τ0 = 0. Let j ∈ {1, . . . , k}, and let I = [τj−1, τj]. Let σ`1 , . . . , σ`√n

be the first
√

n elements of σ that fall into I. Let s = max{τj−1, σ`√n
}. Then

the set {σ`1 , . . . , σ`√n
} is

(
(τj − τj−1)n−1/4

)
-dense for the interval [s, τj] with a

probability of at least 1− exp
(
−Θ(n1/4)

)
.

Proof. The claim follows from the first claim by setting a = τj−1, b = τj , and
yi = max{a, σ`i} for all i ∈ {1, . . . ,

√
n}. We have added the element τ0 = 0 so

that the interval [0, τ1] does not require special attention. Each σ`i is uniformly
distributed in [yi, b] = [max{a, σ`i

}, τj]. Finally, yi = max{a, σ`i
} ∈ [a, s] =

[τj−1,max{τj−1, σ`√n
}] since σ is a sorted sequence.

Let us return to our original aim: We wish to bound the length of an in-
creasing run for which the values of the run all lie between the values of two
consecutive left-to-right maxima. The idea is to apply Claim 2 twice. Each time,
with high probability, if we consider additional

√
n elements of the run, their

values must be dense for a smaller and smaller interval. After having applied
the claim twice, the interval is so small that, again with high probability, the
interval can only contain a small number of elements – which proves that the
total number of elements in the run cannot be large. In the following, we detail
this argument.

Let a = σi be a left-to-right maximum of σ, and let b = σk > a be the
next left-to-right maximum after a, that is, k > i is chosen minimally such that
σk > a. If less than

√
n elements assume a value in [a, b], then these elements

contribute at most
√

n to the length of an increasing run (recall that all elements
of an increasing run must lie inside the interval [a, b] if a and b are consecutive
left-to-right maxima). Otherwise, we apply Claim 2 for j = k: The first

√
n

Smoothed Analysis of Binary Trees and Quicksort 13

elements of σ that are inserted into [a, b] lie
(
(b− a)n−1/4

)
-densely in [s, b] with

a probability of at least 1−exp
(
−Θ(n1/4)

)
. If this not the case (despite the high

probability), we call the situation a failure, which will be dealt with later.
Among the first

√
n elements in [a, b], let c1 < · · · < cm be the elements in

[s, b] in increasing order. Let c0 = s and cm+1 = b. Then, after inserting these
m elements into [s, b], any increasing run whose elements assume values in [s, b]
can only be continued with elements of a subinterval J = [ci−1, ci]. The length
ci − ci−1 of J is at most (b − a)n−1/4 ≤ 2n−1/4 since the first

√
n elements are(

(b − a)n−1/4
)
-dense in [s, b]. We apply the same argument once more: If less

than
√

n elements fall into J , then they contribute at most
√

n to the length of
an increasing run. Otherwise, we can apply Claim 2 again: The probability that
after inserting

√
n elements into J there is a subinterval of J of length at least

(ci − ci−1)n−1/4 that does not contain an element is at most exp
(
−Θ(n1/4)

)
. If

this nevertheless happens, we again call this a failure and deal with it later on.
We can now conclude that the values of all elements of an increasing run that

we have not yet dealt with must lie in an interval of size at most (ci−ci−1)n−1/4 ≤
2n−1/2. The expected number of elements that fall into such an interval is at
most 2

√
n. By the Chernoff bound, the probability that such an interval contains

more than 4
√

n elements is at most exp
(
−Ω(

√
n)

)
. Again, we call it a failure if

this nevertheless happens.
To finish the proof, we first estimate the length of the longest increasing run

given that we have no failures. Second, we show that failures happen only with a
negligible probability and contribute only little to the expected value of inc(σ).

If we have no failure, then the expected length of any increasing run is at most
E

(
ltrm(σ)

)
plus

√
n for the first

√
n elements that fall between two consecutive

left-to-right maxima plus
√

n for the first
√

n elements that fall into one interval
of length at most 2n−1/4 plus 4 ·

√
n, which is the maximum number of elements

in an interval of length 2/
√

n. Altogether, we have inc(σ) ∈ O(
√

n) in this case.
Failures can happen due to the following three events: First, there is an

interval of length at most 2n−1/4 between two left-to-right maxima that does
not contain one of the first

√
n elements that fall between these left-to-right

maxima. Second, there is an interval of length at most 2/
√

n that does not
contain any of the first

√
n elements after the second phase. Third, any interval

of length 2/
√

n contains more than 4
√

n elements.
Overall, there are at most O(n) pairs of consecutive left-to-right maxima

between which a failure can happen. Furthermore, there are at most O(n) pairs
of consecutive elements a and b between which a failure can happen. Finally,
there are at most O(n) intervals of length at most 2/

√
n where a failure can

happen. (These are very rough estimates.) By taking a union bound, the overall
probability of failure is thus at most O(n · exp

(
−Ω(n1/4)

)
). If we have failure,

then we bound inc(σ) by the trivial upper bound of n. This contributes only
O(n2 · exp

(
−Ω(n1/4)

)
) ⊆ o(1) to the expected value, which completes the proof

of Lemma 8.

14 B. Manthey, T. Tantau

Lemma 9. For every sequence σ, all d, and every covering U1, . . . , Uk of the
set {1, . . . , n} (which means

⋃k
i=1 Ui = {1, . . . , n}), we have

height(σ) ≤
∑k

i=1 height(σUi),

E
(
heightd(σ)

)
≤

∑k
i=1 E

(
heightd(σUi)

)
.

Proof. Let U1, . . . , Uk cover {1, . . . , n}. For a fixed i, let a and b with a < b
be two elements of σUi that do not lie on the same root-to-leaf path in T (σUi).
Then there exists a c prior to a and b in σUi with a < c < b, which implies that
a and b do not lie on the same root-to-leaf path in the tree T (σ) either. Now
consider a root-to-leaf path p of T (σ) that has a length of height(σ). Let pUi

be
p restricted to elements of σUi and let `Ui its length. Then

∑k
i=1 height(σUi) ≥∑k

i=1 `Ui
≥ height(σ), because the Ui cover {1, . . . , n}.

The second inequality follows directly from the first since taking expectation
is a monotone operation.

Lemma 10. For every sequence σ and for d = n/ log2 n, we have

E
(
heightd(σ)

)
∈ O(log n).

Proof. Recall that a position i is called eligible for an interval if σi could be any
value in the interval, and it is called regular if it actually lies in the interval. All
positions are eligible for [1, d].

Let σ be a perturbed sequence and let R be the set of regular positions with
respect to [1, d]. A sufficient condition for i being regular is νi ∈ [1, d − 1]. Let
F = {i ∈ {1, . . . , n} | νi ≤ 1} and B = {i ∈ {1, . . . , n} | νi ≥ d − 1} denote the
sets of positions i that are possibly not regular because νi is either too small or
too large.

The three sets R, F , and B are usually not disjoint, but they cover {1, . . . , n},
which allows us to apply Lemma 9 in the following way: If we can individu-
ally bound the expected values of heightd(σR), heightd(σF) and heightd(σB) by
O(log n), we are done.

Let us start with E
(
height(σR)

)
. Given that a position i is regular, the el-

ement σi is uniformly distributed in [1, d] and, thus, the order of the elements
of σR is random with all permutations being equally likely. This implies that
E

(
height(σR)

)
∈ O(log |R|) ⊆ O(log n).

It remains to deal with σF and σB . The distributions of height(σF) and
height(σB) are clearly identical, so it suffices to analyze height(σF). For this,
take a different look at how σF is generated: We can think of this as first flipping
a coin for every i ∈ {1, . . . , n} to determine i ∈ F with the coin being extremely
biased so that P(i ∈ F) = 1/d = (log2 n)/n holds. After we have chosen F , we
draw νi for each i ∈ F uniformly at random from the interval [0, 1].

By the Chernoff bound, the probability that σF contains more than 2 log2 n
elements is less than n−(log n)/3. If σF indeed contains more elements, we bound
height(σF) by n. This contributes only n−(log n)/3 ·n ∈ o(1) to the expected value
of height(σF).

Smoothed Analysis of Binary Trees and Quicksort 15

We can apply Lemma 8 to σF , where n′ = |F | ≤ 2 log2 n, and obtain
E

(
height1(σF)

)
∈ O(

√
n′) ⊆ O(log n).

Lemma 11. For every sequence σ and all d ≥ 1/n we have

E
(
heightd(σ)

)
∈ O

(√
n/d + log n

)
.

Proof. If d ∈ Ω
(
n/ log2 n

)
, then E

(
heightd(σ)

)
∈ O(log n) by Lemma 10.

To prove the theorem for smaller values of d, we divide the sequence into
subsequences. Let N be the largest real root of the equation N2/ log2 N = nd.
Then log N ∈ Θ(log(nd)), and thus N = c ·

√
nd · log(nd) for some c ∈ Θ(1).

Let nj be the number of elements of σ with σi ∈ [(j − 1) ·N/n, j ·N/n]. Choose
kj ∈ N such that (kj − 1) · N < nj ≤ kjN . We divide the nj elements of the
interval [(j − 1) ·N/n, j ·N/n] into kj subsequences σj,1, . . . , σj,kj such that no
subsequence contains more than N elements. Since

n/N∑
j=1

kj ≤
n/N∑
j=1

nj + N

N
≤ 2n/N,

we obtain at most 2n/N such subsequences. Each subsequence spans at most an
interval of length N/n and contains at most N elements. Thus, by Lemma 10,
we have E

(
heightd(σj,`)

)
∈ O(log(N)). Finally, Lemma 9 yields

E
(
heightd(σ)

)
≤

n/N∑
j=1

kj∑
`=1

E
(
heightd(σ

j,`)
)
∈ O

(
n log N

N

)
= O

(√
n/d

)
.

5 Smoothed Number of Quicksort Comparisons

In this section, we apply our results on binary search trees and left-to-right
maxima to the performance of the quicksort algorithm. The following theorem
summarizes the findings.

Theorem 3. For d ≥ 1/n we have

max
σ∈[0,1]n

E
(
qsd(σ)

)
∈ Θ

(
n

d+1

√
n/d + n log n

)
.

In other words, if d ∈ O(1), the number of comparisons is at most O(n
√

n/d),
while if d ∈ Ω(1), it is at most O(n

d

√
n/d). This means that d has a stronger

influence for d ∈ Ω(1).

5.1 Upper Bound on the Smoothed Number of Quicksort
Comparisons

To prove the upper bound, we first need a lemma similar to Lemma 9 that allows
us to estimate the number of comparisons of subsequences.

16 B. Manthey, T. Tantau

Lemma 12. For every sequence σ, all d, and every covering U1, . . . , Uk of the
set {1, . . . , n}, we have

qs(σ) ≤
∑k

i=1 qs(σUi
) + Q,

E
(
qsd(σ)

)
= E

(
qs(σ)

)
≤

∑k
i=1 E

(
qs(σUi)

)
+ E(Q),

where Q is the number of comparisons of elements of σUi
with elements of

σ{1,...,n}\Ui
for any i and the random variable Q is defined analogously for σ.

The proof goes along the same lines as the proof of Lemma 9 and is omitted.

Lemma 13. For every sequence σ and all d ≥ 1/n, we have

E
(
qsd(σ)

)
∈ O

(
n

d+1

√
n/d + n log n

)
.

Proof. First observe that quicksort will make at most O(n
√

n/d + n log n) com-
parisons, which follows directly from Lemma 11 and the fact that E

(
qs(σ)

)
≤

n · E
(
height(σ)

)
: Every level of recursion of quicksort contributes at most n− 1

comparisons, and we have height(σ) levels of recursion. Thus, the claim of the
theorem is correct for d ∈ O(1).

Let us now consider the case d ∈ ω(1). Furthermore, assume that d ∈
O

(
3
√

n/ log2 n
)
. This is no restriction since we obtain the average-case bound

of O(n log n) already for d ∈ Θ
(

3
√

n/ log2 n
)
, thus also for larger d.

Similar to the proof of Lemma 10, we divide the sequence σ into three parts.
The set R = {i ∈ {1, . . . , n} | σi ∈ [1, d]} of regular elements for the interval
[1, d] is defined as before. The set F is defined slightly differently, namely as
F = {i ∈ {1, . . . , n} | νi ≤ 3}. This means that F contains all i for which νi is
too small, plus some extra elements. Similarly B = {i ∈ {1, . . . , n} | νi ≥ d− 3}.

As in Lemma 10, the regular elements are easy to handle since they are
uniformly distributed in [1, d] and, thus, E

(
qsd(σR)

)
∈ O(n log n).

We have E
(
heightd(σF)

)
= E

(
heightd(σB)

)
∈ O(

√
n/d), which follows from

the same scaling argument that we used in Lemma 10 (see Lemma 1: The
probability that σF contains more than 6n/d elements is at most (e/4)3n/d ∈
O

(
(e/4)

√
n
)

due to the Chernoff bound and d ∈ O
(

3
√

n/ log2 n
)
. The same holds

for σB . If either contains more elements, we bound the height by n, which con-
tributes at most o(1) to the expectation. Otherwise, we have sequences with
O(n/d) elements that are perturbed with a perturbation parameter of 3. We
obtain

E
(
qs(σF)

)
= E

(
qs(σB)

)
∈ O

(
E

(
height3(σF)

)
· n/d

)
⊆ O

(
n
d

√
n/d

)
.

By Lemma 12, what remains to be estimated is the number of comparisons
of elements σi and σj where i and j are in two different sets of R, F , and B.

Due to the symmetry between σF and σB , it suffices to restrict ourselves to
estimating the number of comparisons of elements in σF with elements in σR

and σB . This boils down to counting the number of comparisons of elements σi

with νi ≤ 3 to elements σj with σj ≥ 1.

Smoothed Analysis of Binary Trees and Quicksort 17

The number of comparisons between elements σi and σj with i ∈ F and
j ∈ F ∩R can be bounded by the total number of comparisons between elements
in F , but this number is E

(
qs(σF)

)
∈ O

(
n
d

√
n/d

)
. Similarly, since E

(
qs(σR)

)
∈

O(n log n), the expected number of comparisons between positions i ∈ F ∩ R
and j ∈ R is at most O(n log n).

Thus, we can concentrate on i ∈ F with νi ≤ 1 and j ∈ R with σj ≥ 3, which
includes all i ∈ F \R and j ∈ R \ F .

We distinguish two cases: First, we estimate the expected number of such
comparisons with σi being the pivot element. Second, we consider the case that
σj is the pivot element.

The two elements σi ≤ σi + 1 ≤ 2 and σj ≥ 3 will be compared with σi

being the pivot only if i < j and σ contains no element σk ∈ [σi, σj] for k < i.
In particular, σ must not contain an element σk ∈ [2, 3] with k < i.

Since d ∈ ω(1), every element is eligible for the interval [2, 3]. Furthermore,
for every i ∈ {1, . . . , n}, we have P(νi ≤ 1) = P(σk ∈ [2, 3]) = 1/d and these
two events are disjoint. (If σi = 1, then this is not true since it might be νi = 1.
However, the probability of this is 0.) Thus, the probability that σ contains
more than O(log n) elements with νi ≤ 1 prior to the first element σk ∈ [2, 3] is
O(1/n). If this happens nevertheless, we bound the number of comparisons by
the trivial upper bound of n2, which contributes only O(n2 · 1/n) = O(n) to the
expected value.

Otherwise, at most O(log n) elements σi with νi ≤ 1 are compared to el-
ements σj with σj ≥ 3 with σi being the pivot, which contributes O(n log n)
comparisons.

Now we consider the second case: How many comparisons of elements σj ≥ 3
with elements σi ≤ σi +1 with σj being the pivot element do we have to expect?
The element σj is compared to σi only if j < i and there is no k < j with
σk ∈ [σi, σj]. Thus, it is necessary that σj is the minimal among all elements
σk ≥ 3 with k ≤ j.

If we restrict ourselves to σk ∈ [3, d], then this corresponds just to the average
number of left-to-right minima, which is O(log n). (The average number of left-
to-right minima is equal to the average number of left-to-right maxima.) Thus,
the expected number of elements σj ∈ [3, d] that, when being the pivot element,
are compared to any element σi ≤ σi + 1, is O(log n). This contributes at most
O(n log n) to the expected number of comparisons.

Elements σk ≥ d remain to be considered. Since d ∈ ω(1), there are at most
O(log n) such elements prior to the first element of the interval [3, d] with high
probability. Furthermore, there are at most O(log n) elements of σF prior to the
first element of [1, d] with high probability. Thus, the contribution to the number
of comparisons is only O(log2 n).

18 B. Manthey, T. Tantau

5.2 Lower Bound on the Smoothed Number of Quicksort
Comparisons

The upper bound proved in the previous section is tight. The standard sorted
sequence provides a worst case, but in the following lemma we use a sequence
that is slightly easier to handle technically.

Lemma 14. For the sequence σ = (1/n, 2/n, 3/n, . . . , n
2 /n, 1, 1, . . . , 1) and all

d ≥ 1/n, we have

E
(
qsd(σ)

)
∈ Ω

(
n

d+1

√
n/d + n log n

)
.

Proof. In the perturbed sequence σ the first n/2 elements contain an expected
number of Ω

(√
n/d

)
left-to-right maxima according to Lemma 4. Every left-to-

right maximum σi of σ has to be compared to all the elements that come later
and are greater than σi.

If d ∈ o(1), all n/2 elements of the second half of σ are greater than any
left-to-right maximum of the first half of σ. Thus, the expected number of com-
parisons is at least Ω

(
n
√

n/d
)

= Ω
(

n
d+1

√
n/d + n log n

)
.

If d ∈ Ω(1), then the probability that an element σi of the second half of σ
is greater than all left-to-right maxima of the first half of σ is

P
(
∀j ≤ n/2: 1 + νi ≥ σj

)
≥ P

(
1 + νi ≥ 1/2 + d

)
=

1
2d

.

Thus, the expected number of elements that are greater than all left-to-right
maxima of the first half is Ω

(
n/d

)
. Multiplying this with the expected number

of left-to-right maxima of the first half yields that at least an expected number
of Ω

(
n
d

√
n/d

)
⊆ Ω

(
n

d+1

√
n/d

)
comparisons are needed. Since quicksort always

needs at least Ω(n log n) comparisons, we get the claim.

6 Conclusion

We have analyzed the smoothed height of binary search trees and the smoothed
number of comparisons made by the quicksort algorithm under additive noise.
The smoothed height of binary search trees and also the smoothed number of
left-to-right maxima are Θ(

√
n/d + log n); the smoothed number of quicksort

comparisons is Θ(n
d+1

√
n/d + n log n).

While we obtain the average-case height of Θ(log n) for binary search trees
only for d ∈ Ω(n/ log2 n) – which is large compared to the interval size [0, 1] from
which the numbers are drawn –, for the quicksort algorithm d ∈ Ω

(
3
√

n/ log2 n
)

suffices so that the expected number of comparisons equals the average-case
number of Θ(n log n). On the other hand, the recursion depth of quicksort, which
is equal to the tree height, can be as large as Ω

(√
n/d

)
. Thus, although the

average number of comparisons is already reached at d ∈ Ω
(

3
√

n/ log2 n
)
, the

recursion depth remains asymptotically larger than its average value for d ∈
o
(
n/(log n)2

)
.

Smoothed Analysis of Binary Trees and Quicksort 19

A natural question arising from our results is, what happens when the noise is
drawn according to distributions other than the uniform distribution? In a more
general additive noise model, the adversary can not only specify the sequence
σ, but also a density function f according to which the noise is drawn. We
conjecture that if maxx∈R f(x) = φ, then the expected tree height and the
expected number of left-to-right maxima are Θ(

√
nφ+log n) while the expected

number of quicksort comparisons is Θ
(

φn
φ+1

√
nφ + n log n

)
. These bounds would

be in compliance with our bounds for uniformly distributed noise, where φ = 1/d.
In our study of the quicksort algorithm we used the first element as the pivot

element. This choice simplifies the analysis but is unrealistic since one would
normally either use the middle element as the pivot element or use the median
of the first, last, and middle element. Nevertheless, we conjecture that for both
of these more realistic pivot strategies the same bounds as for the simple pivot
strategy will result.

References

1. Cyril Banderier, René Beier, and Kurt Mehlhorn. Smoothed analysis of three
combinatorial problems. In Branislav Rovan and Peter Vojtás, editors, Proc. of
the 28th Int. Symp. on Mathematical Foundations of Computer Science (MFCS),
volume 2747 of Lecture Notes in Computer Science, pages 198–207. Springer, 2003.

2. Michael Drmota. An analytic approach to the height of binary search trees II.
Journal of the ACM, 50(3):333–374, 2003.

3. Michael Drmota. Profile and height of random binary search trees. Journal of the
Iranian Statistical Society, 3(2):117–138, 2004.

4. James Allen Fill and Svante Janson. Quicksort asymptotics. Journal of Algorithms,
44(1):4–28, 2002.

5. Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Pro-
gramming. Addison-Wesley, 2nd edition, 1998.

6. Bodo Manthey and Rüdiger Reischuk. Smoothed analysis of binary search trees.
Theoretical Computer Science, 378(3):292–315, 2007.

7. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

8. Bruce Reed. The height of a random binary search tree. Journal of the ACM,
50(3):306–332, 2003.

9. John Michael Robson. Constant bounds on the moments of the height of binary
search trees. Theoretical Computer Science, 276(1–2):435–444, 2002.

10. Robert Sedgewick. The analysis of quicksort programs. Acta Informatica, 7(4):327–
355, 1977.

11. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time. Journal of the ACM,
51(3):385–463, 2004.

12. Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms and
heuristics: Progress and open questions. In Luis M. Pardo, Allan Pinkus, Endre
Süli, and Michael J. Todd, editors, Foundations of Computational Mathematics,
Santander 2005, pages 274–342. Cambridge University Press, 2006.

	Smoothed Analysis of Binary Search Trees and Quicksort Under Additive Noise
	Bodo Manthey, Till Tantau

