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Abstract
Fare planning in public transport is important from the view of passengers as well as of operators.
In this paper, we propose a bi-objective model that maximizes the revenue as well as the number
of attracted passengers. The potential demand per origin-destination pair is divided into demand
groups that have their own willingness how much to pay for using public transport, i.e., a demand
group is only attracted as public transport passengers if the fare does not exceed their willingness to
pay. We study the bi-objective problem for flat and distance tariffs and develop specialized algorithms
to compute the Pareto front in quasilinear or cubic time, respectively. Through computational
experiments on structured data sets we evaluate the running time of the developed algorithms in
practice and analyze the number of non-dominated points and their respective efficient solutions.
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1 Introduction

Fare structures in public transport are an important design element that involves the interests
of both (potential) passengers and operators alike. For passengers, fares are one among
several criteria for mode and route choice. The affordability and the perceived fairness
of fares significantly influence people’s decisions to opt for public transport over other
modes of transport, for example, their own car. When the fares exceed a certain price limit
(willingness to pay), it is reasonable to assume a deterrent effect leading to a reduction in the
attractiveness of public transport and, therefore, ridership. Conversely, for operators, fares
directly impact the revenue. An increase of prices, for example, increases the income per
sold ticket but might decrease the ridership and therefore the total number of sold tickets.

In this paper, we investigate the trade-off between revenue and number of passengers
for different fare strategies. For each origin-destination (OD) pair, we consider multiple
demand groups that differ in their willingness to pay. If the fare for an OD pair exceeds
the willingness to pay of a demand group, this group does not use public transport. These
demand groups could, for example, be captive and choice passengers, where the willingness
to pay is dependent on whether an alternative mode like a car is available or not. Another
categorization of demand groups could be based on age and income. We introduce a bi-
objective model that optimizes fare structures to determine the Pareto front of revenue and
number of passengers.
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15:2 A Bi-Objective Optimization Model for Fare Structure Design in Public Transport

A wide range of fare structures is implemented worldwide. In this paper, we introduce
the revenue-passenger model for fare structures in general and then focus on flat and distance
tariffs. In a flat tariff, all tickets have the same price. While this is very easy to understand,
it also encourages using public transport for longer journeys. For shorter journeys a flat tariff
might be perceived as unfair because passengers with a short journey pay the same price as
passengers with a long journey. The opposite can be realized with a distance tariff, which
accounts for the traveled distance. Here, the distance may either be the beeline distance
between the start and the end station of the journey or the network distance of the respective
path of the journey. In this paper, we consider affine distance tariffs, which are composed
of a base amount and an additional price per kilometer. While it is easy to communicate,
passengers need to know the exact distance of their journey to determine the fare. Slight
deviations of the path may directly lead to a change in the fare. Other differential fare
structures depend on a duration, time or quality component of the journey [12, 22, 9], but
are not considered here.

Related Literature. In public transport, requirements and needs of several actors such as
the passengers and the operators are involved, leading to multi-objective models [5]. However,
multi-objective models are scarcely considered in fare planning, and the literature on fare
planning so far focuses on single-objective models. The objective often is the minimization
of the deviation from reference prices [15, 16, 1] or the maximization of either revenue or
demand [10, 3, 26, 19, 17]. Moreover, studies analyze the impact of different fare structures
such as flat, distance and zone tariffs on the route choice and travel time [18] and the revenue
and number of passengers [13, 6]. We expand the literature by a bi-objective model with
respect to revenue and number of passengers.

Contribution. First, we formulate a general model that can be applied for any fare strategy.
Due to the characteristic of one of the objectives, the complete Pareto front can be determined
with the ϵ-constraint method. Second, we study the specific problem for flat and distance
tariffs. In both cases, we identify a finite candidate set, based on which we develop algorithms
that compute the Pareto front in quasilinear or cubic time, respectively.

We also perform computational experiments on structured data sets and analyze the
number of non-dominated points and their respective efficient solutions. The experiments
emphasize the advantage in running time of the specialized algorithm for distance tariffs
compared to the mixed-integer programming formulation derived from the general model.

2 Problem Formulation

Let a public transport network (PTN) (V, E) be given. The node set V represents a set of
stops or stations and the edge set E represents the direct connections between them. For
simplicity, we assume the PTN to be an undirected graph which is simple and connected.
The PTN can be used to model railway, tram, or bus networks. In the following, we call the
nodes of the PTN stations, also if bus networks with stops are under consideration.

By D ⊆ {(v1, v2) : v1, v2 ∈ V, v1 ̸= v2} we denote the set of origin-destination (OD)
pairs. The potential passengers of an OD pair can be distinguished by their willingness to
pay. This could for example reflect the degree of dependence on public transport or the
income. For each OD pair d ∈ D, we denote by Gd ∈ N≥1 the number of demand groups, by
tg
d ∈ N≥1 the number of people belonging to group g ∈ {1, . . . , Gd} with a willingness to pay

of wg
d ∈ R>0. In this model, a demand group uses public transport whenever the ticket price

does not exceed its willingness to pay. Without loss of generality, we assume that wg
d > 0

and wg
d ̸= wg′

d for all g, g′ ∈ {1, . . . , Gd}, g ̸= g′ and all OD pairs d ∈ D.
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To simplify notation, we introduce the shorthand notation [G] := {1, . . . , G} for G ∈ N≥1.

▶ Definition 1 (Fare structure [25]). Let a PTN be given, and let W be the set of all paths in
the PTN. A fare structure is a function π : W → R≥0 that assigns a price to every path in
the PTN.

Usually, a fare strategy (e.g., a flat, distance or zone tariff) is desired instead of just
determining a price for each OD pair. Such a desired fare strategy can be modeled by
additional requirements, that can be formulated as constraints.

The objective is to maximize the revenue and the number of passengers simultaneously.
While the revenue is the key objective of the operator, the number of passengers serves as
an indicator of the success of the transition towards sustainable transport modes. This is
particularly significant when public transport is used instead of private motorized transport
modes such that the environmental impact of traveling is reduced.

Given a fare structure π, we denote the according price for OD pair d ∈ D by πd. The
number of attracted passengers for OD pair d ∈ D given πd is then determined as

pass(d | πd) :=
∑

g∈[Gd]: πd≤wg
d

tg
d.

The total number of passengers with respect to fare structure π is

pass(π) :=
∑
d∈D

pass(d | πd)

and the total revenue is

rev(π) :=
∑
d∈D

pass(d | πd) · πd.

With this, we can now define the revenue-passenger model formally.

▶ Definition 2 (The revenue-passenger model). Given are
a PTN (V, E) as an undirected graph,
a set of OD pairs D ⊆ {(v1, v2) : v1, v2 ∈ V, v1 ̸= v2}, D ̸= ∅,
the numbers of demand groups Gd ∈ N≥1 for each OD pair d ∈ D,
the willingness to pay wg

d ∈ R≥0 and the potential demand tg
d ∈ N≥1 for each demand

group g ∈ [Gd] and each OD pair d ∈ D.
The aim is to determine fare structures π that maximize the revenue rev(π) and the number of
passengers pass(π), where a desired fare strategy might be required. The bi-objective problem
hence is:

max rev(π)
max pass(π)
s.t. π is of a desired fare strategy

πd ≥ 0 for all d ∈ D.

Each feasible fare structure π induces a two-dimensional vector of objective function
values, i.e., we have a bi-objective problem. For multi-objective optimization, we refer to,
e.g., [11]. As usual in multi-objective optimization, we are interested in finding the Pareto
front and corresponding efficient solutions. Generally speaking, we aim to find those feasible
fare structures that do not allow to improve one objective function without decreasing the
other.

ATMOS 2024



15:4 A Bi-Objective Optimization Model for Fare Structure Design in Public Transport

▶ Definition 3 (Efficient solution, non-dominated point and Pareto front, e.g., [11]). Let an
instance of the revenue-passenger model be given. A feasible solution π is called efficient and
its objective value (rev(π), pass(π)) is called non-dominated if there does not exist another
feasible solution π′ with objective value (rev(π′), pass(π′)) such that rev(π′) ≥ rev(π) and
pass(π′) ≥ pass(π) and at least one inequality holding strictly. The set of all non-dominated
points is also called the Pareto front.

Because the numbers of passengers tg
d for all d ∈ D, g ∈ {1, . . . , Gd} are given as natural

numbers, the objective function pass always attains integral values. Hence, the whole Pareto
front can be computed systematically by applying the well-known ϵ-constraint method [11, 4].
This is done by restricting the number of passengers pass in the constraints while the revenue
rev remains as the objective function. In this case, by increasing ϵ with a step width of 1,
we do not miss any non-dominated point. Further, given a set of tuples of revenue and
number of passengers, it is simple to filter for the non-dominated points: The points are
first sorted in decreasing order by the number of passengers and as a second criterion by
decreasing revenue. We then iterate over this sorted list and add a point to the Pareto front
whenever the revenue is strictly higher than the highest value so far. This ensures that
while the numbers of passengers is decreasing, the revenue is increasing, and we only keep
non-dominated points.

3 Flat Tariffs

Flat tariffs are common in city centers and assign the same price to all paths. We start with
a formal definition:

▶ Definition 4 (Flat tariff, [25]). Let a PTN be given, and let W be the set of all paths in
the PTN. A fare structure π is a flat tariff w.r.t. a fixed price f ∈ R≥0 if π(W ) = f for all
W ∈ W.

Let Swill := {wg
d : d ∈ D, g ∈ [Gd]} be the set of all willingness to pay values with

max Swill the largest of these values and let

S :=

(w, t) : w ∈ Swill, t =
∑
d∈D

∑
g∈[Gd] : wg

d
=w

tg
d


be the set of all tuples of willingness to pay and the respective demand with exactly this
willingness to pay. Let (w1, t1), . . . , (w|S|, t|S|) be a sorting of S such that w1 < . . . < w|S|.
In particular, we have |S| ≤

∑
d∈D Gd, with equality if and only if the willingness to pay is

different for every demand group.
For a flat tariff π with fixed price f ∈ R≥0, the objective functions simplify to

rev(π) = f ·
∑

(w,t)∈S:
f≤w

t and pass(π) =
∑

(w,t)∈S:
f≤w

t.

Because a flat tariff π is uniquely determined by f , we write rev(f) and pass(f) instead
of rev(π) and pass(π).
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▶ Definition 5 (F-RPM). Given the input data as in Definition 2, the bi-objective revenue-
passenger model for a flat tariff (F-RPM) is the following:

max rev(f) = f ·
∑

(w,t)∈S:
f≤w

t

max pass(f) =
∑

(w,t)∈S:
f≤w

t

s.t. f ∈ R≥0.

We now derive a finite candidate set for F-RPM.

▶ Lemma 6. For all efficient solutions f to F-RPM, it holds that f ∈ Swill.

Proof. Let f̄ be an efficient solution, and assume that f̄ /∈ Swill. First, we have that
f̄ < max Swill because for f̄ > max Swill the objective function values are (0, 0), which is not
efficient since for f := max Swill = w|S| the objective function values are (rev(f), pass(f)) =
(t|S| · w|S|, t|S|), which dominates (0, 0). Hence, f ′ := min{w ∈ Swill : f̄ < w} is well-defined
and f ′ is the next higher price compared to f̄ that is contained in Swill. Then f̄ < f ′ and
{(w, t) ∈ S : f̄ ≤ w} = {(w, t) ∈ S : f ′ ≤ w} by definition of f ′ and because f̄ /∈ Swill.
This yields pass(f̄) = pass(f ′) and rev(f̄) = f̄ · pass(f̄) < f ′ · pass(f̄) = rev(f ′), which is a
contradiction to f̄ being efficient. ◀

Lemma 6 allows Algorithm 1 to compute the Pareto front in O(|S| · log(|S|)). Note that
|S| ≤

∑
d∈D Gd.

Algorithm 1 Solution method for F-RPM.

Input : Set S (as defined above) of F-RPM
Output : Set Γ of all non-dominated points

1 Sort S such that w1 < . . . < w|S|.

2 Initialize pass←
|S|∑
s=1

ts; rev← w1 · pass; Γ← {(rev, pass)}; rev∗ ← rev.

3 for s = 2, . . . , |S| do
4 Update pass← pass− ts−1.
5 Update rev← ws · pass.
6 if rev > rev∗ then
7 Update Γ← Γ ∪ {(rev, pass)}.
8 Update rev∗ ← rev.

9 return Γ

▶ Theorem 7. Algorithm 1 solves F-RPM in O(|S| · log(|S|)).

Proof. By Lemma 6 it suffices to consider the willingness to pay ws ∈ Swill as fixed prices of
the flat tariff. Because w1 is the unique optimum with respect to the objective function pass,
(rev(w1), pass(w1)) is a non-dominated point and is added to Γ in line 2. In rev∗ we store
the maximum revenue that has occurred so far. Increasing the fixed price from ws−1 to ws

reduces the number of passengers by those that have a willingness to pay of ws−1, which are
ts−1 many. Hence, after the updates in lines 4 and 5, rev and pass are the revenue and the

ATMOS 2024
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number of passengers for a flat tariff with fixed price ws. Because the number of passengers
is strictly decreased in every iteration, the tuple (rev, pass) is non-dominated whenever the
revenue rev is larger than any previous revenue, i.e., if rev > rev∗. Therefore, in this case,
the tuple is added to Γ and the maximum revenue rev∗ is updated.

Sorting S can be done in O(|S| · log(|S|)) (see, e.g., [7]). The initialization of pass in
line 2 is executed in O(|S|), whereas all other initializations and updates are in O(1). Hence,
the for-loop takes O(|S|) in total. Overall, we obtain a running time of O(|S| · log(|S|)). ◀

4 Distance Tariffs

In a distance tariff, the fare is related to a distance l(W ) associated with the path W ∈ W.
Usually this is the beeline (Euclidean) distance between the start and the end station of
the path or the network distance, i.e., the length of the path W in the PTN. We consider
affine distance tariffs which means that the fares consist of a base amount and a price per
kilometer. We start with a formal definition.

▶ Definition 8 (Affine distance tariff, [25]). Let a PTN be given, and let W be the set of all
paths in the PTN. Let l : W → R≥0 be a distance function determining, e.g., the beeline or
network distance. A fare structure π is an affine distance tariff w.r.t. a base amount f ∈ R≥0
and a price per kilometer p ∈ R≥0 if π(W ) = f + p · l(W ) for all W ∈ W.

For the optimization of affine distance tariffs, we consider that each OD pair d ∈ D travels
along a fixed path Wd ∈ W. Hence, each OD pair is associated with a distance ld := l(Wd)
based on the distance function l.

▶ Definition 9 (D-RPM). Given the input data as in Definition 2 and a distance ld ∈ R≥0
associated with OD pair d for all d ∈ D, the bi-objective revenue-passenger model for a
distance tariff (D-RPM) is the following:

max rev(π)
max pass(π)
s.t. πd = f + p · ld for all d ∈ D

f, p ∈ R≥0.

Also here, we write rev(f, p) and pass(f, p) instead of rev(π) and pass(π) because an affine
distance tariff is uniquely determined by f and p.

For the ϵ-constraint method, the following mixed-integer linear programming (MILP)
formulation may be used:

max
f,p,πg

d
,xg

d

∑
d∈D

∑
g∈[Gd]

tg
d · π

g
d

s.t. ϵ ≤
∑
d∈D

∑
g∈[Gd]

tg
d · x

g
d

f + p · ld ≤ wg
d + M · (1− xg

d) for all d ∈ D, g ∈ [Gd] (1)
πg

d ≤ f + p · ld for all d ∈ D, g ∈ [Gd] (2)
πg

d ≤M · xg
d for all d ∈ D, g ∈ [Gd] (3)

f, p, πg
d ∈ R≥0 for all d ∈ D, g ∈ [Gd]

xg
d ∈ {0, 1} for all d ∈ D, g ∈ [Gd].
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The variables f and p determine the base amount and the price per kilometer of the distance
tariff. The binary variable xg

d is 1 if and only if demand group g of OD pair d uses public
transport. Finally, the variable πg

d stores the price that is actually paid by the demand
group g of OD pair d. Constraints (1) ensure that xg

d is set correctly, meaning that it is
only 1 if the price according to the distance tariff does not exceed the willingness to pay.
Constraints (2) limit the price of a demand group to the price of the distance tariff and
constraints (3) set the price paid by a demand group to 0 if it does not use public transport.
Together constraints (2) and (3) set the price paid by a demand group to either 0 or the
distance tariff price.

Before we show that M can be chosen based on natural bounds on f and p, we introduce
some notation. Let

Sdem(f, p) := {(d, g) : d ∈ D, g ∈ [Gd], wg
d ≥ f + p · ld}

be the set of demand groups that are attracted in case of a distance tariff with base amount f

and price per kilometer p, i.e., pass(f, p) =
∑

(d,g)∈Sdem(f,p) tg
d. For every efficient solution

(f, p), it holds that Sdem(f, p) ̸= ∅ because otherwise the objective function value is (0, 0) and
is, analogously to the proof of Lemma 6, dominated by a solution f ′ := wḡ

d̄
for some d̄ ∈ D,

ḡ ∈ [Gd̄] and p′ := 0, which attracts at least one demand group. Therefore, we can restrict
f ≤ fmax := max {wg

d : d ∈ D, g ∈ [Gd]} and p ≤ pmax := max
{

wg
d

ld
: d ∈ D, g ∈ [Gd]

}
. Let

lmax := max{ld : d ∈ D}. Setting M := fmax + pmax · lmax, we have for all d ∈ D, g ∈ [Gd]
that

πg
d

(2)
≤ f + p · ld ≤ fmax + pmax · lmax = M,

i.e., M is sufficiently large for constraints (1) and (3).

This MILP has O(
∑

d∈D Gd) many variables and constraints and, as we will see later in
the experiments, is hard to solve. We hence develop a polynomial-time method that exploits
the specific problem structure.

▶ Lemma 10. For every efficient solution (f, p), at least one willingness to pay is met exactly,
i.e., there is at least one willingness to pay wg

d for some OD pair d ∈ D and demand group
g ∈ [Gd] such that wg

d = f + p · ld.

Proof. Let (f̄ , p̄) be an efficient solution. Assume that no willingness to pay is met exactly.
Then there must be a willingness to pay wg

d for some d ∈ D, g ∈ [Gd] such that wg
d > f̄ + p̄ · ld.

Otherwise Sdem(f̄ , p̄) = ∅, which is not possible for an efficient solution. Hence, we can set
δ := min{wg

d − f̄ − p̄ · ld > 0 : d ∈ D, g ∈ [Gd]}. Increasing f̄ to f ′ := f̄ + δ, we have

{(d, g) : d ∈ D, g ∈ [Gd], f̄ + p̄ · ld ≤ wg
d} = {(d, g) : d ∈ D, g ∈ [Gd], f ′ + p̄ · ld ≤ wg

d}

and hence pass(f̄ , p̄) = pass(f ′, p̄) and rev(f̄ , p̄) < rev(f̄ , p̄) + δ · pass(f̄ , p̄) = rev(f ′, p̄) which
is a contradiction to (f̄ , p̄) being an efficient solution. ◀

Lemma 10 shows that we can interpret our problem as least absolute deviation (LAD)
regression problem (see, e.g., [2, 23, 8, 24]): Given a set of points with weights, find a line
that minimizes the sum of vertical distances to the given points. In our case, the existing
points are (ld, wg

d) with weights tg
d for every OD pair d ∈ D and every demand group g ∈ [Gd].

We want to fit these points by a line with intercept f and slope p, i.e., x 7→ f + p · x. For the
evaluation of the fit we distinguish two cases:

ATMOS 2024



15:8 A Bi-Objective Optimization Model for Fare Structure Design in Public Transport

ld̄

φ1

φ2

φ3

distance

price

Figure 1 Example of three OD pairs with distances 1, 4 and 6 and with three groups each. They
are marked based on their distance and willingness to pay. Line φ1 (black, solid) meets exactly one
willingness to pay exactly. The point (ld̄, wḡ

d̄
) is the fixed point. The line can be rotated clockwise

to line φ2 (blue, dashed), or it can be rotated counterclockwise to line φ3 (red, dotted). For φ2 the
willingness to pay of two groups is met exactly. The black groups are always attracted, the gray
are attracted in none of the scenarios, and the gray-red group is only attracted in case of φ3 (red,
dotted). Vertical lines show the price difference for each OD pair in the different scenarios.

If (ld, wg
d) is on or above the line, we add tg

d to pass(f, p). For rev(f, p), we could have
achieved the full amount of the willingness to pay wg

d, but we realize only the point on
the line, i.e., f + p · ld. The vertical distance wg

d − (f + p · ld) between the point (ld, wg
d)

and the line is what we lose and hence what we want to minimize.
If (ld, wg

d) is below the line, the OD pair is lost and hence does not contribute to any of
the two objective functions.

Lemma 10 then says that any optimal line passes through at least one of the points. For
unrestricted LAD lines it is furthermore known that there always exists an optimal line that
passes through two of the points. In our case, the parameters of the line are restricted to be
positive, i.e., f ≥ 0 and p ≥ 0. Taking this restriction into account leads to the statement of
Theorem 11.

▶ Theorem 11. For every non-dominated point, there is an efficient solution (f, p) such that
one of the following holds: The willingness to pay of

two groups is met exactly, i.e., there are di ∈ D, gi ∈ [Gdi
] for i ∈ {1, 2} with d1 ̸= d2

and wgi

di
= f + p · ldi

,
one group is met exactly and p = 0, i.e., there is some d ∈ D, g ∈ [Gd] with wg

d = f ,
one group is met exactly and f = 0, i.e., there is some d ∈ D, g ∈ [Gd] with wg

d = p · ld.

Proof. Let (f1, p1) be an efficient solution, in particular f1, p1 ∈ R≥0. By Lemma 10, there
is at least one willingness to pay that is met exactly. We consider the case that only exactly
one willingness to pay w̄ := wḡ

d̄
for some d̄ ∈ D, ḡ ∈ [Gd̄] is met exactly and that neither

p1 = 0 nor f1 = 0. We fix (w̄, ld̄) and rotate the line f1 + p1 · x in the following ways as
illustrated in Figure 1:

We choose (f2, p2) as the optimal solution to

min
f,p

p

s.t. w̄ = f + p · ld̄
Sdem(f1, p1) ⊆ Sdem(f, p)
p1 ≥ p ≥ 0
f ≥ 0.
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Hence, (f2, p2) still meets w̄ for OD pair d̄. The line f2 + p2 · x is less steep than f1 + p̄1 · x,
with a non-negative slope for which all demand groups that are attracted by (f1, p1) are also
attracted by (f2, p2).

Analogously, we choose (f3, p3) as the optimal solution to

max
f,p

p

s.t. w̄ = f + p · ld̄
Sdem(f1, p1) ⊆ Sdem(f, p)
p ≥ p1

f ≥ 0.

Note that (f2, p2) and (f3, p3) are of the form as in the claim. Because of the assumption
that only one willingness to pay is met exactly and p1 > 0 and f1 > 0, we have that
p2 < p1 < p3 and f3 < f1 < f2. For i ∈ {1, 2, 3}, we define φi : R≥0 → R≥0, x 7→ fi + pi · x.

By construction, we ensure that the numbers of attracted passengers are not decreased
when changing from (f1, p1) to (f2, p2) or to (f3, p3). We show that for at least one of these
options also the revenue does not decrease. Note that the revenue related to OD pairs with
distance ld̄ does not change because the price is kept fixed. Hence, we divide the attracted
demand groups based on their respective distances ld compared to ld̄ as follows:

Sdem,L := {(d, g) ∈ Sdem(f1, p1) : ld < ld̄} and Sdem,R := {(d, g) ∈ Sdem(f1, p1) : ld > ld̄}.

For all d ∈ D, we set δd := |ld̄− ld|. From that, we obtain that ld = ld̄− δd for (d, g) ∈ Sdem,L

and ld = ld̄ + δd for (d, g) ∈ Sdem,R, which yields for all i ∈ {1, 2, 3} and all d ∈ D that

φi(ld) = fi + pi · (ld̄ ∓ δd) = fi + pi · ld̄ ∓ pi · δd = φi(ld̄)∓ pi · δd.

Then for the difference in revenues, we have

rev(f2, p2)− rev(f1, p1) ≥
∑

(d,g)∈Sdem,L

tg
d (φ2(ld̄)− p2δd) +

∑
(d,g)∈Sdem,R

tg
d (φ2(ld̄) + p2δd)

−
∑

(d,g)∈Sdem,L

tg
d (φ1(ld̄)− p1δd)−

∑
(d,g)∈Sdem,R

tg
d (φ1(ld̄) + p1δd)

=
∑

(d,g)∈Sdem,L

tg
d · δd · (p1 − p2) +

∑
(d,g)∈Sdem,R

tg
d · δd · (p2 − p1)

= (p1 − p2)︸ ︷︷ ︸
>0

 ∑
(d,g)∈Sdem,L

tg
d · δd −

∑
(d,g)∈Sdem,R

tg
d · δd


︸ ︷︷ ︸

:=∆

and analogously

rev(f3, p3)− rev(f1, p1) ≥
∑

(d,g)∈Sdem,L

tg
d (φ3(ld̄)− p3δd) +

∑
(d,g)∈Sdem,R

tg
d (φ3(ld̄) + p3δd)

−
∑

(d,g)∈Sdem,L

tg
d (φ1(ld̄)− p1δd)−

∑
(d,g)∈Sdem,R

tg
d (φ1(ld̄) + p1δd)

=
∑

(d,g)∈Sdem,L

tg
d · δd · (p1 − p3) +

∑
(d,g)∈Sdem,R

tg
d · δd · (p3 − p1)

= (p3 − p1)︸ ︷︷ ︸
>0

 ∑
(d,g)∈Sdem,R

tg
d · δd −

∑
(d,g)∈Sdem,L

tg
d · δd


︸ ︷︷ ︸

=−∆
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Because ∆ ≥ 0 or −∆ ≥ 0, at least one difference is non-negative. If the absolute revenue
difference |∆| is strictly larger than zero, then (f1, p1) is dominated by the respective other
distance tariff, which is a contradiction. If it is equal to zero, but the number of passengers
has increased, then (f1, p1) is again dominated, which is a contradiction. And if it is equal
to zero and the number of passengers is the same, then all solutions belong to the same
non-dominated point and we can choose the one that satisfies one of the claimed criteria.

Hence, for every non-dominated point, there is an efficient solution satisfying one of the
criteria in the claim. ◀

▶ Corollary 12. The problem is tractable, i.e., the number of non-dominated points is
polynomial in the input, namely in O((

∑
d∈D Gd)2).

Proof. The claim follows from Theorem 11 because there are at most
∑

d∈D Gd non-
dominated points for efficient solutions (f, p) with f = 0 or p = 0, and at most (

∑
d∈D Gd)2

non-dominated points that meet the willingness to pay of two demand groups exactly. ◀

Algorithm 2 Solution method for D-RPM.

Input : Instance of D-RPM
Output : Set Γ of all non-dominated points

1 Initialize Γ1 ← ∅; Γ2 ← ∅; Γ3 ← ∅.
// Determine points with a solution with p = 0.

2 Apply Algorithm 1 and let Γ1 be its result.
// Determine points with a solution with f = 0.

3 Set f ← 0.
4 for d ∈ D do
5 for g ∈ [Gd] do
6 Set p← wg

d

ld
.

7 Update Γ2 ← Γ2 ∪ {(rev(f, p), pass(f, p))}.

// Determine points with a solution that meets the willingness to pay
of two groups exactly.

8 for d, d′ ∈ D with ld < ld′ do
9 for g ∈ [Gd], g′ ∈ [Gd′ ] do

10 Set p← wg′

d′ −wg
d

ld′ −ld
.

11 Set f ← wg
d − p · ld.

12 if f > 0 and p > 0 then
13 Update Γ3 ← Γ3 ∪ {(rev(f, p), pass(f, p))}.

// Filter for non-dominated points.
14 Filter Γ1 ∪ Γ2 ∪ Γ3 for non-dominated solution as described in Section 2. Let Γ be the

filtered result.
15 return Γ

▶ Theorem 13. Algorithm 2 computes the set of all non-dominated points of D-RPM in
O((

∑
d∈D Gd)3).
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Proof. Theorem 11 gives a characterization of efficient solutions from which all non-dominated
solutions can be determined. In line 2 of Algorithm 2, a superset of all non-dominated
solutions with an efficient solution (f, p) with p = 0 is determined, in lines 3 to 7 a superset
of all those with f = 0 and in lines 8 to 13 of all those that meet the willingness to pay
of at least two groups exactly are computed. Combinations of demand groups with the
same distance are omitted because this would yield an infeasible vertical line. Therefore,
Γ1 ∪ Γ2 ∪ Γ3 contains all non-dominated points. In line 14, all dominated solutions are
removed and, hence, Γ is the set of all non-dominated points.

The computations in lines 2 to 7 are in O((
∑

d∈D Gd)2). In lines 8 to 13, we iterate
over the combinations of two demand groups and again iterate over the demand groups
for determining the revenue and the number of passengers in line 13. This is done in
O((

∑
d∈D Gd)3). Filtering Γ1 ∪ Γ2 ∪ Γ3 for non-dominated solutions in line 14 is done in

O((
∑

d∈D Gd)2 · log(
∑

d∈D Gd)). Hence, in total, the algorithm is in O((
∑

d∈D Gd)3). ◀

▶ Remark 14. Note that the running time is significantly influenced by the number of OD
pairs with the same distance because the for-loop in line 8 of Algorithm 2 is only performed
for OD pairs d′ with a larger distance than that of OD pair d, but in particular not for those
with the same distance. Hence, the loops over the demand groups and the computation of
the objective function value are omitted for OD pair combinations with the same distance.

5 Computational Experiments

The revenue-passenger model introduced in this paper is tested on artificial instances based
on the data sets grid and mandl from the open source software library LinTim [20, 21].
The PTNs provided for each of the data sets can be used to compute network and beeline
distances between any pair of stations. The distributions of the demand with respect to the
network and beeline distances is shown in Figure 2. Data set mandl consists of 172 OD pairs
that have 72 different network distances and 84 beeline distances. While data set grid even
has 567 OD pairs, these belong only to 8 network distances and 14 beeline distances. An
overview of the parameters for generating the artificial instances is given in Table 1: The
demand data provided in LinTim is split into G ∈ {1, 3, 5} demand groups to create the
input demand data of the revenue-passenger model in four different ways (equal, random,
increasing, decreasing). The willingness to pay for each group is generated using a flat
tariff (w-flat) or an affine distance tariff where the distance is derived from the network
(w-network) or the Euclidean distance (w-beeline). The parameters f and p are chosen
from three options for affine distance tariffs and one option for flat tariffs. In total, this
yields 252 instances per data set. The instances are solved for the revenue-passenger models
F-RPM and D-RPM, determining flat, network distance and beeline distance tariffs.
The solution methods are implemented in Python and the experiments are run on a machine
with an Intel(R) Core(TM) i5-1335U and 32 GB of RAM.

Running Time. The running times of Algorithm 1 and Algorithm 2 are depicted in Figure 3.
According to Theorem 7 and Theorem 13 the running time of Algorithm 1 is quasilinear in
the total number of demand groups while the running time of Algorithm 2 is cubic. This
can be observed in the running times: F-RPM can be solved in 0.08 seconds for all grid
instances and in 0.14 seconds for all mandl instances, while the running time of D-RPM
increases to up to 13 seconds for grid and to 46 seconds for mandl, respectively.
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(a) Demand data for data set grid.
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(b) Demand data for data set mandl.

Figure 2 Demand data with respect to the different PTNs. The size of a point reflects on the
demand. Above and on the right hand side of the plots, the demand with the same network or
beeline distance, respectively, is aggregated.

Table 1 Parameters for generating artificial instances.

Parameter Value Explanation

demand
groups G ∈ {1, 3, 5} number of groups Gd = G for all OD pairs d ∈ D

demand
split

equal
random
increasing
decreasing

∀d ∈ D, ∀g ∈ [G] : tg
d =

⌈
td
G

⌉
∀d ∈ D, ∀g ∈ [G] : tg

d ∈ {1, . . . , td} random with
∑G

g=1 tg
d = td

∀d ∈ D, ∀g ∈ [G − 1] : tg
d =

⌈
td
2g

⌉
and tG

d =
⌊

td

2G−1

⌋
∀d ∈ D, ∀g ∈ [G − 1] : tg

d =
⌈

td

2G+1−g

⌉
and t1

d =
⌊

td

2G−1

⌋
willingness
to pay

w-flat
w-network
w-beeline

tariff used to generate willingness to pay

tariff
parameter

A
B
C

∀g ∈ [G] : fg = g, pg = 0.2
∀g ∈ [G] : fg = g, pg = 0.6 − 0.1g

∀g ∈ [G] : fg = 1, pg = 0.1g

Figure 2 shows that the input data of grid is very structured and that only a few different
distances occur, especially for the network distance. As suggested in Remark 14, this reflects
on the running times, which is smaller for grid than for mandl, even though grid has roughly
three times as many OD pairs as mandl.

These running times are orders of magnitude smaller compared to the running times of
the MILP-based approach using Gurobi 10.01 [14] for solving the MILP of D-RPM. Figure 4
and Table 2 show that Algorithm 2 for D-RPM, that exploits the structure of distance
tariffs, is much faster than the MILP-based approach. For network D-RPM, in 68% of
the instances of grid with 5 demand groups, it was in some iteration not possible to even
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Figure 3 Running times in seconds for computing the complete Pareto fronts with Algorithm 1
for F-RPM and with Algorithm 2 for network and beeline D-RPM.
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ALGO MILP, solved optimally MILP, not solved optimally MILP, no feasible solution within time limit

Figure 4 Running times in seconds of network D-RPM with Algorithm 2 (ALGO) and with
the MILP-based method (MILP) on data set grid with a logarithmic scale. Each marker represents
the running time for computing the Pareto front of a single instance. The time limit for solving
each MILP within the ϵ-constraint method is set to 300 seconds. If a MILP could not be solved
to optimality within this time limit but a feasible solution was found, then we continue with this
feasible solution and label the instance as “MILP, not solved optimally”. If no feasible solution is
found, the procedure terminates and we label the instance as “MILP, no feasible solution within
time limit” and depict it with the maximum running time in this figure.

Table 2 Mean, minimum and maximum running times in seconds for solving network D-RPM
on the grid instances with Algorithm 2 (ALGO) and with the MILP-based method (MILP). Only
the instances that were solved optimally are considered.

running time ALGO running time MILP
groups mean min max mean min max

1 1.19 1.02 2.21 0.78 0.44 1.02
3 3.23 2.44 4.04 248.36 2.07 2086.07
5 6.95 5.11 12.37 30.53 10.15 67.35
all 3.79 1.02 12.37 103.81 0.44 2086.07
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determine a feasible solution within the time limit. With 3 demand groups this still happened
to 7% of the instances. In both cases, 11% terminated with a feasible, but not necessarily
optimal solution. Just in case of only 1 demand group, the MILP-based approach performs
slightly better than Algorithm 2 with a mean running time of 0.78 seconds compared to 1.19
seconds. Note that strengthening the formulation of the MILP could improve the running
time of the MILP-based approach.

Size of the Pareto Front. Figure 5 shows the number of points on the Pareto front for the
different options for the demand splits and for the generation of the willingness to pay. We
can observe two main effects:

First, a decreasing demand split leads to a small size of the Pareto front. This is
because the price increase cannot compensate for loosing large demand groups with a low
willingness to pay. We see the reverse effect for increasing which leads to the most points
on the Pareto front because loosing only small demand groups with a low willingness to pay
is compensated in the revenue by the increased price.
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(b) Data set mandl.

Figure 5 Size of the Pareto front dependent on the demand split and the tariff used to generate
the willingness to pay.
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Second, if the fare strategy of the input tariff (for generating the willingness to pay) and
the output tariff coincide, the size of the Pareto front is smaller. In this case, an output tariff
might be chosen exactly as the willingness to pay of one demand group level, which is in
general not possible if they differ.

Structure of the Pareto Front, Efficient Tariffs and Input Data. Figure 6 to Figure 9
show the Pareto fronts in (a) and corresponding efficient solutions in (b) and (c) for selected
parameter settings for the mandl instances. Additionally, (b) and (c) show the demand as
points (ld, wg

d) weighted with the number of potential passengers tg
d. The figures for grid can

be found in Appendix A. In these cases, we can see well that coinciding input and output
tariffs lead to a small sized Pareto front that even dominates many of the points of the other
tariff types. For w-beeline, the Pareto front of beeline D-RPM dominates the Pareto front
of network D-RPM, and vice versa for w-network. Particularly in Figure 6, it is visible
that the distinct points on the Pareto front belong to solutions that are a flat tariff. Only
in this setting with the willingness to pay being generated by w-flat, we obtain a Pareto
front for F-RPM that is not dominated by both, the Pareto fronts of beeline and network
D-RPM. This is however not surprising because a flat tariff is a special case of a distance
tariff.

Moreover, in many cases, the efficient tariffs are located on the lower levels of the demand
groups, meaning that it is not beneficial to increase the price to the highest willingness to pay.
For example, Figure 6 constitutes an exception, where it is an efficient solution to choose a
flat tariff with a fixed price equal to the second highest willingness to pay. However, we also
see here that the highest willingness to pay does not lead to an efficient solution.
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Figure 6 Instance of mandl with 5 demand groups and parameters increasing/w-flat/A.
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Figure 7 Instance of mandl with 5 demand groups and parameters random/w-network/A.
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Figure 8 Instance of mandl with 5 demand groups and parameters decreasing/w-beeline/B.
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Figure 9 Instance of mandl with 5 demand groups and parameters equal/w-beeline/C.

6 Discussion and Outlook

In this paper, we have introduced a bi-objective model for fare planning maximizing the
revenue and the number of passengers with different demand groups per OD pair. Specialized
algorithms for flat and distance tariffs showed a significant reduction in running time in
computational experiments on artificial data sets from the software library LinTim.

Another common fare strategy are zones tariffs. For counting zone tariffs, for which the
price depends on the number of traversed zones, the MILP-based method can be performed
by applying the MILP proposed by [19] and adding the constraint restricting the number of
passengers. However, because this MILP has a high running time in practice, it cannot be
expected to compute the whole Pareto front, even for small instances. Future work could
encompass the design of a specialized algorithm for zone tariffs.

Computational experiments show that it is worth to look into the revenue-passenger
model for the specific fare strategies. Exploiting the structure of tariffs, leads to methods
that allow for the computation of the complete Pareto front. This yields a wide range
of information for public transport operators to choose a tariff that serves their financial
requirements as well as promotes public transport with the aim to attract and increase the
demand.
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A Pareto Fronts and Efficient Solutions for Selected grid Instances

Figure 10 to Figure 13 show the Pareto fronts in (a) and corresponding efficient solutions
in (b) and (c) for selected parameter settings for the grid instances. Additionally, (b) and (c)
show the demand as points (ld, wg

d) weighted with the number of potential passengers tg
d.
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Figure 10 Instance of grid with 5 demand groups and parameters increasing/w-flat/A.
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Figure 11 Instance of grid with 5 demand groups and parameters random/w-network/A.
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Figure 12 Instance of grid with 5 demand groups and parameters decreasing/w-beeline/B.
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Figure 13 Instance of grid with 5 demand groups and parameters equal/w-beeline/C.
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