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Abstract

We present Beaver, a method and architecture to “build
dams” to protect servers from Denial of Service (DoS) at-
tacks. Beaver allows efficient filtering of DoS traffic using
low-cost, high-performance, readily-available packet filter-
ing mechanisms. Beaver improves on previous solutions by
not requiring cryptographic processing of messages, allow-
ing the use of efficient routing (avoiding overlays), and es-
tablishing keys and state as needed. We present two pro-
totype implementations of Beaver, one as part of IPSec in
a Linux kernel, and a second as an NDIS hook driver on
a Windows machine. Preliminary measurements illustrate
that Beaver withstands severe DoS attacks without hamper-
ing the client-server communication. Moreover, Beaver is
simple and easy to deploy.

1 Introduction

We consider the problem of protecting legacy servers from
(Distributed) Denial of Service (DoS) attacks by realistic ad-
versaries. We aim to provide a simple method that effec-
tively mitigates DoS attacks, while maintaining virtually the
same latency and load characteristics the legacy system ex-
hibits.

The adversaries we consider may adapt their attacks (with
some delay) as a result of gaining knowledge of their at-
tacks’ successfulness, e.g., by observing service perfor-
mance degradation, or by eavesdropping on messages or
parts thereof. An adversary may control many machines,
some of them may even be part of the system. The adversary
may also craft arbitrary messages or send many messages to
some destination to try to cause DoS by resource exhaustion
at the receiver.

The first step in providing DoS resistance is protecting the
network layer. Readily-available DoS solutions deployed in
firewalls or gateways typically use two methods: filtering ac-
cording to packet header fields like addresses and ports, and
rate-limiting traffic. These simple methods are very efficient,
but are insufficient: header fields can be spoofed to match fil-
tering criteria, and rate-limiting, while good for the network,
is of little use to the application, as valid packets are indis-
criminately discarded. Our measurements show that even
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when the network is not loaded, a large number of bogus re-
quests can kill a server that does not require authentication,
and can virtually drop to zero the reliability of client-server
communication when the server does require authenticated
requests. Thus, network-level protection needs to be com-
plemented by application-level mechanisms.

Our goal is therefore to provide simple and practical DoS
protection for the application layer, using readily-available
network-level solutions. We present Beaver — a robust ar-
chitecture and method for application-level DoS protection.
Beaver’s components can be implemented in several differ-
ent ways, depending on the required deployment scenario
and capabilities. We describe an initial implementation of
our system in two variations: (1) by modifying a Linux ker-
nel’s IPSec [2] implementation, and (2) by inserting code in
a Windows NDIS layer.

The effectiveness of a DoS-mitigation solution can be
quantified through mathematical analysis and empirical re-
sults. These two methods complement each other, as the
analysis can provide results for all possible attacks, but these
results are only applicable for a model of the system, which
may or may not correctly reflect the real world. In this paper,
we focus on the latter. Our initial findings validate earlier
theoretical results [3].

2 Design Goals

We consider the problem of protecting the following basic
client-server communication from DoS attacks:

o A client registers to the system before being able to use
it. During the registration process, the client receives
a unique secret to allow the server to authenticate its
requests. We assume the use of public/private key pairs
and certificates in this stage.

e A server, or a server farm, provides service to autho-
rized clients. Client-server sessions are relatively long,
and consist of several transactions using authenticated
communication.

The number of registered clients may be very large, e.g.,
1,000,000, but it is expected that only a small number of
them, e.g., 1,000, will communicate with the server simul-
taneously. These basic properties are found in many web-
based services, e.g., banking, stock trading, and online auc-



tions. DoS attacks on these services may degrade the service
so much that clients lose money due to its unavailability.

Our goals in protecting the basic system against DoS-
attacks are as follows:

e Session DoS-resistance. Protect ongoing client-server
sessions. Moreover, separate the “war zones” — attack-
ing the admission and registration processes should not
affect ongoing sessions.

o Admission DoS-resistance. Protect the admission pro-
cess in which registered clients create new sessions
with the server.

o Best-effort registration availability. Implement a regis-
tration process that allows new clients to obtain the re-
quired shared secrets, but allow this service to degrade
due to DoS.

e Fast communication. Do not harm communication la-
tency for established client-server sessions.

One might argue that authenticating client-server commu-
nication alone is enough to filter out invalid packets sent by
DoS attackers. But although authentication is enough to dis-
criminate bogus messages from valid ones, the validation it-
self is costly. This is especially a problem if the server is
the one performing the validation, as happens when using
SSL. Since the server should be mainly busy with answering
requests, we would like to minimize the number of invalid
packets that reach the server and cause extra processing.

3 Beaver’s Architecture

We present Beaver — a robust architecture and method to
protect servers from DoS attacks. Beaver employs two DoS-
protection mechanisms: one for registration and admission
of new client sessions, and another for protecting ongo-
ing sessions. The former uses dedicated admission servers
(ADMs). The latter is ¢-Hopper — a two-party communi-
cation protocol that mitigates DoS attacks by avoiding the
use of fixed packet-filtering criteria (e.g., IP addresses and
ports) at a firewall or gateway, and performing “pseudoran-
dom hopping” on the filtering criteria instead [3, 7].

The ADMs can be provided as a common Internet ser-
vice to multiple legacy servers, and therefore, they are not
all trusted. The use of ADMs takes the registration and ad-
mission load off the server, so that the server is not con-
cerned with DoS attacks on clients trying to be admitted into
the system. This approach resembles the use of overlay net-
works in SOS [6] and Mayday [1]. However, SOS and May-
day also screen DoS attacks by hiding the server’s identity
and making it known only to a few nodes in the overlay net-
work. Thus, in these solutions, all client messages, includ-
ing those for ongoing sessions, are routed through the over-
lay, causing the latency of the client-server communication
to increase by a factor of 5 or even 10 [6]. Additionally, this
is a form of security-by-obscurity. Once the filtering criteria
are revealed, spoofed packets that match the server’s filter-
ing criteria can penetrate the system’s defenses and reach the

server. Another drawback of Mayday and SOS is that over-
lay networks are more complex to set up and update.

In contrast, Beaver only uses the ADMs to authenticate
new connections, and does not need the use of an overlay
network. It does not hide the server’s identity, and enables
clients to communicate with the server directly, once their
admission request is approved. On the other hand, SOS and
Mayday protect the server and its gateway from network-
level and application-level DoS attacks, whereas we concen-
trate solely on application-level DoS mitigation, assuming
that some method of protecting the network from DoS at-
tacks is already in place. Our motivation stems from the fact
that, as we show, it is easy to launch an application-level
DoS attack that renders the server useless, but does not con-
gest the network.

Together, the ADMs and ¢-Hopper are very effective
against DoS attacks. In Section 6 we give experimental re-
sults for two implementations of ¢-Hopper, and show that
an ongoing session is almost unaffected by severe DoS at-
tacks. These measurements validate a formal analysis of
port-hopping and its guarantees given in previous work [3].
In the full paper [4], we give an analysis of the entire Beaver
architecture and its guarantees, proving, among other things,
that even when a heavy DoS attack is launched, clients can
still start new sessions with the server, and that compromised
clients cannot severly harm the server’s performance.

4 ¢-Hopper

Beaver’s two-party communication component, ¢-Hopper,
leverages existing, cheap, network-level packet-filtering so-
lutions, along with more complex algorithms at a higher
layer, which determine the filtering criteria. At each com-
munication party, ¢-Hopper has two parts: a front-end that
performs fast packet-filtering, and a back-end that controls
the front-end’s filtering criteria. The front-end can be a gate-
way or firewall, or a layer in the end host’s protocol stack.
Filtering is based on a filtering identifier (F1, or ¢), which is
some message field value that can be changed by the com-
municating parties, and is preserved en route. For example,
it can be a combination of IP address and ports [3, 7], or
IPSec’s security parameter index (SPI) field [2]. The FI can
also be an artificial field appended to the message. The FI
size can be set to meet the wanted DoS-resistance guaran-
tees.

We present two implementations of ¢-Hopper. The first
installs the front-end on gateways as a modified IPSec layer
in a Linux kernel. The IPSec layer operates in tunnel mode,
and the FI is the 32-bit SPI field. IPSec first checks the SPI,
and if it is valid, performs authentication. The second imple-
mentation installs the front-end on the communication end-
points as an NDIS hook driver on a Windows system and,
checks packets for an appended 160-bit FI. In this case, the
hook only filters packets, and authentication is performed by
the server.

The two parties wishing to communicate share a secret.



This secret is used to create pseudorandom sequences of
FIs. Each message transmitted between the parties carries
a FI taken from an appropriate pseudorandom sequence.
The receiver’s front-end anticipates the FI according to the
pseudorandom sequence, and filters out all messages carry-
ing invalid FIs. The FIs change in order to maintain DoS-
resilience. Otherwise, the adversary could eavesdrop on
messages and discover the FI in use. Hopping using an ap-
propriate FI size ensures that with high probability, the ad-
versary cannot discover the FI [3]. This scheme has some
similarities with the S/KEY authentication method [5].

Each party communicating via ¢-Hopper maintains a vir-
tual time, which determines its current position in the pseu-
dorandom sequence. Every fixed time interval, Beaver per-
forms a hop, which locally changes the virtual time. A ¢-
Hopper session between two parties is initialized using a
seed that is used as the initial virtual time, and a shared secret
used for generating the pseudorandom sequence. In Beaver,
the former is provided at admission time (by an ADM), and
the latter — during the registration process.

During initialization, each party allocates bounded re-
sources for communication in this session. ¢-Hopper allo-
cates separate resources for each active FI. We say that each
party opens Fls for communication when resources are al-
located for them, and closes FIs when these resources are
freed. Changing the FIs (when the virtual time advances)
closes old FIs and opens new ones, and the resources are
effectively shifted between them. The synchronization be-
tween the two parties is loose, since they do not simultane-
ously receive the seed from the ADM, and their clocks may
drift. Therefore, each party keeps multiple open FIs at the
receiving end, corresponding to all virtual times the other
party might be in.

When we have multiple on-going sessions from different
clients, it may be probabilistically possible that two or more
clients use the same FI at a specific point in time. To deal
with this low probability case, we maintain a list of all clients
using each FI, and adjust that FI's resources accordingly. We
note that, in general, since resources are bounded and sepa-
rated between Fls, compromised clients cannot significantly
drain the server’s resources by sending it an excessive num-
ber of requests, and thus valid clients get their share of the
server’s resources.

Our implementations use a shared secret of 160 bit. At
each hop, we increase the virtual time by 1, and calculate the
160-bit SHA-1 hash of the current virtual time concatenated
with the shared secret. The virtual time is floored according
to the time granularity that we wish to use. If the required
FI’s length is shorter than 160 bits, we calculate the xor of
the bytes in chunks that have the same size as the FI.

In our IPSec implementation, at each hop we add new en-
tries to IPSec’s list of valid states, and remove old states from
the list. An IPSec state consists of a security association
(SA) for two end-points. We utilize IPSec’s tunnel mode to
encapsulate the end-points’ packets on their path between

the gateways. The states we add have the same SA as the
previous states for that session, except for a changing SPL
In our NDIS implementation, we simply save a list of all
valid FI values per client, and update this list every hop.

¢-Hopper uses the ideas presented in [3, 7], but differs in
the following ways [4]:

1. Instead of using the current time as the seed to the pseu-
dorandom sequence, the initial seed used to start the
sequence is decided on during the admission process,
and is used as virtual time. Thus, no time synchroniza-
tion between the communicating parties is needed, but
rather a bounded clock drift. If the session time is so
large that the clock drift might become a problem, reini-
tialization should occur.

2. We do not assume pre-shared keys, and provide a
key distribution mechanism. The shared secret is dis-
tributed during the registration process.

3. ¢-Hopper supports communication between many
clients and a single server, and not just two-party com-
munication.

4. ¢-Hopper is implemented in two variations, and we
provide measurements of the actual protocol imple-
mentation, and not of its simulated behavior.

Our full paper contains the pseudocode of ¢-Hopper [4].
The analysis we performed in previous work [3] shows that
¢-Hopper has a tremendous effect on the probability of re-
ceiving valid packet while under a DoS attack. Additionally,
it shows that port-hopping, as done in ¢-Hopper, maintains
high delivery probability even for an attacker 10,000 times
stronger than the two communicating parties, and for FIs as
short as 16 bits, e.g., TCP/UDP port numbers. Other work
simulates the effect port-hopping has on the delivery prob-
ability under attack, and shows that using it is expected to
decrease the load on the server [7].

5 Admission Servers

The ADM has two roles. First, it allows clients to register to
the service, whereby the client receives a shared secret with
the ADM and with the server. The ADMs do not know the
latter, as it is encrypted with the client’s public key. Different
clients have different secrets, and the same client may have
different secrets with multiple ADMs. In order to register,
the client provides a certificate from some trusted authority,
that binds the client’s public key to the client’s identity. This
certificate can be based on authentication as complex as a
biometrics match, or as simple as a credit card number, as
long as it is hard for the same client to obtain many valid
identities.

Second, the ADM authenticates registered clients before
authorizing them to communicate with the server. The lat-
ter is called the admission process. There may be multiple
admission servers, and all of them are identical, except for a
unique secret each of them shares with the server. The use of
many admission servers protects the admission process from



DoS attacks, as the client can initiate the admission process
with an arbitrary ADM. A DoS-attacker that wishes to sev-
erly harm the admission process needs to launch a massive
attack that targets most, if not all of the ADMs. This idea is
very similar to the one used for SOS SOAPs [6], and it can
be employed here since replicating an ADM is cheap and
easy, as opposed to, say, replicating the server.

Admission
Servers
(ADMs)

¢-Hopper

(€)

Client

Figure 1: Beaver’s architecture, where ¢-Hopper operates in
tunnel mode (marked in bold lines).

Figure 1 illustrates Beaver’s architecture, and shows the
admission process in action: (1) A pre-registered client re-
quests an ADM to start a new session with the server. The
client can choose the ADM arbitrarily. Specifically, a client
that fails to start a session through some ADM may choose a
different ADM for the admission process. (2) The ADM
communicates with the client via ¢-Hopper and authenti-
cates the client. Communication via ¢-Hopper is marked in
bold lines. The figure illustrates ¢-Hopper in tunnel mode,
i.e., hopping between gateways. (3) The ADM contacts the
server through a constant ¢-Hopper session that they share,
and asks it to start a new session with the client. The server
then opens FIs for the new session with the client. (4) The
ADM notifies the client that it can start communicating with
the server. (5) The client communicates with the server via
¢-Hopper. More generally, there can be multiple servers
(e.g., a server farm), and an ADM can direct the client to
any one of them.

Our full paper [4] contains pseudo-code for all of Beaver’s
procedures, including the admission and registration pro-
cesses. We further prove the following claims:

e If no ADM is malicious, then no server ever allocates
resources for communicating with invalid clients.

e The number of open Fls the servers allocate for invalid
connections is bounded.

e A DoS attack on the ADMs’ incoming link from a
server does not prevent a valid client from starting a
session with that server.

Servers

o The extra load induced on a server due to an attack in-
creases on average by at most 2@% messages per sec-
ond, where C is the attacker’s capacity in messages per
second, and 4 is the number of bits in a FI.

e If no ADM is malicious, a compromised valid client
that does not impersonate other valid clients cannot
load the server with more messages per second than the
server rate-limits each session.

6 Preliminary Measurements

Our implementation of Beaver currently contains only the ¢-
Hopper component, in two different forms. To allow proper
operation of ¢-Hopper, we fix the secret shared between the
client and the server, and fix the seed of the pseudorandom
sequence for ¢-Hopper.

We measure the effect authentication and hopping have on
the resistance to DoS. We experiment with a standard HTTP
server, an appropriate client, and an adversary (implemented
using one to three machines). In each experiment, the adver-
sary sends bogus requests at an average constant rate to the
web server. At the same time, the client sends valid requests
to the server. The server processes each request, and dynam-
ically forms a response, consuming CPU power while doing
that. We measure the latency, consisting of round-trip time
and server processing time, and delivery probability, i.e., the
probability that a client’s valid request is processed by the
web server, as a function of the attacker’s strength. Each
data point represents 100 experiments.

Most of our experiments consider authenticated commu-
nication. For completeness, we also measured the effect of
an attack when no authentication is performed, i.e., when the
server processes all of the attacker’s requests. In this case,
even for a small attacking power, the server crashed, render-
ing any comparison to Beaver irrelevant.

In our first setting, we measure the advantages ¢-Hopper
offers, as compared to IPSec [2], when deployed on gate-
ways. For this setting, we have a client, connected to gate-
way A, where gateway A is connected to gateway B, which
in turn is connected to a web server. The gateways run Linux
with IPSec in tunnel mode, with or without ¢-Hopper in-
stalled, according to the experiment. The gateway machines
have a Pentium 3 650MHz CPU, and 256MB of RAM.

We compare 3 different scenarios: (1) the gateways run
IPSec in Authenticated Header (AH) mode, and the adver-
sary knows the SPI used; (2) the gateways run IPSec in AH
mode, and the adversary does not know the SPI used; and (3)
the gateways run IPSec in AH mode with ¢-Hopper. When
attacking, the attacker sends bogus requests at a constant
rate. In scenario (1), the bogus requests carry the correct SPI
field, but fail authentication. In scenarios (2) and (3), the bo-
gus requests carry an incorrect (arbitrary) SPI field (w.h.p.,
for scenario (3)), and so the bogus requests do not reach the
authentication phase. It is important to note that scenario
(2) is not realistic for long sessions, as the SPI stays con-
stant, and the adversary has ample time to discover it, e.g.,



by ARP-poisoning a LAN, or by sniffing packets in interme-
diate routers. Thus, scenario (2) is only used to quantify the
overhead of port hopping.

Figure 2(a) depicts the delivery probability as the at-
tacker’s strength increases. We see that ¢-Hopper achieves
the same delivery probability exhibited when the adversary
does not know the SPI used, as filtering in these cases is
based on a simple comparison of a header field. The deliv-
ery probability is much lower when the SPI is known to the
attacker, since this case requires complete authentication of
every packet. This difference is most evident for relatively
weak attacks (80,000 requests/sec), where ¢-Hopper main-
tains 100% delivery, but the delivery for IPSec with a known
SPI drops sharply to 44%.

Figure 2(b) shows the effect of increasing-strength attacks
on latency. We can see that the latency stays the same even
when the attack strength increases, and that all 3 scenarios
exhibit the same latency. This is also the same latency mea-
sured when IPSec and Hopper do not run at all (not shown
on graph). Thus, as opposed to overlay networks, ¢-Hopper
ensures DoS-resilience with no penalty in latency.

Figure 2(c) displays the delivery probability under a bursty
DoS attack, where bogus requests are not sent at constant
periodic intervals, but rather at bursts. The attack strength is
measured as the average number of bogus requests per sec-
ond. Comparing these results to Figure 2(a), we observe that
a bursty attacker induces less damage than an attacker whose
sending times are uniformly distributed over time. This can
be explained by the fact that at times in which the attacker
does not send any bogus message, the client’s requests can
be easily processed. However, more experiments are needed
in order to fully understand this phenomenon.

In our second setting, the client communicates directly
with the web server, and we measure the effect p-Hopper has
when it runs on the server’s machine, and not on a dedicated
machine. The server runs on a Windows machine along with
¢-Hopper (in the appropriate experiments), which performs
user-level filtering of packets through a kernel-level NDIS
hook driver. The server machine has a Pentium 4 3.2GHz
CPU, and 1GB of RAM. Since now there is no IPSec layer to
authenticate packets, the server itself authenticates requests
using a simple SHA-1 hash attached to valid messages.

Figure 3(a) shows the delivery probability with and with-
out ¢p-Hopper. We can see that at a relatively weak attack
strength (6,200 requests/sec) there is a dramatic drop in de-
livery to 20% when ¢-Hopper is not used, whereas ¢-Hopper
allows for 100% delivery even for much stronger attacks.

Finally, we compare our results to analytical results for the
delivery probability under DoS attacks, as taken from our
previous work [3] (see Figure 3(b)). The theoretical analy-
sis assumes the attacker’s sending times are uniformly dis-
tributed, and thus the results shown in the figure can be com-
pared to figures 2(a) and 3(a). Indeed, we can see that the
actual measurements closely match the theoretical analysis.

7 Conclusions

We presented Beaver, a method and architecture to protect
applications from DoS attacks. Our full paper [4] formally
proves Beaver’s good properties in withstanding DoS at-
tacks. Preliminary measurements presented in this paper
show that indeed Beaver is a promising solution. We are
working to perform additional measurements and analysis of
Beaver, to better understand phenomena such as the effect of
attack burstiness on the delivery probability, and more gen-
erally, to understand Beaver’s behavior under a wider range
of attack strategies. We would like to explore the challenge
of efficiently and scalably supporting many clients, while re-
sisting DoS by authenticated clients. It would also be inter-
esting to measure the effect of DoS attacks on the server’s
throughput. Finally, we intend to implement the admission
servers and operate Beaver as a complete system.
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