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Abstract
While it is important to provide attractive public transportation to the passengers allowing short
travel times, it should also be a major concern to reduce the amount of energy used by the public
transport system. Electrical trains can regenerate energy when braking, which can be used by a
nearby accelerating train. Therefore, apart from the minimization of travel times, the maximization
of brake-traction overlaps of nearby trains is an important objective in periodic timetabling. Recently,
this has been studied in a model allowing small modifications of a nominal timetable. We investigate
the problem of finding periodic timetables that are globally good in both objective functions. We
show that the general problem is NP-hard, even restricted to a single transfer station and if only
travel time is to be minimized, and give an algorithm with an additive error bound for maximizing
the brake-traction overlap on this small network. Moreover, we identify special cases in which the
problem is solvable in polynomial time. Finally, we demonstrate the trade-off between the two
objective functions in an experimental study.
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1 Introduction

In order to reach the climate goals, it is necessary to strengthen the role of public transport-
ation in passenger transport. However, also the public transport system itself consumes a
large amount of energy. Modern electric motors are able to regenerate energy while braking.
In the context of rail traffic, the most efficient way to use the regained energy is to transfer
it via the catenary to an accelerating train close by. Therefore, it is sensible to schedule
train timetables in a way that synchronizes braking and acceleration processes of nearby
trains. Such a schedule has two advantages concerning the energy usage. First, it enables a
maximum usage of the regenerated energy and, hence, reduces the total amount of energy
that needs to be bought by the public transport company. Second, it prevents power peaks
that might surcharge the transportation system’s power supply.

However, from a passenger perspective, this synchronization of braking and acceleration
processes of two trains is the worst possible case as it prevents a passenger transfer from
the braking to the accelerating train. Narrowly missing a train leads to frustration of the
passengers and long waiting times might cause them to choose the car over public transport.
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Figure 1 Timetable patterns of braking, waiting and acceleration phases of four trains.

As an illustration of this trade-off, we consider an example motivated by Swiss railways.
Here, the operated timetable prevents such situations of narrowly missing a train. The trains
are scheduled in a regular interval timetable. At each station there is a fixed time. Shortly
before this time all trains stopping at the station arrive, and the trains depart shortly after
that time, see Figure 1a. This enables short transfer times to all directions. On the other
hand, a transfer of regenerative braking energy from one train to another is impossible. For
this objective, an efficient timetable would schedule the trains one after another such that
the braking and acceleration phases overlap pairwise, see Figure 1b.

While it is beneficial to the environment to use as much of the regenerative energy as
possible, it is also of utmost importance to provide attractive public transportation to the
passengers. In this paper, we investigate a bicriteria problem with the aims to maximize
the brake-traction overlap enabling the usage of regenerative energy and to minimize the
passengers’ travel times. We study this problem in the periodic version, where all train lines
are operated repeatedly with a fixed period time.

Related Work

The task of designing efficient railway timetables has been subject to study at least since
1989 [12]. Traditionally, the literature on timetabling focuses on minimizing the passengers’
travel time. An overview can be found in [7]. As mentioned above, the increasing importance
of saving energy has sparked significant research efforts towards this goal in the engineering
sciences. A complete review of all these works goes far beyond the scope of this paper.
Instead, we only mention some particularly important papers and refer to the survey by
Scheepmaker, Goverde, and Kroon [11] and the exemplary recent papers [8, 6, 13], which
contain more extensive literature reviews.

There are two ways in which the timetable can affect the trains’ energy consumption. On
the one hand, there is the idea of saving energy by the implementation of energy-efficient
driving strategies [5]. These depend on the time scheduled for each driving section; typically
longer travel times require less energy. Ghoseiri, Szidarovszky, and Asgharpour [3] considered
a multi-objective train scheduling model, combining the objectives of minimizing energy and
minimizing travel time, and approximate the Pareto frontier using the ε-constraint method.

On the other hand, the timetable can influence the usage of regenerative energy in train
systems. This was first researched by Ramos Pena, Fernández, and Cucala [10], who allow
a modification of the dwell times to increase the brake-traction overlap. A more detailed
modelling of the energy consumption that combines the driving strategies and the brake-
traction overlaps has been studied by Yin, Yang, Tang, Gao, and Ran [17], who devised a
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Lagrangian relaxation-based heuristic for this problem. In the other direction, Gupta, Tobin,
and Pavel [2] considered a very simplified linear programming model to synchronize the start
times of braking phases and the end times of acceleration times.

The bicriteria problem of minimizing the passenger travel times and maximizing the
brake-traction overlap has been investigated by Yang, Ning, Li, and Tang [16], who developed
a genetic algorithm for it. Moreover, Yang, Liao, Wu, Timmermans, Sun, and Gao [15] apply
the NSGA-II algorithm for approximating the Pareto frontier.

All these works considered given aperiodic timetables that can be modified. Only recently,
the study of the periodic version of this problem was initiated by Wang, Zhu, and Corman [14].
They assume a given nominal periodic timetable and develop a first model that can be
used for local adjustments. On the one hand their aim is to maximize the brake-traction
overlap to enable the usage of regenerative energy on a fixed set of synchronized arrival and
departure events. On the other hand, they include passenger related objectives such as the
minimization of the generalized average travel time of all passengers and the minimization of
the maximum increase in individual’s generalized travel time. Wang et al. also provide a
visualization of the Pareto frontier for these objectives on an instance of Dutch railways.

Our contribution

1. We propose a mixed integer programming (MIP) formulation for the problem of maximiz-
ing the brake-traction overlap (PESP-Energy), based on the Periodic Event Scheduling
Problem (PESP) (Section 2.1) and including the decision which acceleration and braking
processes are synchronized.

2. We extend this MIP formulation to the bicriteria problem that additionally aims at
minimizing the passengers’ travel time (Section 2.3) and run numerical experiments on a
single transfer station. (Section 5)

For our theoretical investigation, we focus on the problem restricted to a single transfer
station, for which we derive the following results:
3. We characterize the structure of optimal solutions for the two single-objective problems

(Propositions 8 and 9 and Theorem 10).
4. We show that only minimizing the transfer times is already NP-hard for a single transfer

station (Theorem 6).
5. Based on a special-form TSP, we obtain a polynomial-time algorithm with an additive

performance guarantee (depending on the input parameters) for the energy objective
(Theorem 16). We show for some special cases that its solution is optimal (Section 4.4).

2 Including the Brake-Traction Overlap in the Periodic Event
Scheduling Problem

In the timetabling problem, we are given a set of lines l ∈ L, which are given as sequences of
served stations v ∈ V. Every line will be served periodically with the given period of T .

2.1 PESP-Passenger – Minimizing the Travel Times
For the PESP model we are given bounds on the durations of activities (driving, waiting,
transfers) as well as weights which correspond to the number of passengers performing each
activity. The objective is to minimize the total travel time of all passengers. For this problem,
the event-activity-network (EAN) E = (E, A) for given directed lines L serving stations v ∈ V
is a directed graph on all arrival and departure events E = Earr ∪̇ Edep, given by

Earr :=
{

(v, ℓ, arr)
∣∣ ℓ ∈ L arrives at v ∈ V

}
, Edep :=

{
(v, ℓ, dep)

∣∣ ℓ ∈ L departs at v ∈ V
}

.

ATMOS 2024
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The activities A := Adrive ∪̇ Await ∪̇ Atrans connect the events as follows:

Adrive :=
{

((v1, ℓ, dep), (v2, ℓ, arr)) ∈ Edep × Earr
∣∣ ℓ serves v2 directly after v1

}
,

Await :=
{

((v, ℓ, arr), (v, ℓ, dep)) ∈ Earr × Edep
}

,

Atrans :=
{

((v, ℓ1, arr), (v, ℓ2, dep)) ∈ Earr × Edep
∣∣ ℓ1 ̸= ℓ2

}
.

A timetable π : E → {0, . . . , T − 1} assigns a time πi to each event i ∈ E, meaning
that the event takes place at all times from πi + TZ. We can associate the bounds on
the driving, transfer and waiting times with the activities: For each activity a ∈ A let
∆a = [la, ua] be the set of allowed durations with la, ua ∈ Z. Since we only determine the
times modulo T , we can ignore multiples of T in the activity durations and therefore assume
that 0 ≤ la ≤ T − 1 and 0 ≤ ua − la ≤ T − 1. Then a timetable is feasible if the periodic
tensions xij := (πj −πi − lij)modT + lij lie within the provided bounds for all ij ∈ A. In this
paper, we assume the bounds on the transfer arcs a we have ua = la + T − 1 and, therefore,
the bounds on the transfers do not impose feasibility constraints.

The classical PESP seeks to find a feasible schedule in this network. The PESP-Passenger
problem aims to find one with minimal total travel time. Let w(ij) be the total number
of passengers performing the activity ij ∈ A. Then we minimize the weighted sum of the
periodic tensions (cf. objective (1)) of all activities, yielding a timetable that minimizes the
passengers’ travel times. This leads to the following mixed integer linear program [7].

(PESP-P) min
∑
ij∈A

w(ij)xij (1)

subject to xij = πj − πi + pijT ∀ij ∈ A (2)
lij ≤ xij ≤ uij ∀ij ∈ A (3)
0 ≤ πi ≤ T − 1 ∀i ∈ E (4)
xij ∈ R, pij ∈ Z ∀ij ∈ A (5)
πi ∈ Z ∀i ∈ E (6)

The variables pij are called periodic offsets or modulo parameters and are chosen such that
the periodic tensions xij lie within the bounds. This is ensured by constraints (2) and (3).
Constraints (4) and (6) ensure that the timetable π takes only values within {0, . . . , T − 1}.

2.2 PESP-Energy – Maximizing the Brake-Traction Overlap
Now we develop an extension of the PESP that allows to maximize our second objective
function, the brake-traction overlap. In addition to the standard input, we are given the
acceleration and braking times for all departures and arrivals, respectively. Our model,
which we term PESP-Energy, is also based on an EAN E = (E, A). The events E =
Earr ∪̇ Edep are derived from the set of stations V and the set of directed lines L as in
PESP-Passenger. However, a different set of activities is considered. Specifically, we now
have A := Adrive ∪̇ Await ∪̇ Aenergy with Adrive and Await defined as above and

Aenergy :=
{

((v, ℓ1, dep), (v, ℓ2, arr)) ∈ Edep × Earr
}

.

Such an energy arc is depicted in red in Figure 2a. The energy activities do not impose any
constraints on the feasibility of a timetable, i.e., ∆a = [0, T − 1] for all a ∈ Aenergy. For each
arrival event i ∈ Earr the time tbr

i needed for braking, and the time tac
j needed for accelerating

at each departure event j ∈ Edep are given. We assume that tac
j +tbr

i < T for any ji ∈ Aenergy.
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We denote with tmin
ji := min{tac

j , tbr
i } the minimum and with tmax

ji := max{tac
j , tbr

i } the
maximum of the acceleration and braking times associated with energy arc ji. We consider
the periodic intervals of the acceleration and braking phases. By a periodic interval we mean

[a, b]T :=
{

[a mod T, b mod T ] if a mod T ≤ b mod T,

[0, b mod T ] ∪ [a mod T, T ) else.

The length of a periodic interval is length([a, b]T ) := (b − a) mod T . The periodic interval of
the acceleration phase after the departure event j is then [πj , πj + tac

j ]T and, analogously,
[πi − tbr

i , πi]T describes the braking phase before the arrival event i. The overlap of the two
phases is then determined by the intersection of the periodic intervals. Note that due to the
assumption that tac

j + tbr
i < T , this is again a periodic interval.

▶ Definition 1 (Brake-Traction Overlap). For ji ∈ Aenergy we define the brake-traction overlap
resulting from a periodic timetable π as oji := length

(
[πj , πj + tac

j ]T ∩ [πi − tbr
i , πi]T

)
.

Clearly, the overlap does not depend on the exact times πj and πi but only on their
difference, i.e., on the periodic tension xji. The following lemma gives a formula to compute
it, using the function overlapa : [0, T ) → R≥0 depicted in Figure 2b.

▶ Lemma 2. For every a ∈ Aenergy with periodic tension x the brake-traction overlap is

overlapa(x) := max
{

min{x, tmin
a , tmax

a + tmin
a − x}, 0

}
.

Proof. Let a = ji. There are two cases in which there is an empty intersection [πj , πj +
tac
j ]T ∩ [πi − tbr

i , πi]T . First, the intersection is empty if πj ≤ πi and πj + tac
j < πi − tbr

i . This
is the case whenever tac

j + tbr
i < πi − πj = (πi − πj) mod T = xji. The second case in which

the intersection is empty is if πj > πi and πj + tac
j < πi + T − tbr

i . This is true whenever
tac
j + tbr

i < πi + T − πj = (πi − πj) mod T = xji. Hence, we have an empty intersection if
and only if tac

j + tbr
i − xji < 0. In this case the overlap is oji = 0.

Provided that the intersection is non-empty, we receive the length of the overlap by
the minimum of the lengths of the four intervals [πj , πj + tac

j ]T , [πi − tbr
i , πi]T , [πj , πi]T ,

[πi − tbr
i , πj + tac

j ]T . This yields

oji = min{tac
j , tbr

i , (πi − πj) mod T, (tac
j + tbr

i − (πi − πj) mod T ) mod T}
= min{tac

j , tbr
i , xji, (tac

j + tbr
i − xji) mod T}

= min{tac
j , tbr

i , xji, tac
j + tbr

i − xji}
= min{tmin

ji , xji, tmin
ji + tmax

ji − xji} ≥ 0.

The third equation holds by the assumption that we have a non-empty intersection. Therefore,

min{tmin
ji , xji, tmin

ji + tmax
ji − xji} ≥ 0 ⇐⇒ [πj , πj + tac

j ]T ∩ [πi − tbr
i , πi]T ̸= ∅.

Hence, for the actual overlap of energy arc a ∈ Aenergy we obtain:

oa = overlapa(x) = max
{

min{xa, tmin
a , tmax

a + tmin
a − xa}, 0

}
. ◀

The maximum possible overlap at a ∈ Aenergy is oa = tmin
a , which is achieved if and only

if tmin
a ≤ xa ≤ tmax

a . In this case, we say that there is full overlap on a.
Of course, the fact that energy can only be reused once must be taken into account in

the model. Previous work [14] assumed a fixed matching between braking and accelerating
trains. In contrast, we integrate these decisions directly into the model. Therefore, the

ATMOS 2024
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traction overlap.

Figure 2 Energy arc in EAN and brake-traction overlap as a function of the periodic tension.

problem PESP-Energy consists in finding a feasible periodic timetable π together with a
matching M ⊂ Aenergy in E such that the sum of the brake-traction overlaps on the energy
arcs in the matching is maximized (cf. (7)):

(PESP-E) max
∑

ji∈Aenergy

oji (7)

s.t. (2)–(4)
oji ≤ xji ∀ji ∈ Aenergy (8)
oji ≤ tmin

ji ∀ji ∈ Aenergy (9)
oji ≤ tmax

ji + tmin
ji − xji + (1 − αji)Γ ∀ji ∈ Aenergy (10)

oji ≤ αji · Γ ∀ji ∈ Aenergy (11)∑
a∈Aenergy∩δ−(i)

αa ≤ 1 ∀i ∈ Earr (12)

∑
a∈Aenergy∩δ+(j)

αa ≤ 1 ∀j ∈ Edep (13)

oji ≥ 0, αji ∈ {0, 1} ∀ji ∈ Aenergy (14)
xij ≥ 0, pij ∈ Z ∀ij ∈ A (15)
πi ∈ Z ∀i ∈ E (16)

As we want to find a feasible timetable, the model also contains the constraints (2)–(4) from
the standard PESP. The variable oji determines the brake-traction overlap and is bounded
from above by the constraints (8)–(10) according to Lemma 2. The constant Γ is chosen large
enough so that for αji ∈ {0, 1} one of the constraints (10) and (11) does not impose a relevant
bound on oji. It can be set to Γ := max

{
max{tmin

ji , T − (tmax
ji + tmin

ji )}
∣∣ ji ∈ Aenergy

}
.

Constraints (12) and (13) ensure that the energy arcs chosen at each station form a matching.
They set αji to 0 whenever the arc ji ∈ Aenergy is not chosen to be in the matching.
Constraint (11) ensures that the overlap is not counted whenever αji = 0.

We now compare the way to model the brake-traction overlap in (PESP-E) with the
formulation of Wang et al. [14] for the timetable adjustment problem. For each energy arc,
Wang et al. introduce two binary variables to decide whether there is a brake-traction overlap
or not and thereby distinguish cases in which the periodic offset is 0 or 1. The next theorem
formally states that the parts maximizing the brake-traction overlap are equivalent in both
models. For a proof of this equivalence we refer to the appendix.
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▶ Theorem 3. The constraints (8)–(11) are equivalent to the constraints (18)–(26) in the
appendix, taken from the model of Wang et al. [14], in the sense that for each energy arc
a ∈ Aenergy and periodic timetable π with tension xa the overlaps in the two models are equal.

Next, we give an upper bound for the objective value of this maximization problem. To
this end, we define weights for the energy arcs ji ∈ Aenergy as w(ji) := tmin

ji .

▶ Proposition 4. For an instance of PESP-Energy on the EAN E = (E, A), let S = (π, M)
be a feasible solution with objective value f(S), and let wopt be the maximum weight of a
(perfect) matching in the graph G = (E, Aenergy) with weights w(ji) as defined above. Then
f(S) ≤ wopt.

Proof. Each overlap is bounded from above by both the corresponding acceleration and the
corresponding braking time: oji ≤ tac

j and oji ≤ tbr
i . ◀

2.3 The Bicriteria Problem
For real timetabling problems it is desirable to find timetables that enable the usage of
regenerative energy as well as short travel times for the passengers. Hence, it is necessary to
consider a bicriteria problem and study Pareto optimal solutions to find a good trade-off. The
bicriteria MIP formulation consists of the objectives (1) and (7) under the constraints (2)–(14).
However, solving only PESP-Passenger on large networks exactly is already computationally
out of scope. To obtain a better understanding of the problem under the two objectives, we
investigate the solution structures on a small network of one transfer station.

▶ Definition 5 (One-Station Network). An EAN En = (E, A) is called a one-station network
with n lines if it is based on one station |V| = 1 and n (directed) lines stopping at this station
inducing the following events:

Earr :=
{

(ℓ, arr)
∣∣ ℓ ∈ [n]

}
, Edep :=

{
(ℓ, dep)

∣∣ ℓ ∈ [n]
}

.

The activities A = Await ∪̇ Atrans ∪̇ Aenergy connect the events as follows:

Await :=
{

((ℓ, arr), (ℓ, dep)) ∈ Earr × Edep
}

,

Atrans :=
{

((ℓ1, arr), (ℓ2, dep)) ∈ Earr × Edep
∣∣ ℓ1 ̸= ℓ2

}
,

Aenergy :=
{

((ℓ1, dep), (ℓ2, arr)) ∈ Edep × Earr
}

.

There are no driving activities in a one-station network. In the following, a one-station
network Epass

n for PESP-Passenger has the arcs Await ∪ Atrans, while for PESP-Energy the
arc set of the one-station network Eenergy

n consists of Await ∪ Aenergy.

3 PESP-Passenger on a One-Station Network

The Periodic Event Scheduling Problem is NP-complete for any fixed T ≥ 3, which can
be proved by a reduction from the vertex colouring problem [9]. More recent work shows
NP-hardness on a star network with turnaround loops [1]. Here, we show that the problem of
finding a timetable minimizing the total transfer time on a single station is NP-hard as well.

▶ Theorem 6. The problem PESP-Passenger is NP-hard even on a one-station network.

ATMOS 2024
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Proof. We show NP-hardness by a reduction from the Max-Cut problem. Let I be an
arbitrary instance of the Max-Cut problem, consisting of a graph G = (V, R) and a weight
function w : R → R. We search a bipartition (S, T ) of the vertex set V such that the sum of
the weights on the edges between the sets S and T ,

∑
u∈S,v∈T w(euv), is maximal.

Based on I we define an instance I ′ of the PESP-Passenger problem on a one-station
network: Let Epass

n = (Earr ∪̇ Edep, Await ∪̇ Atrans) be a one-station network with n := |V |
lines, inducing n arrival events and n departure events. Let the period time T := 2. The
bounds on the waiting activities ij ∈ Await are lij = uij = 0, and their weights are w(ij) := 0.
For the transfer activities ij ∈ Atrans, let the bounds lij = 1 and uij = 2 and weights

w′(ij) :=
{

w({i, j}) if {i, j} ∈ R,

0 else.

We want to show that any optimal solution to I ′ can be transformed to an optimal
solution of I. Let π be an optimal timetable for I ′. We define S := {i ∈ V | π(i,dep) = 0}
and T := {i ∈ V | π(i,dep) = 1}. To see that (S, T ) is an optimal solution to the Max-Cut
problem, i.e., that

∑
u∈S,v∈T w({u, v}) is maximum, note that π minimizes the sum of the

weights multiplied with the periodic tensions in I ′. As every transfer arc has tension 1 or
2, this is the same as maximizing the sum of the weights of arcs with tension 1, which are
exactly those between the sets S and T . Hence, (S, T ) is a maximum-weight cut. ◀

Now we establish a special case in which we know the structure of an optimal solution.

▶ Definition 7 (Basel Solution Structure). A timetable π for a one-station network Epass
n has

a Basel solution structure if all arrival events are scheduled at the same time πarr and all
departure events at time πdep such that (πdep − πarr) mod T = lmax := max{la | a ∈ A}.

▶ Proposition 8. Let Epass
n = (E, A) be a one-station network with lower and upper bounds

la, ua on the arcs such that ua = la + T − 1 for all transfer arcs a ∈ Atrans. Then any
timetable π with the Basel solution structure minimizes the total travel time independently of
the weights if and only if la = la′ for all a, a′ ∈ Atrans ∪ Await.

Proof. First, let us assume that la = la′ for all a, a′ ∈ Atrans ∪ Await. Let π be a timetable
with the Basel solution structure. Then the periodic tensions induced by π are xij =
(πj − πi − lij) mod T + lij = (lmax − lmax) mod T + lmax = lmax for all ij ∈ Atrans ∪ Await.
As we cannot do better than attaining the lower bounds on the tensions, π must be optimal.

Let us now assume that there is an arc a′ ∈ Atrans ∪Await with la′ < lmax. In the following
we find a weight vector w for which π is not optimal. Let a′ = i′j′. Then the following
timetable π′ achieves a lower objective value than π for the following weight vector w:

w(ij) :=
{

1 if ij = i′j′,

0 else,
π′

i :=


0 if i = i′,

li′j′ if i = j′,

arbitrary feasible values else.

This is possible as only the waiting activities impose feasibility constraints. The weighted
sum of the periodic tensions w.r.t. π is lmax, and it is la′ w.r.t. π′. By assumption, la′ < lmax,
hence, π is not optimal. ◀
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4 PESP-Energy on a One-Station Network

4.1 The Timetable for a Given Matching
An EAN for this problem is a bipartite graph with partition classes Earr and Edep. In
a one-station network, the set of waiting activities constitutes a perfect matching from
Earr to Edep. These activities impose the only feasibility constraints on the timetable π.
In contrast, the energy activities solely influence the objective value. Hence, arrival and
departure times of different lines are not restricted by any PESP constraint. For any
matching M ⊂ Aenergy = Edep × Earr, the graph (E, Await ∪̇ M) is a union of node-disjoint
directed cycles and directed paths. A timetable with maximum brake-traction overlap on
the matching arcs can be determined for each connected component of this graph separately.
The following proposition describes the structure of an optimal timetable for a directed cycle.
▶ Proposition 9. Let Eenergy

n be a one-station network, let M ⊂ Aenergy be a matching, and
let C ⊂ Await ∪̇ M be a directed cycle. We write the cycle as C = a1, b1, a2, b2 . . . , am, bm

with aj ∈ M , bj ∈ Await, and tmin
aj

≥ tmin
a1

for all j ∈ [m]. There is an optimal timetable π for
PESP-Energy restricted to C such that we have full overlap oaj

= tmin
aj

for all j ∈ {2, . . . , m}.
Proof. Let π be a timetable maximizing the brake-traction overlap on the energy arcs of
C. Among all such timetables, we consider one with the maximum number of arcs aj with
j ∈ {2, . . . , m} having full overlap. Assume that some arc aj with j ∈ {2, . . . , m} does not
have full overlap. To derive a contradiction, we modify the timetable π on C so that aj has
full overlap, while preserving full overlap on all other arcs and not reducing the total overlap.

To this end, we first define the new tensions x′ and then construct a timetable π′ inducing
them. Let x be the tension induced by π. For k ∈ [m] we set x′

bk
:= xbk

and

x′
ak

:=


xak

for k ̸= {1, j},

(xa1 − δ) mod T for k = 1,

xaj
+ δ for k = j,

where δ :=
{

tmin
aj

− xaj
if xaj

< tmin
aj

,

tmax
aj

− xaj if xaj > tmax
aj

.

Note that this covers all cases because for tmin
aj

≤ xaj ≤ tmax
aj

the activity aj would have full
overlap, contradicting our assumption. We define the periodic timetable π′ as follows: We
enumerate the nodes of the cycle so that ak = (2k − 1, 2k) for k ∈ [m] and bk = (2k, 2k + 1)
for k ∈ [m − 1]. The nodes with even number correspond to arrivals and with odd number
to departures. We set π′

1 := 0, π′
2k := (π′

2k−1 + x′
ak

) mod T for k ∈ [m], and π′
2k+1 :=

(π′
2k + x′

bk
) mod T for k ∈ [m − 1]. This adheres to the prescribed tensions on all arcs ak,

k ∈ [m], and bk, k ∈ [m − 1]. The tension on bm is congruent to π′
1 − π′

2m = −π′
2m =

−
∑m

k=1 x′
ak

−
∑m−1

k=1 x′
bk

≡ −
∑m

k=1 xak
−

∑m−1
k=1 xbk

≡ xbm
(mod T ). The last congruence

holds since the periodic tension x sums up to a multiple of T due to the cycle periodicity.
For a ∈ M let o′

a := overlapa(x′
a). The only matching arcs whose tensions have changed

are a1 and aj . We have x′
aj

∈ {tmin
aj

, tmax
aj

}, and thus aj has now full overlap, i.e., o′
aj

= tmin
aj

.
It holds that

o′
aj

− oaj
= tmin

aj
− oaj

=


tmin
aj

− 0 if xaj
> tmin

aj
+ tmax

aj
,

tmin
aj

− xaj if xaj < tmin
aj

,

tmin
aj

− (tmax
aj

+ tmin
aj

− xaj
) if tmax

aj
< xaj

≤ tmax
aj

+ tmin
aj

,

=
{

tmin
aj

if xaj
> tmin

aj
+ tmax

aj
,

|δ| else,

≥ min{|δ|, tmin
aj

}.
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10:10 Periodic Timetabling: Travel Time vs. Regenerative Energy

Similarly, oa1 − o′
a1

≤ min{|δ|, tmin
a1

} ≤ min{|δ|, tmin
aj

}, hence the decrease of the overlap
on a1 is at most the increase of the overlap on aj . Since no other overlaps have changed, the
sum of all overlaps cannot have decreased, i.e., we have found a solution whose objective is
not worse but which has more arcs aj with j ∈ {2, . . . , m} with full overlap. ◀

We can also regard a connected component being a directed path as a cycle whose missing
edge has overlap 0. Hence, by Proposition 9, there is an optimal timetable for this component
such that all energy edges in the path have full overlap. While the proposition describes
the structure of an optimal timetable for each connected component resulting from a fixed
matching M , we are interested in a global optimum, comprising the matching. Hence, we
need to investigate the structure of an optimal matching.

4.2 The Matching of Energy Arcs
The following result bounds the number of arcs in the matching of a globally optimal solution.
▶ Theorem 10. In every optimal solution S = (π, M) to PESP-Energy on a one-station
network Eenergy

n the matching M contains at least n − 1 arcs.
Proof. Let S = (π, M) be an optimal solution to PESP-Energy with |M | < n − 1, so at least
two connected components of (E, Await ∪̇ M) are directed paths P1, P2. For k ∈ {1, 2} let
ik ∈ Earr be the start and jk ∈ Edep be the end node of Pk.

Let c := πj1 + tmin
j1i2

− πi2 , and let us define the following timetable

π′
v :=

{
πv if v ∈ E \ V (P2),
(πv + c) mod T if v ∈ V (P2).

Now, let S′ = (π′, M ′) with M ′ = M ∪ {j1i2}. For the tensions on M ′, we obtain:

x′
ji =

{
(π′

i − π′
j) mod T = (πi − πj) mod T = xji for ji ∈ M,

(π′
i2

− π′
j1

) mod T = tmin
j1i2

for j = j1, i = i2.

Hence, we obtain the brake-traction overlaps

o′
ji =

{
oji if ji ∈ M,

tmin
j1i2

if ji = j1i2.

Consequently, S′ yields a better objective value than S, so S cannot be optimal. ◀

▶ Corollary 11. There is a unique perfect matching Mp which is obtained by extending the
matching M of an optimal solution to PESP-Energy on a one-station network.

This yields another way of looking at an optimal solution to PESP-Energy on a one-
station network. A perfect matching Mp ⊂ Aenergy corresponds one-to-one to a permutation
φ : [n] → [n] of the trains (lines) in a one-station network. This is given by φ(ℓ) = k if and
only if ((ℓ, dep), (k, arr)) ∈ Mp. The directed cycles in Mp ∪ Await then correspond to the
cycles of the permutation.

Recall that we can find an upper bound for the objective value of a PESP-Energy instance
by calculating the maximum-weight perfect matching on the energy arcs a ∈ Aenergy w.r.t. the
weights w : Aenergy → R with w(a) = tmin

a (cf. Proposition 4). This matching can be found
easily by a greedy algorithm for the weights in our problem. Sorting both tbr

i , i ∈ Earr, and tac
j ,

j ∈ Edep, according to their sizes, we obtain the permutations ρ and σ with tbr
ρ(1) ≤ · · · ≤ tbr

ρ(n)
and tac

σ(1) ≤ · · · ≤ tac
σ(n). Then Mgreedy :=

{
((σ(i), dep), (ρ(i), arr)) ∈ Edep × Earr

∣∣ i ∈ [n]
}

is
a perfect matching with maximum weight in the graph (E, Aenergy).
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(a) Greedy matching,
weight: 38, total overlap: 32.
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(b) Optimal solution,
total overlap: 35.
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(c) Hamiltonian path,
total overlap: 34.

Figure 3 Example of non-optimal greedy and Hamiltonian path matchings for T = 15. The
timetable π is written in the nodes. To the left of the arrival nodes (white) the braking times are
given, and to the right of the departure nodes (blue) there are the acceleration times. The numbers
on the waiting (black) and energy (red) arcs correspond to the periodic tensions. For the full red
arcs, they also correspond to the achieved overlap.

4.3 A Hamiltonian Path Algorithm/Heuristic
A lower bound on the optimal objective value of PESP-Energy can be obtained by a
maximum-weight Hamiltonian path on Eenergy

n with respect to the weights w : A → R defined
by w(ji) := tmin

ji for ji ∈ Aenergy and w(ij) := Γ for ij ∈ Await, where Γ is a big number.
The choice of weights ensures that the path consists of n waiting arcs and n − 1 energy
arcs. Adding the arc from the end node of the path to its start node creates a cycle. Due
to Proposition 9, we know that in that cycle, we can obtain full overlap on the best n − 1
energy arcs, so we obtain at least overlap equal to the weight of the path’s energy activities.
Hence, this yields a lower bound on the optimal overlap achievable. In Figure 3 we can
see that neither weight of the greedy matching is always obtained as overlap nor does a
maximum-weight Hamiltonian path necessarily yield an optimal solution. In Figure 3a the
greedy matching together with the waiting activity M ∪ Await decomposes into three cycles.
Due to the cycle periodicity, however, we cannot obtain full overlap in the second cycle.
There is no overlap on the dashed arc. While the greedy matching has weight 38, only
an overlap of 32 can be obtained from the matching. In Figure 3b an optimal solution is
depicted. We can see a decomposition of one cycle and one path, which cannot be closed due
to cycle periodicity. The achieved overlap is 35. In Figure 3c, we can see a maximum-weight
Hamiltonian path with full overlap on all energy arcs. In total an overlap of 34 is achieved.
Due to the cycle periodicity it is not possible to obtain overlap on the missing energy arc.
We show now that this lower bound can be computed in polynomial time.

▶ Theorem 12. A maximum-weight Hamiltonian path on a one-station network Eenergy
n with

weights w can be found in polynomial time.

In order to prove this theorem, we show that PESP-Energy on a one-station network
can be transformed to the problem of sequencing a machine with variable state, for which a
polynomial-time algorithm is known, see [4]. To simplify the notation, in this section we write
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10:12 Periodic Timetabling: Travel Time vs. Regenerative Energy

tac
ℓ := tac

(ℓ,dep) and tbr
ℓ := tbr

(ℓ,arr) for ℓ ∈ [n]. We consider the complete directed graph G =
([n], A) on the set of all lines and weights w : A → R defined by wG(kℓ) := min{tac

k , tbr
ℓ }. We

need the following three lemmas.

▶ Lemma 13. If PG is a maximum-weight Hamiltonian path in G w.r.t. wG, then P :=
{((k, dep), (ℓ, arr) | kℓ ∈ PG}∪{((ℓ, arr), (ℓ, dep)) | ℓ ∈ [n]} is a maximum-weight Hamiltonian
path in Eenergy

n w.r.t. w.

Proof. First, P is the arc set of a Hamiltonian path. It has weight w(P ) = w(PG) +
nΓ. Let P opt be a maximum-weight Hamiltonian path in Eenergy

n . By the large choice
of Γ, this must contain n waiting arcs and hence contains exactly n − 1 energy arcs
((k, dep), (ℓ, arr)). Then (P opt)G := {(k, ℓ) | ((k, dep), (ℓ, arr)) ∈ P opt} is a Hamiltonian
path in G of weight wG((P opt)G) = w(P opt) − nΓ. Therefore, w(P ) = w(PG) + nΓ ≥
w((P opt)G) + nΓ = w(P opt) and P is a maximum-weight Hamiltonian path in Eenergy

n . ◀

▶ Lemma 14. Any maximum-weight Hamiltonian cycle in G w.r.t. wG contains a maximum-
weight Hamiltonian path. Conversely, any maximum-weight Hamiltonian path can be closed
to a maximum-weight Hamiltonian cycle.

Proof. Let k := arg min{tac
(ℓ,dep), tbr

ℓ | ℓ ∈ [n]}. W.l.o.g. let us assume tbr
(k,arr) ≤ tac

k . We know
that all incoming arcs of k have weight wmin

G := tbr
(k,arr). Let Copt be a maximum-weight

Hamiltonian cycle. Since this must visit k, it must contain an arc a of weight wmin
G . Then

P := T opt \ {a} is a Hamiltonian path with weight w(P) = wG(Copt) − wmin
G .

Let now Popt be a maximum-weight Hamiltonian path, and let v be the first and u

be the last vertex in Popt. Then C := Popt ∪ {uv} is a Hamiltonian tour with weight
wG(C) = wG(Popt) + wG(uv) ≥ wG(Popt) + wmin

G .
Together, both P and C must be optimal since wG(P) = wG(Copt) − wmin

G ≥ wG(C) −
wmin

G ≥ wG(Popt) and wG(C) ≥ wG(Popt) + wmin
G ≥ wG(P) + wmin

G = w(Copt). ◀

▶ Lemma 15. Let C1, C2 ⊂ A be two Hamiltonian cycles in G. Consider a second weight
function w′ : A → R defined by w′(kℓ) := |tac

k −tbr
ℓ |. If w(C1) ≤ w(C2), then w′(C1) ≥ w′(C2).

Hence, a maximum-weight Hamiltonian cycle w.r.t. w is a minimum-weight Hamiltonian
cycle w.r.t. w′.

Proof. For the weight w′ of a Hamiltonian cycle C we get

w′(C) =
∑

kℓ∈C

|tac
k − tbr

ℓ | =
∑

kℓ∈C

(
max{tac

k , tbr
ℓ } − min{tac

k , tbr
ℓ }

)
=

∑
kℓ∈C

(
max{tac

k , tbr
ℓ } + min{tac

k , tbr
ℓ } − 2 · min{tac

k , tbr
ℓ }

)
=

∑
kℓ∈C

(
tac
k + tbr

ℓ − 2 · min{tac
k , tbr

ℓ }
)

=
∑

k∈[n]

(tac
k + tbr

k ) − 2 · wG(C),

where the first summand in the last expression is constant. Hence, if w(C1) ≤ w(C2), then
w′(C1) ≥ w′(C2). ◀

Now, we can prove Theorem 12.

Proof of Theorem 12. The problem of sequencing a one state-variable machine from [4] is
defined as follows. We consider N jobs J1, J2, . . . , JN which are to be done on one machine in
some order. For each job Ji we know the required starting state of the machine represented
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by the real number Ai and the machine’s state after the completion of job Ji represented by
the real number Bi. When job Jl follows job Jk, we need to change the machine’s state from
Bk to Al. The cost ckl of this change is defined as

ckl :=


Al∫

Bk

f(x)dx if Al ≥ Bk,

Bk∫
Al

g(x)dx if Al < Bk.

Here, f and g are integrable functions such that f(x) + g(x) ≥ 0 for all x ∈ R. The problem
is to find a sequence of jobs such that the sum of the costs for changing the state of the
machine between consecutive jobs is minimized. The polynomial-time algorithm developed
in [4] requires the prescription of an initial state BN+1 and a final state AN+1 of the machine
so that it becomes the problem of finding a tour JN+1Ji1 . . . JiN

JN+1 with the artificial
job JN+1 minimizing the total state transition cost.

Now, consider finding a maximum-weight Hamiltonian path in Eenergy
n , w.r.t. the weights w.

By Lemma 13, this is equivalent to finding a maximum-weight Hamiltonian path in G w.r.t.
wG. By means of Lemma 14, this can be reduced to finding a Hamiltonian cycle in G

which corresponds to finding a minimum-weight Hamiltonian cycle in G w.r.t. the weights w′

defined in Lemma 15. We reduce this problem to solving the sequencing problem of finding
a closed tour on a set of jobs on the following instance Iseq.

For every directed line ℓ ∈ [n] we define a job ℓ with Aℓ := tbr
ℓ and Bℓ := tac

ℓ . The
functions for the state transition costs are defined as f(x) = g(x) := 1 for all x ∈ R. This
yields the costs ckl = Al − Bk if Al ≥ Bk and ckl = Bk − Al if Al < Bk. In other words,
ckl = |Al − Bk| = w′(kℓ). Therefore, the cost of any cyclic tour of the jobs equals the weight
of the corresponding Hamiltonian tour in G w.r.t. w′. ◀

The maximum-weight Hamiltonian path yields a feasible solution to PESP-Energy on a
one-station network. We can guarantee that the objective value of this solution is not further
away from the optimal objective value than the smallest of the largest acceleration and the
largest braking time. This follows from the following theorem, which bounds the difference
between the lower bound and the upper bound from the greedy matching of Section 4.2.

▶ Theorem 16. Let H be a Hamiltonian path in Eenergy
n of maximum weight. Then it holds

w(Mgreedy) − w(H ∩ Aenergy) ≤ min
{

max{tbr
ℓ | ℓ ∈ [n]}, max{tac

ℓ | ℓ ∈ [n]}
}

.

Proof. We iteratively convert the greedy matching M0
greedy into a matching inducing a

Hamiltonian cycle and bound the total reduction of weight in this process. Finally, we delete
one edge to obtain a Hamiltonian path.

Let us assume that tac
1 ≤ · · · ≤ tac

n holds, and let φ0 denote the permutation obtained
by M0

greedy such that tbr
φ0(1) ≤ · · · ≤ tbr

φ0(n). Then M0
greedy = {((ℓ, dep), (φ0(ℓ), arr)) | ℓ ∈ [n]}.

The permutation φi corresponds to the perfect matching M i obtained in iteration i.
In each iteration, we obtain the matching M i as follows from the matching M i−1. Let

C ⊆ M i−1 ∪ Await be the cycle containing (1, dep). If C is a Hamiltonian cycle, we are done.
Otherwise, there is a smallest ℓ such that (ℓ, dep) ∈ C but (ℓ + 1, dep) ̸∈ C. We define the
new permutation φi as follows:

φi(x) :=


φi−1(ℓ + 1) if x = ℓ,

φi−1(ℓ) if x = ℓ + 1,

φi−1(x) else.
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For the new matching M i we have, M i = M i−1 ∪ {((ℓ, dep), (φi−1(ℓ + 1), arr)), ((ℓ +
1, dep), (φi−1(ℓ), arr))}\{((ℓ, dep), (φi−1(ℓ), arr)), ((ℓ+1, dep), (φi−1(ℓ+1), arr))}. The cycle’s
length increases by this operation and for the weight of the new matching M i, we get

w(M i) = w(M i−1) + min{tac
ℓ , tbr

φi−1(ℓ+1)} + min{tac
ℓ+1, tbr

φi−1(ℓ)}

− min{tac
ℓ , tbr

φi−1(ℓ)} − min{tac
ℓ+1, tbr

φi−1(ℓ+1)}

= w(M i−1) − |[tac
ℓ , tac

ℓ+1] ∩ [tbr
φi−1(ℓ), tbr

φi−1(ℓ+1)]|.

Further, we know that [tbr
φi−1(ℓ), tbr

φi−1(ℓ+1)] ⊂ [tbr
φ0(1), tbr

φ0(n)]. Hence, the length of the inter-
section can be bounded by

|[tac
ℓ , tac

ℓ+1] ∩ [tbr
φi−1(ℓ), tbr

φi−1(ℓ+1)]| ≤ |[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]|

and, therefore w(M i) ≥ w(M i−1) − |[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]|.
Let k be the number of iterations until we obtain a matching Mk such that Mk ∪ Await

corresponds to a Hamiltonian cycle. In the following ℓi denotes the smallest ℓ ∈ [n − 1] such
that (ℓ, dep) ∈ C and (ℓ + 1, dep) ̸∈ C in iteration i. Further, it holds k ≤ n − 1 as there are
n different trains. Hence, we can overestimate the sum as follows:

k∑
i=1

|[tac
ℓi

, tac
ℓi+1] ∩ [tbr

φ0(1), tbr
φ0(ℓi+1)]| ≤

n−1∑
ℓ=1

|[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]|

Instead of just summing up the length of the intervals for the corresponding train ℓ in each
iteration, we sum over the lengths of all possible choices for ℓ. We get the following bound:

w(Mk) ≥ w(M0
greedy) −

k∑
i=1

|[tac
ℓi

, tac
ℓi+1] ∩ [tbr

φ0(1), tbr
φ0(ℓi+1)|

≥ w(M0
greedy) −

n−1∑
ℓ=1

|[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]|.

As the intervals [tac
ℓ , tac

ℓ+1] intersect only in one point (of length 0), we can bound the sum
of the intersections as follows:

n−1∑
ℓ=1

|[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]| ≤
∣∣∣∣n−1⋃

ℓ=1
[tac

ℓ , tac
ℓ+1]

∣∣∣∣ = tac
n − tac

1 ,

n−1∑
ℓ=1

|[tac
ℓ , tac

ℓ+1] ∩ [tbr
φ0(1), tbr

φ0(n)]| ≤ |[tbr
φ0(1), tbr

φ0(n)]| = tbr
φ0(n) − tbr

φ0(1).

Thus, w(Mk) ≥ w(M0
greedy)−min{tac

n −tac
1 , tbr

φ0(n) −tbr
φ0(1)}. In order to receive a Hamiltonian

path H ⊆ Mk ∪ Await, we delete one edge from the matching Mk. As we want to maximize
the path’s weight, we choose the edge with the lowest weight. Due to the weight structure,
this weight is min{tac

1 , tbr
φ0(1)}. For the difference of the weights of the greedy matching

Mgreedy and the weight of the energy arcs in H, we get:

w(Mgreedy) − w(H ∩ Aenergy) ≤ min{tac
n − tac

1 , tbr
φ0(n) − tbr

φ0(1)} + min{tac
1 , tbr

φ0(1)}

≤ min{tac
n , tbr

φ0(n)}.

The weight of the path H is a lower bound for the weight of an optimal Hamiltonian path. ◀
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4.4 Two Special Cases Solvable in Polynomial Time
There are some special cases in which we can solve PESP-Energy on a one-station network
in polynomial time. In the first case, all braking times and all acceleration times are equal.

▶ Proposition 17. Let I be an instance of PESP-Energy on a one-station network with n

lines such that all acceleration times are equal and all braking times are equal, i.e., tac = tac
j

and tbr = tbr
i for all i, j ∈ [n]. Then, there is an optimal solution to I consisting of one cycle

of all lines in arbitrary order. This can be found in polynomial time.

Proof. Assume that there is no optimal solution consisting of a single cycle, and consider an
optimal solution (M, π) with the minimum number of cycles. Let C1, C2 be two different
cycles in M ∪ Await, and let ak = (jk, ik) ∈ Aenergy ∩ Ck for k = 1, 2. Consider the alternative
solution with M ′ := (M \ {a1, a2}) ∪ {j1i2, j2i1}. Then M ′ induces a big cycle on the node
set V (C1) ∪ V (C2). Let c := πj1 + xa1 − πi2 , and set

π′
v :=

{
πv if v ∈ E \ V (C2),
(πv + c) mod T if v ∈ V (C2).

Then the arc j1i2 has new tension x′
j1i2

= (π′
i2

− π′
j1

) mod T = (πi2 + c − πj1) mod T = xa1 ,
i.e., it also has the same overlap because all energy arcs a have the same function overlapa

mapping tensions to overlaps. Moreover, the arc j2i1 has tension x′
j2i1

= (π′
i1

− π′
j2

) mod T =
(πi1 − πj2 − c) mod T = (πi1 − πj1 + πi2 − πj2 − xa1) mod T = xa2 , i.e., the overlap is also
equal. Therefore, together the overlap on the two new arcs is the same as on the two old arcs.
So we have found an optimal solution with less cycles, which constitutes a contradiction. ◀

In the second case, we consider a period time that is so large that no energy cycle can
exist. This corresponds to an aperiodic timetabling problem.

▶ Proposition 18. Let I be an instance of PESP-Energy on a one-station network with
n lines. Let umax := max{ua | a ∈ Await} + max{tmin

a′ + tmax
a′ | a′ ∈ Aenergy} such that

T > n · umax. Then, any matching MH inducing a Hamiltonian path of maximum weight
w.r.t. w is part of an optimal solution S = (π, MH).

Proof. We show that for every optimal solution Sopt = (πopt, Mopt) the set Mopt ∪ Await
contains a Hamiltonian path. By Corollary 11, Mopt can be extended to an optimal perfect
matching Mp. Let C be an arbitrary directed cycle in Mp ∪ Await. By Proposition 9 we can
assume that πopt induces full overlap on all but at most one arc of C. Let a0 denote this
energy arc such that tmin

a0
= min{tmin

a | a ∈ C}. It holds:

tmax
a0

+ tmin
a0

+
∑

a∈C∩Await

ua +
∑

a′∈C∩Aenergy\{a0}

tmax
a′

<
∑

a∈C∩Await

ua +
∑

a′∈C∩Aenergy

tmax
a′ + tmin

a′ < n · umax < T.

Therefore, we have
∑

a∈C∩Await
ua +

∑
a′∈C∩Aenergy\{a0} tmax

a′ < T − (tmax
a0

+ tmin
a0

). Since there
is full overlap on all a′ ∈ C ∩ Aenergy \ {a0}, we know that the periodic tensions induced
by πopt satisfy xopt

a′ ≤ tmax
a′ for all these arcs. Hence, for the tension xopt

a0
on a0 we have

xopt
a0

> tmax
a0

+ tmin
a0

as by the cycle periodicity constraints all periodic tensions in C need to
sum up to a multiple of T . Therefore, there is no overlap on a0. By the same argument, every
other cycle in Mp ∪ Await has an arc without overlap. We can remove all these arcs from
Mp without reducing the objective value. However, by Theorem 10, any optimal matching
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Figure 4 Number of passengers on transfer and waiting activities in instance I1 from Section 5.

Figure 5 Pareto frontier of instance I1.

has at least n − 1 arcs. Therefore, C must be the only cycle in Mp ∪ Await, i.e., it is a
Hamiltonian cycle. Moreover, the objective value of Sopt is equal to the total weight of
(C \ {a0}) ∩ Aenergy. An arbitrary maximum-weight Hamiltonian path contains all waiting
arcs and then maximizes the weight of the chosen energy arcs. Therefore, it yields the
optimal objective value. ◀

5 Examples of Bicriteria Timetables – Numerical Results

In this section, we present some computational results of bicriteria timetabling problems at
a single transfer station. We use the MIP formulation from Section 2.3 and solve it with the
CPLEX solver on a 13th Gen Intel(R) Core(TM) i5-1335U with 1.30 GHz, 16,0 GB RAM,
and a 64-bit processor. We use an ε-constraint method bounding the total brake-traction
overlap from below in order to obtain a set of Pareto-optimal solutions. The objective then
seeks for the minimal weighted sum of travel times. In the one-station network this equals
the weighted sum of the periodic tensions on the waiting and the transfer activities.

The instance I1 under consideration is based on a one-station network with 2 lines into
both directions and a period time of T = 40. The acceleration and braking times are all set
to tac = 5 and tbr = 7. On the waiting activities, we have the bounds l = 4, u = 8, and
the transfers have a lower bound of l = 5 and are non-restricted with u = 44. There are no
transfers into opposite directions of one line. We assume a symmetric passenger distribution
on the arcs, see Figure 4. Figure 5 shows the optimal weighted sum of the periodic tensions
(total travel time of the passengers) at this station depending on the required overlap time
for the braking and acceleration phases. We observe that the travel times increase with
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Figure 6 Exemplary solution structures of I1. The numbers in the nodes represent the scheduled
times of the events. Black arcs represent waiting activities and red arcs represent energy arcs with
the numbers indicating the overlap times.
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Figure 7 Objective values for instance I1 with different period times.

increasing required overlap time. Further, there is one huge gap, where the increase from a
required overlap time from 10 to 11 results in a huge increase of the total travel time from 579
to 894. In Figure 6 we can see the corresponding timetables for the scenario of no enforced
overlap and for a required overlap time of at least 10 and 11. Without an enforced overlap,
the timetable has almost a Basel solution structure separately for both the horizontal and
the vertical line. If the required overlap is 10, still two trains arrive and depart at almost the
same times. This structure disappears for an overlap of at least 11.

Figure 7 shows the Pareto frontiers of instances with the same parameters as I1 but with
varying period time T . We can observe that in general the total travel time of the passengers
increases with an increasing period time, which is reasonable as there are transfers with the
same number of passengers into both directions of each pair of lines. Further, we can observe
that it depends on the period time whether it is possible to attain a maximum overlap of 40
time units. While this is possible for the cases of T ∈ {20, 30, 60}, for T = 50 we obtain at
most 34 time units overlap and for T = 40 we obtain a maximum overlap of 32 time units.
Due to the cycle periodicity constraints which depend on the period length it is not always
possible to obtain full overlap on all chosen energy arcs.
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6 Outlook

We have introduced the new periodic timetabling problem PESP-Energy and its bicriteria
version. Apart from giving a MIP formulation we characterize the structure of optimal
solutions for both single objective problems on a one-station network. On this small network,
a polynomial-time algorithm with an additive performance guarantee is obtained for the
problem with energy objective. Further, some bicriteria instances on a one-station network
were solved numerically and analysed. We plan to continue our work investigating the
complexity of the single objective PESP-Energy on a one-station network and developing
algorithms for the bicriteria problem on larger networks.
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A Comparison with the Model of Wang et al.

In the timetable adjustment problem considered by Wang et al. [14], there is an explicitly
given set Asab ⊆ Edep × Earr of activities (j, i) specifying that the acceleration after the
departure j (taking time tj) and the braking before i (taking time ti) should be synchronized.
Their model reads

max O =
∑

ji∈Asab

Lji (17)

s.t. L∗
ji = min{πi − πj + βjiT, tj + ti − πi + πj − βjiT, tj , ti} ∀ji ∈ Asab (18)

M · (αji + βji − 1) ≤ Lji − L∗
ji ≤ −M · (αji + βji − 1) ∀ji ∈ Asab (19)

− M · (αji + βji) ≤ Lji ≤ M · (αji + βji) ∀ji ∈ Asab (20)

αji ≥ min
{πi − πj

M
,

πj − πi + tj + ti

M

}
∀ji ∈ Asab (21)

αji ≤ 1 + min
{πi − πj

M
,

πj − πi + tj + ti

M

}
∀ji ∈ Asab (22)

βji ≥ min
{πi + T − πj

M
,

πj − πi − T + tj + ti

M

}
∀ji ∈ Asab (23)

βji ≤ 1 + min
{πi + T − πj

M
,

πj − πi − T + tj + ti

M

}
∀ji ∈ Asab (24)

αji, βji ∈ {0, 1} ∀ji ∈ Asab (25)
Lji, L∗

ji ∈ Z ∀ji ∈ Asab (26)

The brake-traction overlap between the events j and i is represented by the variable Lji. The
auxiliary variable L∗

ji indicates the value of the minimum in the expression for the overlap in
Lemma 2, which equals the overlapping time if the overlap is non-empty. This is enforced by
Constraint (18). The binary variables αji and βji model whether there is some overlap or
not: the constraints (21)–(25) ensure that

αji =


1 if πi − πj > 0 and πj + tj > πi − ti,

0 if πi − πj < 0 or πj + tj < πi − ti,

0 or 1 else
(27)
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and

βji =


1 if πj + tj > πi + T − ti,

0 if πj + tj < πi + T − ti,

0 or 1 else
(28)

for all ji ∈ Asab. Finally, constraints (19) and (20) ensure that the actual overlap Lji is
set to L∗

ji in the case that αji + βji = 1 and to 0 if αji + βji = 0. Further, the case that
αji + βji = 2 is prevented by constraint (19). So it holds

αji + βji ≤ 1 ∀ji ∈ Asab (29)

Note that the constraint involving a minimum are not linear. To linearize them, we
would need to introduce two constraints for each constraint. Further, whenever the minimum
bounds from below, we would have to introduce a new binary variable.

Proof of Theorem 3. We begin by showing that the variable Lji in this model measures the
same overlap as oji from PESP-Energy. Hence, we show the following:
1. If there exists an overlap then Lji = L∗

ji = oji.
2. If there is no overlap, then Lji = 0 = oji.

The equalities oji = L∗
ji if there is an overlap and oji = 0 else follow from Lemma 2. So

we need to investigate the value of Lji for the cases in which there is an overlap (Case 1.1
and 1.2) and in which there is no overlap (Cases 2.1, 2.2 and 2.3).

Case 1.1 [πj < πi and πj + tj > πi − ti] In this case, αji = 1 by (27) and βji = 0 by (28).
(23) allows βji to take the value 0. Hence, αji + βji = 1 and we have Lji = L∗

ji by (19).
Case 1.2 [πj > πi and πj + tj > πi +T − ti] In this case, βji = 1 by (28) and αji = 0 by (27).

Also by (21) allows αji to take the value 0. Hence, αji + βji = 1 and we have Lji = L∗
ji

by (19).
Case 2.1 [πj < πi and πj + tj ≤ πi − ti] In this case, αji = 0 by (27). Further, βji = 0 by

(28) as πj + tj ≤ πi − ti implies that πj + tj < πi + T − ti. Hence, αji + βji = 0 and we
have Lji = 0 by (19).

Case 2.2 [πj > πi and πj + tj ≤ πi + T − ti] We have that αji = 0 by (27). Further, if
πj + tj < πi + T − ti then βji = 0 by (28). Hence, αji + βji = 0 and we have Lji = 0 by
(19). On the other hand, if πj + tj = πi +T − ti then βji = 0 or βji = 1 by (29). If βji = 0
then it holds, as just discussed, that Lji = 0. If βji = 1, then it holds that Lji = L∗

ji =
min{πi −πj +βjiT, tj +ti −πi +πj −βjiT, tj , ti} = min{πi −πj +βjiT, 0, tj , ti} = 0
as tj , ti > 0 and πi + T − πj > 0.

Case 2.3 [πj = πi] By (27) we get that αji could be 0 or 1 in this case, also the value for
βji is unclear. Therefore, we rest with the two options αji + βji = 0 and αji + βji = 1. If
αji + βji = 0, we know that Lji = 0 by constraint (20). If αji + βji = 1, then Lji = L∗

ji =
min{πi − πj + βjiT, tj + ti − πi + πj − βjiT, tj , ti} = min{0, tj + ti − 0, tj , ti} = 0
as tj , ti > 0 and therefore tj + ti > 0. αji = 1 by constraint (21) αji ≤ 1 by constraint
(22) βji = 0 by constraint (19). ◀
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