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Andreas Nüchter, Kai Lingemann, Joachim Hertzberg

University of Osnabrück, Institute of Computer Science
Knowledge Based Systems Research Group

Albrechtstr. 28, D-49069 Osnabrück, Germany
{nuechter|lingemann|hertzberg}@informatik.uni-osnabrueck.de

Abstract. 6D SLAM (Simultaneous Localization and Mapping) or 6D
Concurrent Localization and Mapping of mobile robots considers six de-
grees of freedom for the robot pose, namely, the x, y and z coordinates
and the roll, yaw and pitch angles. In previous work we presented our
scan matching based 6D SLAM approach [10–12,16], where scan match-
ing is based on the well known iterative closest point (ICP) algorithm [3].
Efficient implementations of this algorithm are a result of a fast computa-
tion of closest points. The usual approach, i.e., using kd-trees is extended
in this paper. We describe a novel search stategy, that leads to significant
speed-ups. Our mapping system is real-time capable, i.e., 3D maps are
computed using the resources of the used Kurt3D robotic hardware.

1 Introduction

Reliable environment mapping is one of the most fundamental robotic research
issues. One on hand, it supersedes tedious manual environment mapping, on the
other hand, it is the basis for many robotic taks, since it enables the robot to
navigate in unknown terrain. Many applications benefit from solving this prob-
lem, e.g., rescue and inspection robotics, architecture modelling, or industrial
automation.

The robotic mapping problem is that of acquiring a spatial model of a robot’s
environment. If the robot poses were known, the local sensor inputs of the robot,
i.e., local maps, could be registered into a common coordinate system to create a
map. Unfortunately, any mobile robot’s self localization suffers from imprecision
and therefore the structure of the local maps, e.g., of single scans, needs to be
used to create a precise global map. Hence, the simultaneous localization and
mapping (SLAM) problem has a chicken-and-egg nature: Mapping solves the
localization and localization solves the mapping problem. Finally, robot poses
in natural outdoor environments necessarily involve yaw, pitch, roll angles and
elevation, turning pose estimation as well as scan registration into a problem
with six mathematical dimensions, i.e. 6D SLAM.

Scan matching plays an important role in mapping systems. It is used to
correlate and align scans takes from different poses. Matching of scans is trans-
formed to the problem of matching of points, e.g., closest points [3], followed by
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a computation of an optimal rotation and translation. Often this process is iter-
ated, since the correct point matches are not known in advance and a heuristic
is used instead. An initial matching is corrected in every iteration.

Since matching is done by matching closest points, a fast algorithm for finding
a closest point for any given one is necessery. In earlier work we presented, we
showed that instead of computing an exact closest point, the computation of
approximate nearest neigbors does not significantly deteriorate the results of
the scan matching, but results in a significant speed up [10]. Nevertheless, one
would always prefer exact algorithms. This paper presents an excact and fast
method for computing closest points. It is based on caching, i.e., memorization,
of intermediate results and on traversing the kd-tree starting from a leaf.

The paper is organized as follows: First, we present briefly the state of the art
in robotic mapping followed by introducing our robot Kurt3D. Then, we sketch
out 6D SLAM algorithm and decribe in chapter 5 the performance issues of the
scan matching in detail. Here, we introduce the cached kd-tree search. Chapeter
6 presents the result and conclusions.

2 State of the Art

2.1 Related Work

SLAM in well-defined, planar indoor environments is considered solved, since
reliable probabilistic methods exists. Here, the robot has probabilistic motion
models and uncertain (landmark) perception models. Through integration of
these two distributions with a Bayes filter, e.g., Kalman or particle filter, it
is possible to localize the robot precisely. Using multi hypothesis tracking these
approaches are very stable. Please refer to [17], where Thrun reviews the existing
SLAM methods.

6D SLAM still proposes a challenge, since several strategies for planar en-
vironments become infeasible, e.g., with 6 degrees of freedom the matrices in
Kalman or information filter SLAM grow more rapidly and a multi hypothesis
approach would certainly require too many particles. Therefore, 3D mapping
systems [5,8,14,15] often rely on scan matching approaches. Hereby, ICP is used
as in [5, 14] as well as in our previous work [11, 12, 16].

2.2 Kurt3D

In our experiments the mobile robot Kurt3D is used. The robot is equipped with
a 3D laser scanner.

The 3D laser range finder. The 3D laser range finder (Fig. 1) [15] is built
on the basis of a SICK 2D range finder by extension with a mount and a small
servomotor. The 2D laser range finder is attached in the center of rotation to
the mount for achieving a controlled pitch motion with a standard servo.
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The area of up to 180◦(h)×120◦(v) is scanned with different horizontal (181,
361, 721) and vertical (128, 256, 400, 500) resolutions. A plane with 181 data
points is scanned in 13 ms by the 2D laser range finder (rotating mirror device).
Planes with more data points, e.g., 361, 721, duplicate or quadruplicate this
time. Thus a scan with 181 × 256 data points needs 3.4 seconds. Scanning the
environment with a mobile robot is done in a stop-scan-go fashion.

The mobile robot. Kurt3D (Fig. 1) is a
mobile robot with a size of 45 cm (length) ×
33 cm (width) × 29 cm (height) and a weight
of 22.6 kg. Two 90 W motors are used to
power the 6 skid-steered wheels, whereas the
front and rear wheels have no tread pattern
to enhance rotating. The core of the robot is
a Pentium-Centrino-1400 with 768 MB RAM
and Linux.

Fig. 1: Kurt3D.
3 6D SLAM

To create a correct and consistent environment map, 3D scans have to be merged
into one coordinate system. This process is called registration. If the robot car-
rying the 3D scanner were localized precisely, the registration could be done
directly based on the robot pose. However, due to the imprecise robot sensors,
self localization is erroneous, so the geometric structure of overlapping 3D scans
has to be considered for registration. As a by-product, successful registration
of 3D scans relocalizes the robot in 6D, by providing the transformation to be
applied to the robot pose estimation at the recent scan point.

Kurt3D’s SLAM algorithm consists of four steps, that are explained in the
following subsections.

3.1 Odometry extrapolation

The odometry is extrapolated to 6 degrees of freedom using previous registration
matrices, i.e., the change of the robot pose ∆P given the odometry information
(xn, zn, θy,n), (xn+1, zn+1, θy,n+1) and the registration matrix R(θx,n, θy,n, θz,n)
is calculated by solving:
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3.2 Calculating Heuristic Initial Estimations for ICP Scan Matching

For the given two sets M and D of 3D scan points stemming from the 3D scans,
our heuristic computes two octrees based on these point clouds. The octree’s rigid
transformations are applied to the second octree, until the number of overlapping
cubes has reached its maximum. The transformations are computed in nested
loops. However, the computational complexity is reduced due to the fact that
we limit the search space relative to the octree cube size. Details can be found
in [11].

3.3 Scan Registration

We use the well-known Iterative Closest Points (ICP) algorithm to calculate a
rough approximation of the transformation while the robot is acquiring the 3D
scans [3]. Given two independently acquired sets of 3D points, M and D, which
correspond to a single shape, we aim at finding the transformation consisting of
a rotation R and a translation t which minimizes the following cost function:

E(R, t) =

|M|
∑

i=1

|D|
∑

j=1

wi,j ||mi − (Rdj + t)||
2
. (1)

The weights wi,j are assigned 1 if the i-th point of M describes the same point
in space as the j-th point of D. Otherwise wi,j is 0. Two things have to be
calculated: First, the corresponding points, and second, the transformation (R,
t) that minimizes E(R, t) on the base of the corresponding points.

The ICP algorithm calculates iteratively the point correspondences. In each
iteration step, the algorithm selects the closest points as correspondences and
calculates the transformation (R, t) for minimizing equation (1). In the last
iteration step, the point correspondences are assumed to be correct. Besl et al.
prove that the method terminates in a minimum [3]. However, this theorem
does not hold in our case, since we use a maximum tolerable distance dmax for
associating the scan data. Such a threshold is required though, given that 3D
scans overlap only partially.

Fig. 2. Left: Two 3D point clouds. Middle: Octree corresponding to the black point
cloud. Right: Octree based on the blue points.
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In every iteration, the optimal transformation (R, t) has to be computed.
Eq. (1) can be reduced to

E(R, t) ∝
1

N

N
∑

i=1

||mi − (Rdi + t)||
2
, (2)

with N =
∑|M|

i=1

∑|D|
j=1

wi,j , since the correspondence matrix can be represented
by a vector v containing the point pairs.

Four direct methods are known to minimize eq. (2) [7]. In earlier work [15]
we used a quaternion based method [3], but the following one, based on singular
value decomposition (SVD), is robust and easy to implement, thus we give a brief
overview of the SVD-based algorithm. It was first published by Arun, Huang
and Blostein [1]. The difficulty of this minimization problem is to enforce the
orthonormality of the matrix R. The first step of the computation is to decouple
the calculation of the rotation R from the translation t using the centroids of
the points belonging to the matching, i.e.,

cm =
1

N

N
∑

i=1

mi, cd =
1

N

N
∑

i=1

dj (3)

and

M ′ = {m′
i = mi − cm}1,...,N , D′ = {d′

i = di − cd}1,...,N . (4)

After substituting (3) and (4) into the error function, Eq. (2) becomes:

E(R, t) ∝

N
∑

i=1

||m′
i − Rd′

i||
2

with t = cm − Rcd. (5)

The registration calculates the optimal rotation by R = VUT . Hereby, the
matrices V and U are derived by the singular value decomposition H = UΛVT

of a correlation matrix H. This 3 × 3 matrix H is given by

H =

N
∑

i=1

d′
im

′T
i =





Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz



 , (6)

with Sxx =
∑N

i=1
m′

ixd′ix, Sxy =
∑N

i=1
m′

ixd′iy , . . . [1].
We proposed and evaluated algorithms to accelerate ICP, namely point re-

duction and approximate kd-trees [12, 15, 16], which are used here, too. They
will be addressed in Detail in Sec. 4.

3.4 Loop Closing

After matching multiple 3D scans, errors have accumulated and loops would
normally not be closed. Our algorithm automatically detects a to-be-closed loop
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by registering the last acquired 3D scan with earlier acquired scans. Hereby we
first create a hypothesis based on the maximum laser range and on the robot
pose, so that the algorithm does not need to process all previous scans. Then we
use the octree based method presented in section 3.2 to revise the hypothesis.
Finally, if a registration is possible, the computed error, i.e., the transformation
(R, t) is distributed over all 3D scans.

3.5 Model Refinement

Based on the idea of Pulli we designed the relaxation method simultaneous

matching [15]. The first scan is the masterscan and determines the coordinate
system. It is fixed. The following three steps register all scans and minimize the
global error, after a queue is initialized with the first scan of the closed loop:

1. Pop the first 3D scan from the queue as the current one.
2. If the current scan is not the master scan, then a set of neighbors (set of all

scans that overlap with the current scan) is calculated. This set of neighbors
forms one point set M . The current scan forms the data point set D and is
aligned with the ICP algorithms. One scan overlaps with another iff more
than p corresponding point pairs exist. In our implementation, p = 250.

3. If the current scan changes its location by applying the transformation
(translation or rotation) in step 2, then each single scan of the set of neigh-
bors that is not in the queue is added to the end of the queue. If the queue
is empty, terminate; else continue at step 1.

In contrast to Pulli’s approach, our method is totally automatic and no inter-
active pairwise alignment has to be done. Furthermore the point pairs are not
fixed [13]. The accumulated alignment error is spread over the whole set of ac-
quired 3D scans. This diffuses the alignment error equally over the set of 3D
scans [16].

4 Performance Issues

The five steps in our SLAM algorithms have different computational costs. In
our experiments, we acquire usually 3D scans with 20,000 up to 300,000 3D
data points. While the first step (odometry extrapolation) is computed instan-
taneously, the octree based heuristic, applied naively, would need up to 2 seconds
for calculating the two octrees and the rough alignment of the scans. Since com-
puting octrees is done in logarithmic time, the influence of larger data sets is
negligible. The loop closing step (step four) has similar computational costs,
since we use the octree heuristic again.

Most computational time is needed in the scan matching step (step three)
and in the model refinement (step five). While the model refinement can easily
be done offline, i.e., after the robot has finished the data acquisition, the scan
matching is an essential part of the mapping procedure. We have a number of
methods available to reduce significantly the computational costs, namely point
reduction, kd-trees, approximate kd-trees and cached kd-trees [10, 12].
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Searching kd-trees A kd-tree is searched recursively for a closest point of a
given query 3D point. The 3D point needs to be compared with the separating
plane in order to decide on which side the search must continue. This procedure
is executed until the leaves are reached. There, the algorithm has to evaluate all
bucket points. However, the closest point may be in a different bucket, iff the
distance to the limits is smaller than the one to the closest point in the bucket.
In this case, backtracking has to be performed. Fig. 3 shows a backtracking
case, where the algorithm has to go back to the root. The test is known as
ball-within-bounds test [2, 4, 6].

Pq
��

b

d

Ball−Within−Bounds

fourth partition

third partition

second partition

first partition

(b)

(a)

Fig. 3. Left: Recursive construction of a kd-tree. If the query consists of point pq, kd-
tree search has to backtrack to the tree root to find the closest point. Right: Partitioning
of a point cloud. Using the cut (b) rather than (a) results in a more compact partition
and a smaller probability of backtracking [4].

4.1 Cached kd-trees

The cached kd-tree search. kd-trees with caching contain, in addition to
the limits of the represented point set and to the two child node pointers, one
pointer to the predecessor node. The root node contains a null pointer. During
the recursive construction of the tree, this information is available and no extra
computations are required.

For the ICP algorithm, we distinguish between the first and the following
iterations: In the first iteration, a normal kd-tree search is used to compute the
closest points. However, the return function of the tree is altered, such that in
addition to the closest point, the pointer to the leaf containing the closest point is
returned and stored in the vector of point pairs. This supplementary information
forms the cache for future look-ups.

In the following iterations, these stored pointers are used to start the search.
If the query point is located in the bucket, the bucket is searched and the ball-
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data points

query point proposed kd−tree search

traditional kd−tree search

cached kd−tree edges

vector of point pairs

Fig. 4. Schematic description of the proposed search method: Instead of closest point
searching from the root of the tree to the leafs that contain the data points, a pointer
to the leafs is cached. In the second and following ICP iteration, the tree is searched
backwards.

within-bounds test applied. Backtracking is started, iff the ball lies not com-
pletely within the bucket. If the query point is not located within the bucket,
then backtracking is started, too. Since the search is started in the leaf node,
explicit backtracking through the tree has to be implemented using the pointers
to the predecessing nodes (see Fig. 4). Algorithm 1 summarizes the ICP with
cached kd-tree search.

Algorithm 1 ICP with cached kd-tree search

1: for i = 0 to maxIterations do

2: if i == 0 then

3: for all dj ∈ D do

4: search kd-tree of set M top down for point dj

5: vi =
`
dj ,mf(dj), ptr to bucket(mf(dj))

´

6: end for

7: else

8: for all dj ∈ D do

9: search kd-tree of set M bottom up for point dj using ptr to bucket(mf(dj))
10: vi = (dj ,mf(dj), ptr to bucket mf(dj))
11: end for

12: end if

13: calculate transformation (R, t) that minimizes the error function eq. (2)
14: apply transformation on data set D
15: end for
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Performance of cached kd-tree search. The proposed ICP variant uses
exact closest point search. In contrast to the previously discussed approximate
kd-tree search for ICP algorithms [6, 10], registration inaccuracies or errors due
to approximation cannot occur.

Friedman et al. prove that searching for closest points using kd-trees needs
logarithmic time [4], i.e., the amount of backtracking is independent of the num-
ber of stored points in the tree. Since the ICP algorithm iterates the closest point
search, the performance derives to O(I |D| log |M |), with I the number of iter-
ations. Note: Brute-force ICP algorithms have a performance of O(I |D| |M |).

The proposed cached kd-tree search needs O((I + log |M |) |D|) time in the
best case. This performance is reached if constant time is needed for backtrack-
ing. Obviously the backtracking time depends on the computed ICP transforma-
tion (R, t). For small transformations the time is nearly constant. Cached kd-tree
search needs O(|D|) extra memory for the vector v, i.e., for storing the point-
ers to the tree leafs. Furthermore, additional O(log |M |) memory is needed for
storing the backwards pointers in the kd-tree. Fig. 5 shows the overall speedup
dependend on the bucket size of the kd-tree (top) and the speed-up per ICP
iteration (bottom). Note that in the first iteration traditional kd-tree search and
cached kd-tree search have the same search time, since the cache needs to be
initialized. A detailed analysis of cached kd-tree search can be found in [9].

5 Results and Conclusions

This paper extends our scan matching based 6D SLAM approach. An efficient
implementation of the ICP algorithm are a result of a fast computation of closest
points. The usual approach, i.e., using kd-trees is slightly modified in this paper.
The novel search stategy, is based on traversing the kd-tree backwards, start-
ing from memorized, i.e., chaced intermediate data. We end up with significant
speed-up.

The proposed methods have been tested on various data sets, including test
runs at RoboCup Rescue and ELROB. Fig. 6 show three closed loops. 3D ani-
mations of the bottom ones can be found at http://kos.informatik.uni-osna
brueck.de/download/6Dpre/ and http://kos.informatik.uni-osnabrueck.

de/download/6Doutdoor/. The loop in the top and bottom left part of Fig. 6
was closed manually, whereas the bottom right loop was detected automatically.

These large loops require an reliable robot control architecture for driving
the robot and efficient 3D data handling and storage methods. In future work
we will tackle the emerging topic of map management.
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10. A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D SLAM with Ap-
proximate Data Associoation. In Proceedings of the 12th IEEE International Con-
ference on Advanced Robotics (ICAR ’05), pages 242 – 249, Seattle, U.S.A., July
2005.
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12. A. Nüchter, H. Surmann, K. Lingemann, J. Hertzberg, and S. Thrun. 6D SLAM
with an Application in autonomous mine mapping. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 1998 – 2003, New
Orleans, USA, April 2004.

11



13. K. Pulli. Multiview Registration for Large Data Sets. In Proceedings of the 2nd
International Conference on 3D Digital Imaging and Modeling (3DIM ’99), pages
160 – 168, Ottawa, Canada, October 1999.

14. V. Sequeira, K. Ng, E. Wolfart, J. Goncalves, and D. Hogg. Automated 3D recon-
struction of interiors with multiple scan–views. In Proceedings of SPIE, Electronic
Imaging ’99, The Society for Imaging Science and Technology /SPIE’s 11th Annual
Symposium, San Jose, CA, USA, January 1999.
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