Dagstuhl SeminaFrom Security to Dependability, September 10-15, 2006, Schloss Dagstuhl, Germany 1

Towards bounded wait-free PASIS
(extended abstract)

Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson,
Michael K. Reiter, Jay J. Wylie

. INTRODUCTION believe that an implementation that incorporates

The PASIS read/write protocol implements Eese extensions will preserve the excellent best-
Byzantine fault-tolerant erasure-coded atomic re§@se performance of the original PASIS prototype.

ister. The prototype PASIS storage system imple-
mentation provides excellent best-case performance. Il. PASIS PROTOCOL REVIEW

Writes require two round trips and contention- and __)))
failure-free reads require one. Unfortunately, even ThiS section briefly reviews the PASIS protocol,

though writes and reads are wait-free in pAS|§)ough we refer the reader to the original PASIS [1]

Byzantine components can induce correct clierf@d Lazy Verification [2] papers for more details.
to perform an unbounded amount of work. Thi¥/é assume that clients may be Byzantine; that no
unbounded amount of work can take one of tw&ore thanb servers are Byzantine; that authenti-
forms: an unbounded number of protocol steps tated channells exist between all servers and be-
complete a read or arbitrarily-sized timestamp@’yeen each client and every server; and, that servers
Correct clients may have to read back in logicf@ve unbounded storage space. No assumptions
time to complete a read that is concurrent to @€ Made about timing (i.e., asynchronous timing
write; Byzantine components can induce a corre®t0del). Writes and reads are linearizable [4] and
client to perform this protocol step an unboundeif@it-free [5].

number of times. A correct client advances logical At @ high level, the protocol proceeds as follows.
time by a single unit with every write. A Byzan-L0gical timestamps are used to totally order all

tine component can advance logical time by Arites and to identify requests that pertain to the
arbitrary amount, thus creating an arbitrarily-sizetfMe Write across the set of servers. For each write,
timestamp. Such timestamps require every read aﬁt,boglcal timestamp is co_nstructed by the client that
write to perform an unbounded amount of work. i guaranteed to be unique and greater than that
In this extended abstract, we enumerate the &/-the latest complete candidate (the most recent
enues by which Byzantine servers and clients c§AMPletely written object). This is accomplished by
induce correct clients to perform an unboundeiREAD-TIMESTAMP operation that queries servers
amount of work in PASIS. We sketch extensions 6" the greatest timestamp they host. Fragments are
the PASIS protocol [1] and Lazy Verification [2] thag€nerated by erasure-coding objects. To complete a
bound the amount of work Byzantine component¥ite, a client writes timestamp-fragment pairs to a
can induce correct clients to perform. We presefiorum of servers. .
the extensions necessary to constrain ByzantinelO perform a read, a client performs READ-
servers separately from those necessary to constrhREST operation that issues requests to a set of
Byzantine clients. We believe that the extensiog§rvers. Once each member of a quorum of servers
provide bounded wait-free [3] reads and writes. As replies with the latest timestamp-fragment pair that
with (unbounded wait-free) PASIS, we assume dhhosts, the client classifies responses. Classification

unbounded amount of server storage space. We d§desponses is based on the number of servers that
return timestamp-fragment pairs with a common

Michael Abd-El-Malek, Gregory R. Ganger, and Michael K-®Rei timestamp. Classification is performed on responses

are with Carnegie Mellon University. . .
Garth R. Goodson is with Network Appliance Inc. that share the highest timestamp. We refer to the

Jay J. Wylie is with Hewlett-Packard Labs. set of responses that share that timestamp as the
Dagstuhl Seminar Proceedings 06371

From Security to Dependability
http://drops.dagstuhl.de/opus/volltexte/2007/848

Dagstuhl SeminaFrom Security to Dependability, September 10-15, 2006, Schloss Dagstuhl, Germany 2

candidate. A candidate is classifiedomplete, re- stored objects is reached. Lazy Verification bounds
pairable, or incomplete. If a candidate is classifiedthe number of poisonous writes that can exist in the
complete, the object is decoded from the erasumg/stem at any time; it does so with nominal impact
coded fragments and returned. If a candidate as best-case performance.

classified repairable, the object is decoded, erasure-

coded fragments are written to additional servers, 1. BYZANTINE SERVERS

and once a quorum of servers host the candidate, iﬁn
is returned. If a candidate is classified incompletsREVI
the candidate is discardedr&@AD-PREVIOUS Oper- g

response to a READ-LATEST, READ-
OUS Or READ-TIMESTAMP request, a
zantine server can fabricate timestamp-fragment
irs with arbitrarily-high timestamps. In PASIS,
ch responses can lead to a correct client
erforming an unbounded number OREAD-
REVIOUS operations to complete a read or storing
an arbitrarily-sized timestamp.

ation is performed that requests responses with
next highest timestamp from servers, and classifi
tion begins anew.

For simplicity, consider the simplest threshol
quorum that tolerate$ Byzantine serversN =
4b + 1 servers with quorums of size=3b+ 1. In
such a system, the repairable threshold s b+ 1; .
candidates with fewer thanresponses are classified Incomplete candidates
incomplete; candidates with or more responses, If a Byzantine server responds t®RE8AD-LATEST
but fewer thang, are classified repairable; andrequest with a fabricated timestamp-fragment pair
candidates withy or more response are classifiethat has an arbitrarily-high timestamp, a client has
complete. The classification rules and quorum ite perform aREAD-PREVIOUS operation based on
tersection properties ensure that, if a client classire fabricated timestamp. The client may contact
fies a candidate as complete, then any subsequiet Byzantine server(s) again, and they could fabri-
client that classifies the candidate will classify it asate another arbitrarily-high timestamp, just slightly
repairable or complete, thus ensuring linearizabilitower than before. A client would then perform

Self-verifying timestamps protect the integrityanotherREAD-PREVIOUS operation, and so on.
of stored objects. Logical timestamps have the The problem is that the correct client uses the
following structure: (LogicalTime, ClientID, highest timestamp returned toREAD-LATEST or
cross_checksum). Correct clients incrementREAD-PREVIOUS operation. The client ought to
LogicalTime by one with every write. The clientuse theb + 1% timestamp in the ordered list of
ID, ClientID, ensures that concurrent writes fronimestamps returned from a quorum of servers: e.g.,
different clients have different timestamps. Thié timestamps{3, 3,2, 2, 1, 1, I} are returned and
cross checksum [6] is an array of N cryptographic b = 2, then timestamg®, the “3" highest” time-
hashes, one for each fragment/server. The crasamp, is used. We useé 4 1% highest” timestamp
checksum protects the fragments against corruptimmean “theb + 15t timestamp in the ordered list of
by Byzantine servers: clients validate fragmentsnestamps returned from a quorum of servers” in
returned by servers against the cross checkstime remainder of this extended abstract. Dhe1st
in the timestamp. Embedding the cross checksunghest timestamp is guaranteed to be no greater
in the timestampand having clients verify the than a timestamp from a correct server (i.e., it may
timestamp at read-time protects agaipsisonous be fabricated, but it is not arbitrarily high). It is also
writes. A poisonous write occurs when a Byzantinguaranteed to be no less than the timestamp of the
client writes inconsistent erasure-coded fragmenltatest complete candidate.

Because clients verify timestamps at read-time, aTo bound the number oREAD-PREVIOUS Op-
client detects the poisonous write and re-classifiemtions a correct client must perform, the client
the corresponding candidate as incomplete. passes theb + 15t highest timestamp into the

In PASIS [1], Byzantine clients could introduceREAD-PREVIOUS Operation. In response toREAD-
an unbounded number of poisonous writes. Wi#'REVIOUS request with timestampl'S, a server
Lazy Verification [2], PASIS servers verify the in+eturns the timestamp-fragment pair it hosts with
tegrity of stored objects during idle time or whena timestamp less than or equal tB8S. This is
ever a threshold of the number of unverified locallyrecessary so that the next iteration of the read

Dagstuhl SeminaFrom Security to Dependability, September 10-15, 2006, Schloss Dagstuhl, Germany 3

algorithm performs classification on the candidatepairable writes. Servers must either verify this
with the b + 1 highest timestamp. (In PASIS, theproperty or, in the course of trying to verify this
server returned the timestamp-fragment pair wifiroperty, bound the number of incomplete candi-
a timestamp strictly less thaii'S.) BasingREAD- dates a client read needs to process.
PREVIOUSoON theb+- 1% highest timestamp preserves There are two avenues by which Byzantine clients
all necessary properties for linearizability: a correcian induce correct clients to process an unbounded
client will not read behind the latest complete candirumber of incomplete candidates to complete a
date. It also bounds the numberrfAD-PREVIOUS read: (i) a Byzantine client performs multiple writes
operations a correct client must perform to complete an incomplete threshold of servers, and (ii) a
a read. Byzantine client performs multiple writes to a re-
pairable threshold of servers.
B. Arbitrarily-sized timestamps Consider case (i): multiple__/vrit_es to an incom-
. . _ plete threshold of servers. Verification by the servers
A client constructs the timestamp for a Writgn¢ receive the incomplete writes determine that the
based on the highest timestamp returned 10 cfent is Byzantine. Verification by the servers that
READ-TIMESTAMP operation. As with theREAD- 4g ot receive the writes may or may not determine
PREVIOUS operation, a correct client ought to USgnat the client is Byzantine; detection depends on
the b + 1% highest timestamp returned READ- the quorum of servers that respond. It is sufficient
TIMESTAMP o protect against responses froffhoygh, for those servers that receive the writes to
Byzantine servers. Correct clients base timestamfisermine that the client is Byzantine to bound the
on one that is no greater than one returned byn@mber of incomplete writes.
correct server and no less than that of the latestynhen a server determines that a client is Byzan-
complete candidate. This preserves best-case perfgfa it stops accepting write requests from the
mance and linearizability, and bounds the amount @fent. This bounds the number of incompletes the
work a Byzantine server can induce a correct clieggryer hosts from a given Byzantine client. Note that
to perform. the server continues to accept repairs of candidates
written by the Byzantine client from other clients
IV. BYZANTINE CLIENTS though. Indeed, the server may even repair a write

A Byzantine client can perform incomplete oft knows to be from a Byzantine client during

repairable writes to any server, correct and ByzaMerification.) _ _ _

tine alike. A Byzantine client can construct an Consider case (ii): multiple writes to a repairable
arbitrarily-sized timestamp for its writes. Lazy Verihreshold of servers. A server may or may not deter-
ification bounds the number of poisonous writé®ine that the client is Byzantine; it depends on the
a Byzantine client can perform via server verifiduorum of servers that respond during verification.
catiort. Server verification must be extended tf the server does not determine that the client is
bound the amount of work Byzantine clients caByzantine, then it must have classified a candidate

induce correct clients to perform via incomplete ¥ repairable and performed repair. In doing so, the
repairable writes and arbitrarily-sized timestampsServer bounds the number of incomplete candidates
that a client may have to process to complete a read.

A. Incomplete or repairable writes B. Arbitrarily-sized timestamps

A correct client does not perform multiple con- To prevent a Byzantine client from writing
current writes (to the same object). Therefore, onjtpjtrarily-sized timestamps, a server must be able
a Byzantine client performs multiple incomplete ofy verify that a timestamp is well-constructed. If the

1 o server hosts a candidate that the client could have

A server performs verification whenever a threshold on ﬂl% di . . ifi .
number of unverified versions it hosts for an object is redcheP@S€d ItS timestamp on, tlm_e_stamp veri |(_:at|0n can
Server verification consists of performing a read to deteemthe be done locally. A server verifies that the timestamp
latest complete candidate and to identify poisonous cattelid The for g \write request is no more than one greater than
threshold dictates the trade-off between how often a sqre@gorms he | . it h This | | check i
verification and how high the bound is on the number of canelsjat €) qteSt. timestamp It hosts. IS local check Is
a correct client must process to complete a read. sufficient in the common case.

Dagstuhl SeminaFrom Security to Dependability, September 10-15, 2006, Schloss Dagstuhl, Germany

Unfortunately, due to concurrency or failures, a Given Chockler’s recent impossibility result re-
server may not host the candidate upon whichgarding constrained storage space and wait-free
client bases its write timestamp. To ensure thatstorage [9], our assumption of unbounded server
server can verify such a timestamp, it is necessarysiorage space is necessary for bounded wait-free
again modifyREAD-TIMESTAMP and for the server PASIS. With bounded server storage space, PASIS
to perform timestamp-verification. To ensure that itsas obstruction-free [10]. We believe that the ex-
write timestamp can be verified, a client must basensions we have sketched preserve the obstruction-
the write timestamp upon a candidate it observégedom guarantee if server storage space is

at a complete threshold of servers. In concurrendyeunded ¢onstrained in Chockler’s terminology).
and failure-free executions, the timestamp of the We refer the reader to our other papers for a more

latest complete candidate is returned R&AD-
TIMESTAMP and so this comes at no cost. In the
face of concurency or failures, a client performing
aREAD-TIMESTAMP may have tREAD-PREVIOUS

or perform repair. In so doing, the client ensur#;

thorough treatment of relevant work [1], [2], [11].

ACKNOWLEDGMENT

We thank Christian Cachin, Felix C. Freiling, and Jaap-Henk
epman for organizing the Dagstuhl Seminar “From Secuxty
pendability”. We thank the CyLab Corporate Partners fagirt

that the timestamp upon which it bases its Writ&pport and participation. This work is supported in partAyny
timestamp exists at a complete threshold of servéigsearch Office grant number DAAD19-02-1-0389, by NSF grant

and is greater than or equal to that of the lateRt™

ber CNS-0326453, and by Air Force Research Laborat@amtgr

. . umber FA8750-04-01-0238. We thank the members and coepani
complete candidate. (Note that a correct client Cafthe PDL Consortium (including APC, EMC, Equallogic, Hetet

base its write timestamp on the timestamp of Rackard, Hitachi, IBM, Intel, Microsoft, Network AppliaecOracle,

poisonous write that exists at a complete thresh
of servers.)

Timestamp-verification is effectively @&EAD-
TIMESTAMP operation that does not repair candiy
dates. Since a correct client bases its write time-
stamp on one it observes at a complete threshold &5
servers, a server will find a repairable or complete
candidate with a timestamp no less than one smaller
than the write timestamp (because of quorum inte 3
section properties). If no such timestamp is found,
the server determines that the client is Byzantine
and does not accept the write request. [4]

This extension preserves the best-case perfor-
mance of the PASIS protocol. It introduces addi-
tional situations in which concurrency and failured®
lead to a bounded amount of additional work byg;
clients or servers.

[7]
V. DISCUSSION

The motiviation for bounded wait-free PASISI[El
comes from the recent work on non-skipping time-
stamps by Bazzi and Ding [7]. Most recently,[g]
Cachin and Tessaro incorporated non-skipping time-
stamps into an erasure-coded Byzantine storage SYs-
tem [8]. We believe that the extensions for bounded
wait-free PASIS that protect against arbitrarily-sized
timestamps implement non-skipping timestamp[§1]
We are not aware of a prior non-skipping timestamp
construction that eschews digital signatures.

diianasas, Seagate, and Sun) for their interest, insiglet#hdek, and
support.

REFERENCES

G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter,
“Efficient Byzantine-tolerant erasure-coded storagelhberna-
tional Conference on Dependable Systems and Networks, 2004.
M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Rejter
and J. J. Wylie, “Lazy verification in fault-tolerant digitited
storage systems,” itBymposium on Reliable Distributed Sys-
tems, 2005.

M. Herlihy, “Impossibility results for asynchronous RRI,” in
Symposium on Parallel Algorithms and Architecture, 1991, pp.
327-336.

M. P. Herlihy and J. M. Wing, “Linearizability: a corrauss
condition for concurrent objectsACM Transactions on Pro-
gramming Languages and Systems, vol. 12, no. 3, pp. 463-492,
1990.

M. Herlihy, “Wait-free synchronization,ACM Transactions on
Programming Languages, vol. 13, no. 1, pp. 124-149, 1991.
L. Gong, “Securely replicating authentication serggein
International Conference on Distributed Computing Systems.
IEEE Computer Society Press, 1989, pp. 85-91.

R. A. Bazzi and Y. Ding, “Non-skipping timestamps for By
tine data storage systems,” imternational Symposium on
Distributed Computing, 2004, pp. 405-419.

C. Cachin and S. Tessaro, “Optimal resilience for erasiaded
Byzantine distributed storage,” imternational Conference on
Dependable Systems and Networks, 2006, pp. 115-124.

G. Chockler, “On the space requirements of robust s@rag
implementations,” inDagstuhl Seminar From Security to De-
pendability, 2006.

M. Herlihy, V. Luchangco, and M. Moir, “Obstructionde
synchronization: double-ended queues as an examplajtén
national Conference on Distributed Computing Systems. |EEE,
2003, pp. 522-529.

J. J. Wylie, “A read/write protocol family for versatilstorage
infrastructures,” Carnegie Mellon University, Tech. REpU—
PDL-05-108, 2005.

