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Abstract. Many current deterministic solvers for NP-hard combinato-
rial optimization problems are based on nonlinear relaxation techniques
that use floating point arithmetic. Occasionally, due to solving these re-
laxations, rounding errors may produce erroneous results, although the
deterministic algorithm should compute the exact solution in a finite
number of steps. This may occur especially if the relaxations are ill-
conditioned or ill-posed, and if Slater’s constraint qualifications fail. We
show how verified results can be obtained by rigorously bounding the
optimal value of nonlinear semidefinite relaxations, even in the ill-posed
case. All rounding errors due to floating point arithmetic are taken into
account.
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1 Introduction

Many algorithms in optimization require that appropriate rank conditions are
fulfilled and that strictly feasible solutions of the primal and the dual problem
exist; that is, it is assumed that Slater’s constraint qualifications hold. The algo-
rithms terminate if residuals that measure approximately the primal feasibility,
the dual feasibility, and the duality gap are sufficiently small (see for example
Mittelmann [10]). Small residuals often provide a small backward error, i.e. the
computed solution is the exact solution of a slightly perturbed problem.

Nevertheless, there are many applications where backward error analysis may
not be suitable. The first class consists of ill-conditioned problems with depen-
dencies in the input data. The second class are ill-posed problems for which
Slater’s constraint qualifications are not fulfilled (see Gruber and Rendl [5], and
Gruber et al. [4]). For such problems the solution does not depend continuously
on the input data, and small perturbations can result in infeasibility and/or
erroneous approximations.

Ill-conditioned and ill-posed problems are not rare in practice. In a recent pa-
per, Ordóñez and Freund [13] stated that 71% of the lp-instances in the NETLIB
Linear Programming Library are ill-posed. This library contains many industrial
problems. Several problems become ill-posed due to the modelling (for exam-
ple problems with redundant constraints, identically zero variables, and free
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variables transformed to variables bounded on one side), others appear as ill-
posed relaxations in combinatorial optimization. Relaxations are widely used for
solving difficult combinatorial problems efficiently with branch-bound-and-cut
methods (see for example Goemans and Rendl [3]). We want to mention that
backward error analysis is not generally applicable to this class of optimization
problems. This is pointed out by Neumaier and Shcherbina [12]:

However, backward error analysis has no relevance for integer linear pro-
grams with integer coefficients, since slightly perturbed coefficients no
longer produce problems of the same class.

Moreover, they present an innocent-looking linear integer problem where the
commercial, high quality state-of-the-art solvers CPLEX, BONSAIG, GLPK,
XPRESS, XPRESS-MP/INTEGER, and MINLP failed. The reason is that the
relaxations are not solved rigorously.

The major goal of this paper is to show how branch-and-bound algorithms for
combinatorial optimization problems can be made safe, even if ill-posed semidef-
inite relaxations or cuts are used. We discuss this in the example case of Graph
partitioning. Then, more general, we investigate semidefinite programming prob-
lems in block diagonal form:

f∗p := min
n∑

j=1

〈Cj , Xj〉 s.t.
n∑

j=1

〈Aij , Xj〉 = bi, i = 1, . . . ,m

Xj � 0, j = 1, . . . , n,

(1)

where Cj , Aij , Xj ∈ Ssj , the linear space of real symmetric sj × sj matrices,
and b ∈ Rm. By 〈., .〉 we denote the usual inner product on the linear space of
symmetric matrices, which is defined as the trace of the product of two matrices.
X � 0 means that X is positive semidefinite. Hence,� denotes the Löwner partial
order on this linear space. We assign f∗p := +∞ if the set of feasible solutions is
empty.

If sj = 1 for j = 1, . . . , n (i.e. Cj , Aij , and Xj are real numbers), then
(1) defines the standard linear programming problem. Therefore, semidefinite
programming is a nonlinear extension of linear programming.

The Lagrangian dual of (1) is

f∗d := max bT y s.t.
m∑

i=1

yiAij � Cj for j = 1, . . . , n, (2)

where y ∈ Rm. We assign f∗d := −∞, if the set of dual feasible solutions is empty.
The constraints

∑m
i=1 yiAij � Cj are called linear matrix inequalities (LMI’s).

The problems satisfy the weak duality condition

f∗d ≤ f∗p . (3)
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Strong duality (i.e. f∗d = f∗p ) requires additional conditions. It may happen that
both optimal values are finite, but there is a nonzero duality gap and an optimal
solution does not exist. Also it may happen that one optimal value is finite and
the other one is infinite. If Slater’s constrained qualifications are fulfilled, then
both optimal values are finite and strong duality is fulfilled.

We present for semidefinite programming problems a rigorous lower bound of
the primal optimal value and a rigorous upper bound of the dual optimal value.
In most cases the required computational effort is small compared to the effort
for computing approximate solutions. All rounding errors due to floating point
arithmetic are rigorously estimated. It is of particular importance that these
rigorous bounds can be used outside the code of any imaginable semidefinite
solver as a reliable postprocessing routine.

Several presented results can be regarded as an extension of methods for
linear programming (Jansson [7] and Neumaier and Shcherbina [12]) and convex
programming [6] to the ill-conditioned and ill-posed case.

2 Graph Partitioning Problems

In this section we consider Graph Partitioning. These combinatorial problems
are known to be NP-hard, and finding an optimal solution is difficult. Graph Par-
titioning has many applications, among those is VLSI design. There are varying
branch-and-bound methods known using diverse relaxation techniques for solv-
ing this problem.

In a branch-and-bound framework the problem is recursively divided into
subproblems, and each subproblem is relaxed to an optimization problem that is
easier to solve and provides a lower bound of the optimal value for the original
subproblem. Subproblems with a lower bound larger than the objective value
of an already known feasible solution cannot contain a global optimal solution
and are eliminated. Verified results in branch-and-bound are obtained if these
bounds are computed rigorously, that is all rounding errors are regarded. The
efficiency of branch-and-bound is essentially determined by the quality of the
lower bounds. Because of the nonlinearity introduced by the positive semidefinite
cone, semidefinite relaxations provide tighter bounds for many combinatorial
problems than linear programming relaxations.

To simplify matters, we discuss here the special case of the Equicut Problem
and the semidefinite relaxations proposed by Gruber and Rendl [5]. These have
turned out to deliver tight lower bounds. General Graph Partitioning Problems
can be treated similarly.

Given an edge-weighted graph G with an even number n of vertices, the
problem is to find a partitioning of the vertices into two sets of equal cardinality
which minimizes the sum of weights aij of the edges joining the two sets. The
algebraic formulation is obtained by representing the partitioning as an integer
vector x ∈ {−1, 1}n satisfying the parity condition

∑
i xi = 0. Then the Equicut
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Problem is equivalent to

min
∑
i<j

aij(1− xixj)/2 s.t. x ∈ {−1, 1}n,
n∑

i=1

xi = 0,

where A = (aij) is the symmetric matrix of edge weights. This follows immedi-
ately, since 1−xixj = 0 iff the vertices i and j are in the same set. The objective
can be written as ∑

i<j

aij(1− xixj)/2 = (xT Lx)/4,

where L := Diag(Ae)−A is the Laplace matrix of G, and e is the vector of ones.
Using xT Lx = trace(L(xxT )) and X = xxT , it can be shown that this problem
is equivalent to

f∗p = min〈L,X〉/4
s.t. diag(X) = e, eT Xe = 0, X � 0, rank(X) = 1.

Since X � 0 and eT Xe = 0 implies X to be singular, the problem is ill-posed, and
for arbitrarily small perturbations of the right hand side it becomes infeasible.

By definition, the Equicut Problem has a finite optimal value f∗p , and a
rigorous upper bound of f∗p is simply obtained by evaluating the objective func-
tion for a given partitioning integer vector x. In order to compute a rigorous
lower bound, the nonlinear rank one constraint is left out yielding an ill-posed
semidefinite relaxation, where the Slater’s condition does not hold. Assume that
X = xxT is an optimal solution, and let ỹ ∈ Rn+1. Then some computations
yield

f∗p = 〈L,X〉/4 ≥
n∑

i=1

ỹi +
n∑

i=1

λi(D)qT
i Xqi,

where the real symmetric matrix D is defined by

D := (1/4)L−Diag(ỹ1 : n)− ỹn+1(eeT ),

and λi(D) are the real eigenvalues with orthonormal eigenvectors qi for i =
1, · · · , n.

Since X = xxT with x ∈ {−1, 1}n satisfies λmax(X) = n and X is positive
semidefinite, it follows that the primal boundedness qualifications 0 ≤ qT

i Xqi ≤
n for i = 1, · · · , n are fulfilled. Hence, the second sum can be bounded from
below by

n∑
i=1

λi(D)qT
i Xqi ≥

n∑
i=1

λi(D)−n.

where λi(D)− := min(0, λi(D)). Thus, we obtain
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Theorem 1. Let ỹ ∈ Rn+1, and assume that the matrix D has at most l nega-
tive eigenvalues, and let d ≤ λmin(D). Then

f∗p ≥
n∑

i=1

ỹi + l · n · d− =: f∗
p
.

Moreover, it can be shown that f∗
p

is equal to the optimal value of the semidef-
inite relaxation, provided ỹ is the correct optimal Lagrange parameter vector
(dual optimal solution). Semidefinite solvers usually compute approximate La-
grange parameter vector, and thus approximations ỹ close to optimal parameters
produce a rigorous lower bound close to the optimal value, and the overestima-
tion is negligible.

On a computer rounding errors occur, and the lower bound f∗
p

must be

computed rigorously. Therefore, a rigorous lower bound of d− and an upper
bound of l must be computed, and then the sum must be evaluated in the
downward rounding mode. One possibility (which we have implemented) is the
rigorous lower bound due to Rump [14,15], which he used for solving rigorously
sparse linear systems. Further references for computing rigorous bounds of some
or all eigenvalues and for interval arithmetic are Alefeld and Herzberger [1],
Floudas [2], Neumaier [11].

In Table 1 we display some numerical results for problems which are given
by Gruber and Rendl [5]. Matlab m-files can be found at http://uni-klu.ac.at/
groups/math/optimization/. For this suite of ill-posed problems with up to 600
constraints and 180000 variables SDPT3 computes approximate lower bounds
f̃∗d of the optimal value. The small relative errors µ(f̃∗d , f∗

p
) show that the over-

estimation of the rigorous lower bound f∗
p
can be neglected. SDPT3 terminates

with tc = 0 (normal termination) for the first two examples. Only in the last
case n = 600 the warning tc = −5: Progress too slow is returned, but a close
rigorous lower bound is computed. Comparing the times t for computing the
approximations with SDPT3 and t1 for computing f∗

p
with Theorem 1 one can

see that the additional time t1 for the rigorous lower bound is small compared
to the time required for the approximations.

n t t1 µ(f̃∗d , f∗
p
)

200 8.81 0.19 6.86788e-008
400 41.27 0.89 3.82904e-007
600 131.47 2.69 1.05772e-006

Table 1. Results for Graph Partitioning

Summarizing, Theorem 1 facilitates cheap and rigorous lower bounds for the
optimal value of graph partitioning problems. Similar results can be obtained
for Quadratic Assignment Problems and Max Cut Problems.
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3 Semidefinite Programming

In this section we describe for the semidefinite programming problem (1) two
basic theorems which bound rigorously the optimal value. For further results
about semidefinite programs and proofs we refer to [8].

Theorem 2. Let X̃j ∈ Ssj for j = 1, . . . , n, and assume that each X̃j has
at most kj negative eigenvalues. Suppose that the following dual boundedness
qualifications hold valid:

(i) Either the dual semidefinite problem is infeasible,
(ii) or f∗d is finite, and there are simple nonnegative bounds y ∈ (R+)m, such

that for every ε > 0 there exists a dual feasible solution y(ε) satisfying

− y ≤ y(ε) ≤ y, and f∗d − bT y(ε) ≤ ε. (4)

Let

ri = bi −
n∑

j=1

〈Aij , X̃j〉 for i = 1, . . . ,m, (5)

λj ≤ λmin(X̃j) for j = 1, . . . , n, and (6)

%j ≥ sup { λmax(Cj −
m∑

i=1

yiAij) :

−y ≤ y ≤ y, Cj −
m∑

i=1

yiAij � 0 }
(7)

for j = 1, . . . , n. Then

f∗d ≤
n∑

j=1

〈Cj , X̃j〉 −
n∑

j=1

kjλ
−
j %j +

m∑
i=1

|ri|yi =: f
∗
d, (8)

where λ−j := min(0, λj).

Theorem 3. Let ỹ ∈ Rm and assume that the following primal boundedness
qualifications hold valid:

(i) Either the primal semidefinite problem is infeasible,
(ii) or f∗p is finite, and there are simple bounds x ∈ (R+)n such that for every

ε > 0 there exists a primal feasible solution (Xj(ε)) satisfying

λmax(Xj(ε)) ≤ xj for j = 1, . . . , n, (9)

and
n∑

j=1

〈Cj , Xj(ε)〉 − f∗p ≤ ε. (10)
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Let

Dj = Cj −
m∑

i=1

ỹiAij , and dj ≤ λmin(Dj) for j = 1, . . . , n. (11)

Assume that Dj has at most lj negative eigenvalues. Then

f∗p ≥ bT ỹ +
n∑

j=1

ljd
−
j xj =: f∗

p
. (12)

In Theorem 2 upper bounds of the residuals |ri| are required. One possibility
to calculate the residuals is to use interval arithmetic, and taking the supremum
of the computed interval quantities. Perron-Frobenius theory can be used for
computing an upper bound of %j . It follows that an appropriate upper bound is

%j = %(|Cj |+
m∑

i=1

yi|Aij |),

where % denotes the spectral radius, which can be rigorously estimated by some
norm. We want to mention that the previous theory also allows to consider prob-
lems with interval input data. Corresponding corollaries can be formulated in a
canonical way by using the inclusion isotonicity principle of interval arithmetic.

In practice, there are frequently situations where details of modelling a prob-
lem or the generation of input data may not be known precisely, and may cause
ill-posed problems. For example because of redundant constraints, identically
zero variables, describing free variables as the difference of nonnegative vari-
ables, or replacing a vector by its outer product as in Section 4, the constraints
do not satisfy Slater’s constraint qualifications, but the boundedness of optimal
solutions is not affected. Therefore, the previous theory may be used if either
the user has a rough idea about the order of magnitude of the optimal solutions,
or if he accepts that the absolute value of the optimal solutions is not much
larger than the absolute value of the computed approximations multiplied by
some positive factor, i.e., he trusts the order of magnitude:

xj = µ · λmax(X̃j) for j = 1, . . . , n,
and yi = µ · |ỹi| for i = 1, . . . ,m.

These bounds can be viewed as a form of a-posteriori regularization for judg-
ing the computed approximate solution of an ill-posed optimization problem.
Because this boundedness assumption is not (completely) verified, the results
are not fully rigorous. Nevertheless, this stage of rigor is with rounding error
control and we may speak of a rounding error controlled weak verification.

Further verified results for the problems in the test suites of optimization
problems NETLIB LP and SDPLIB can be found in [8] and [9].
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