
Dagstuhl SeminarFrom Security to Dependability, September 10–15, 2006, Schloss Dagstuhl, Germany 1

Towards bounded wait-free PASIS
(extended abstract)

Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson,
Michael K. Reiter, Jay J. Wylie

I. INTRODUCTION

The PASIS read/write protocol implements a
Byzantine fault-tolerant erasure-coded atomic reg-
ister. The prototype PASIS storage system imple-
mentation provides excellent best-case performance.
Writes require two round trips and contention- and
failure-free reads require one. Unfortunately, even
though writes and reads are wait-free in PASIS,
Byzantine components can induce correct clients
to perform an unbounded amount of work. This
unbounded amount of work can take one of two
forms: an unbounded number of protocol steps to
complete a read or arbitrarily-sized timestamps.
Correct clients may have to read back in logical
time to complete a read that is concurrent to a
write; Byzantine components can induce a correct
client to perform this protocol step an unbounded
number of times. A correct client advances logical
time by a single unit with every write. A Byzan-
tine component can advance logical time by an
arbitrary amount, thus creating an arbitrarily-sized
timestamp. Such timestamps require every read and
write to perform an unbounded amount of work.

In this extended abstract, we enumerate the av-
enues by which Byzantine servers and clients can
induce correct clients to perform an unbounded
amount of work in PASIS. We sketch extensions to
the PASIS protocol [1] and Lazy Verification [2] that
bound the amount of work Byzantine components
can induce correct clients to perform. We present
the extensions necessary to constrain Byzantine
servers separately from those necessary to constrain
Byzantine clients. We believe that the extensions
providebounded wait-free [3] reads and writes. As
with (unbounded wait-free) PASIS, we assume an
unbounded amount of server storage space. We also

Michael Abd-El-Malek, Gregory R. Ganger, and Michael K. Reiter
are with Carnegie Mellon University.

Garth R. Goodson is with Network Appliance Inc.
Jay J. Wylie is with Hewlett-Packard Labs.

believe that an implementation that incorporates
these extensions will preserve the excellent best-
case performance of the original PASIS prototype.

II. PASIS PROTOCOL REVIEW

This section briefly reviews the PASIS protocol,
though we refer the reader to the original PASIS [1]
and Lazy Verification [2] papers for more details.
We assume that clients may be Byzantine; that no
more thanb servers are Byzantine; that authenti-
cated channels exist between all servers and be-
tween each client and every server; and, that servers
have unbounded storage space. No assumptions
are made about timing (i.e., asynchronous timing
model). Writes and reads are linearizable [4] and
wait-free [5].

At a high level, the protocol proceeds as follows.
Logical timestamps are used to totally order all
writes and to identify requests that pertain to the
same write across the set of servers. For each write,
a logical timestamp is constructed by the client that
is guaranteed to be unique and greater than that
of the latest complete candidate (the most recent
completely written object). This is accomplished by
a READ-TIMESTAMP operation that queries servers
for the greatest timestamp they host. Fragments are
generated by erasure-coding objects. To complete a
write, a client writes timestamp-fragment pairs to a
quorum of servers.

To perform a read, a client performs aREAD-
LATEST operation that issues requests to a set of
servers. Once each member of a quorum of servers
replies with the latest timestamp-fragment pair that
it hosts, the client classifies responses. Classification
of responses is based on the number of servers that
return timestamp-fragment pairs with a common
timestamp. Classification is performed on responses
that share the highest timestamp. We refer to the
set of responses that share that timestamp as the

Dagstuhl Seminar Proceedings 06371
From Security to Dependability
http://drops.dagstuhl.de/opus/volltexte/2007/848



Dagstuhl SeminarFrom Security to Dependability, September 10–15, 2006, Schloss Dagstuhl, Germany 2

candidate. A candidate is classifiedcomplete, re-
pairable, or incomplete. If a candidate is classified
complete, the object is decoded from the erasure-
coded fragments and returned. If a candidate is
classified repairable, the object is decoded, erasure-
coded fragments are written to additional servers,
and once a quorum of servers host the candidate, it
is returned. If a candidate is classified incomplete,
the candidate is discarded, aREAD-PREVIOUSoper-
ation is performed that requests responses with the
next highest timestamp from servers, and classifica-
tion begins anew.

For simplicity, consider the simplest threshold
quorum that toleratesb Byzantine servers:N =

4b + 1 servers with quorums of sizeq = 3b + 1. In
such a system, the repairable threshold isr = b+1;
candidates with fewer thanr responses are classified
incomplete; candidates withr or more responses,
but fewer thanq, are classified repairable; and,
candidates withq or more response are classified
complete. The classification rules and quorum in-
tersection properties ensure that, if a client classi-
fies a candidate as complete, then any subsequent
client that classifies the candidate will classify it as
repairable or complete, thus ensuring linearizability.

Self-verifying timestamps protect the integrity
of stored objects. Logical timestamps have the
following structure: 〈LogicalTime, ClientID ,
cross checksum〉. Correct clients increment
LogicalTime by one with every write. The client
ID, ClientID , ensures that concurrent writes from
different clients have different timestamps. The
cross checksum [6] is an array ofN cryptographic
hashes, one for each fragment/server. The cross
checksum protects the fragments against corruption
by Byzantine servers: clients validate fragments
returned by servers against the cross checksum
in the timestamp. Embedding the cross checksum
in the timestampand having clients verify the
timestamp at read-time protects againstpoisonous
writes. A poisonous write occurs when a Byzantine
client writes inconsistent erasure-coded fragments.
Because clients verify timestamps at read-time, a
client detects the poisonous write and re-classifies
the corresponding candidate as incomplete.

In PASIS [1], Byzantine clients could introduce
an unbounded number of poisonous writes. With
Lazy Verification [2], PASIS servers verify the in-
tegrity of stored objects during idle time or when-
ever a threshold of the number of unverified locally-

stored objects is reached. Lazy Verification bounds
the number of poisonous writes that can exist in the
system at any time; it does so with nominal impact
on best-case performance.

III. B YZANTINE SERVERS

In response to a READ-LATEST, READ-
PREVIOUS, or READ-TIMESTAMP request, a
Byzantine server can fabricate timestamp-fragment
pairs with arbitrarily-high timestamps. In PASIS,
such responses can lead to a correct client
performing an unbounded number ofREAD-
PREVIOUS operations to complete a read or storing
an arbitrarily-sized timestamp.

A. Incomplete candidates

If a Byzantine server responds to aREAD-LATEST

request with a fabricated timestamp-fragment pair
that has an arbitrarily-high timestamp, a client has
to perform aREAD-PREVIOUS operation based on
the fabricated timestamp. The client may contact
the Byzantine server(s) again, and they could fabri-
cate another arbitrarily-high timestamp, just slightly
lower than before. A client would then perform
anotherREAD-PREVIOUS operation, and so on.

The problem is that the correct client uses the
highest timestamp returned to aREAD-LATEST or
READ-PREVIOUS operation. The client ought to
use theb + 1st timestamp in the ordered list of
timestamps returned from a quorum of servers: e.g.,
if timestamps{3, 3, 2, 2, 1, 1, 1} are returned and
b = 2, then timestamp2, the “3rd highest” time-
stamp, is used. We use “b + 1st highest” timestamp
to mean “theb+1st timestamp in the ordered list of
timestamps returned from a quorum of servers” in
the remainder of this extended abstract. Theb + 1st

highest timestamp is guaranteed to be no greater
than a timestamp from a correct server (i.e., it may
be fabricated, but it is not arbitrarily high). It is also
guaranteed to be no less than the timestamp of the
latest complete candidate.

To bound the number ofREAD-PREVIOUS op-
erations a correct client must perform, the client
passes theb + 1st highest timestamp into the
READ-PREVIOUSoperation. In response to aREAD-
PREVIOUS request with timestampTS , a server
returns the timestamp-fragment pair it hosts with
a timestamp less than or equal toTS . This is
necessary so that the next iteration of the read



Dagstuhl SeminarFrom Security to Dependability, September 10–15, 2006, Schloss Dagstuhl, Germany 3

algorithm performs classification on the candidate
with the b + 1st highest timestamp. (In PASIS, the
server returned the timestamp-fragment pair with
a timestamp strictly less thanTS .) Basing READ-
PREVIOUSon theb+1st highest timestamp preserves
all necessary properties for linearizability: a correct
client will not read behind the latest complete candi-
date. It also bounds the number ofREAD-PREVIOUS

operations a correct client must perform to complete
a read.

B. Arbitrarily-sized timestamps

A client constructs the timestamp for a write
based on the highest timestamp returned to a
READ-TIMESTAMP operation. As with theREAD-
PREVIOUS operation, a correct client ought to use
the b + 1st highest timestamp returned toREAD-
TIMESTAMP to protect against responses from
Byzantine servers. Correct clients base timestamps
on one that is no greater than one returned by a
correct server and no less than that of the latest
complete candidate. This preserves best-case perfor-
mance and linearizability, and bounds the amount of
work a Byzantine server can induce a correct client
to perform.

IV. BYZANTINE CLIENTS

A Byzantine client can perform incomplete or
repairable writes to any server, correct and Byzan-
tine alike. A Byzantine client can construct an
arbitrarily-sized timestamp for its writes. Lazy Ver-
ification bounds the number of poisonous writes
a Byzantine client can perform via server verifi-
cation1. Server verification must be extended to
bound the amount of work Byzantine clients can
induce correct clients to perform via incomplete or
repairable writes and arbitrarily-sized timestamps.

A. Incomplete or repairable writes

A correct client does not perform multiple con-
current writes (to the same object). Therefore, only
a Byzantine client performs multiple incomplete or

1A server performs verification whenever a threshold on the
number of unverified versions it hosts for an object is reached.
Server verification consists of performing a read to determine the
latest complete candidate and to identify poisonous candidates. The
threshold dictates the trade-off between how often a serverperforms
verification and how high the bound is on the number of candidates
a correct client must process to complete a read.

repairable writes. Servers must either verify this
property or, in the course of trying to verify this
property, bound the number of incomplete candi-
dates a client read needs to process.

There are two avenues by which Byzantine clients
can induce correct clients to process an unbounded
number of incomplete candidates to complete a
read: (i) a Byzantine client performs multiple writes
to an incomplete threshold of servers, and (ii) a
Byzantine client performs multiple writes to a re-
pairable threshold of servers.

Consider case (i): multiple writes to an incom-
plete threshold of servers. Verification by the servers
that receive the incomplete writes determine that the
client is Byzantine. Verification by the servers that
do not receive the writes may or may not determine
that the client is Byzantine; detection depends on
the quorum of servers that respond. It is sufficient
though, for those servers that receive the writes to
determine that the client is Byzantine to bound the
number of incomplete writes.

When a server determines that a client is Byzan-
tine, it stops accepting write requests from the
client. This bounds the number of incompletes the
server hosts from a given Byzantine client. Note that
the server continues to accept repairs of candidates
written by the Byzantine client from other clients
though. Indeed, the server may even repair a write
it knows to be from a Byzantine client during
verification.

Consider case (ii): multiple writes to a repairable
threshold of servers. A server may or may not deter-
mine that the client is Byzantine; it depends on the
quorum of servers that respond during verification.
If the server does not determine that the client is
Byzantine, then it must have classified a candidate
as repairable and performed repair. In doing so, the
server bounds the number of incomplete candidates
that a client may have to process to complete a read.

B. Arbitrarily-sized timestamps

To prevent a Byzantine client from writing
arbitrarily-sized timestamps, a server must be able
to verify that a timestamp is well-constructed. If the
server hosts a candidate that the client could have
based its timestamp on, timestamp verification can
be done locally. A server verifies that the timestamp
for a write request is no more than one greater than
the latest timestamp it hosts. This local check is
sufficient in the common case.



Dagstuhl SeminarFrom Security to Dependability, September 10–15, 2006, Schloss Dagstuhl, Germany 4

Unfortunately, due to concurrency or failures, a
server may not host the candidate upon which a
client bases its write timestamp. To ensure that a
server can verify such a timestamp, it is necessary to
again modifyREAD-TIMESTAMP and for the server
to perform timestamp-verification. To ensure that its
write timestamp can be verified, a client must base
the write timestamp upon a candidate it observes
at a complete threshold of servers. In concurrency-
and failure-free executions, the timestamp of the
latest complete candidate is returned toREAD-
TIMESTAMP and so this comes at no cost. In the
face of concurency or failures, a client performing
a READ-TIMESTAMP may have toREAD-PREVIOUS

or perform repair. In so doing, the client ensures
that the timestamp upon which it bases its write
timestamp exists at a complete threshold of servers
and is greater than or equal to that of the latest
complete candidate. (Note that a correct client can
base its write timestamp on the timestamp of a
poisonous write that exists at a complete threshold
of servers.)

Timestamp-verification is effectively aREAD-
TIMESTAMP operation that does not repair candi-
dates. Since a correct client bases its write time-
stamp on one it observes at a complete threshold of
servers, a server will find a repairable or complete
candidate with a timestamp no less than one smaller
than the write timestamp (because of quorum inter-
section properties). If no such timestamp is found,
the server determines that the client is Byzantine
and does not accept the write request.

This extension preserves the best-case perfor-
mance of the PASIS protocol. It introduces addi-
tional situations in which concurrency and failures
lead to a bounded amount of additional work by
clients or servers.

V. D ISCUSSION

The motiviation for bounded wait-free PASIS
comes from the recent work on non-skipping time-
stamps by Bazzi and Ding [7]. Most recently,
Cachin and Tessaro incorporated non-skipping time-
stamps into an erasure-coded Byzantine storage sys-
tem [8]. We believe that the extensions for bounded
wait-free PASIS that protect against arbitrarily-sized
timestamps implement non-skipping timestamps.
We are not aware of a prior non-skipping timestamp
construction that eschews digital signatures.

Given Chockler’s recent impossibility result re-
garding constrained storage space and wait-free
storage [9], our assumption of unbounded server
storage space is necessary for bounded wait-free
PASIS. With bounded server storage space, PASIS
was obstruction-free [10]. We believe that the ex-
tensions we have sketched preserve the obstruction-
freedom guarantee if server storage space is
bounded (constrained in Chockler’s terminology).

We refer the reader to our other papers for a more
thorough treatment of relevant work [1], [2], [11].

ACKNOWLEDGMENT

We thank Christian Cachin, Felix C. Freiling, and Jaap-Henk
Hoepman for organizing the Dagstuhl Seminar “From Securityto
Dependability”. We thank the CyLab Corporate Partners for their
support and participation. This work is supported in part byArmy
Research Office grant number DAAD19-02-1-0389, by NSF grant
number CNS-0326453, and by Air Force Research Laboratory grant
number FA8750-04-01-0238. We thank the members and companies
of the PDL Consortium (including APC, EMC, Equallogic, Hewlett-
Packard, Hitachi, IBM, Intel, Microsoft, Network Appliance, Oracle,
Panasas, Seagate, and Sun) for their interest, insights, feedback, and
support.

REFERENCES

[1] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter,
“Efficient Byzantine-tolerant erasure-coded storage,” inInterna-
tional Conference on Dependable Systems and Networks, 2004.

[2] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter,
and J. J. Wylie, “Lazy verification in fault-tolerant distributed
storage systems,” inSymposium on Reliable Distributed Sys-
tems, 2005.

[3] M. Herlihy, “Impossibility results for asynchronous PRAM,” in
Symposium on Parallel Algorithms and Architecture, 1991, pp.
327–336.

[4] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness
condition for concurrent objects,”ACM Transactions on Pro-
gramming Languages and Systems, vol. 12, no. 3, pp. 463–492,
1990.

[5] M. Herlihy, “Wait-free synchronization,”ACM Transactions on
Programming Languages, vol. 13, no. 1, pp. 124–149, 1991.

[6] L. Gong, “Securely replicating authentication services,” in
International Conference on Distributed Computing Systems.
IEEE Computer Society Press, 1989, pp. 85–91.

[7] R. A. Bazzi and Y. Ding, “Non-skipping timestamps for Byzan-
tine data storage systems,” inInternational Symposium on
Distributed Computing, 2004, pp. 405–419.

[8] C. Cachin and S. Tessaro, “Optimal resilience for erasure-coded
Byzantine distributed storage,” inInternational Conference on
Dependable Systems and Networks, 2006, pp. 115–124.

[9] G. Chockler, “On the space requirements of robust storage
implementations,” inDagstuhl Seminar From Security to De-
pendability, 2006.

[10] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free
synchronization: double-ended queues as an example,” inInter-
national Conference on Distributed Computing Systems. IEEE,
2003, pp. 522–529.

[11] J. J. Wylie, “A read/write protocol family for versatile storage
infrastructures,” Carnegie Mellon University, Tech. Rep.CMU–
PDL–05–108, 2005.


