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Abstract
Blockchain ledgers based on the extended UTxO model support fully expressive smart contracts to
specify permissions for performing certain actions, such as spending transaction outputs or minting
assets. There have been some attempts to standardize the implementation of stateful programs
using this infrastructure, with varying degrees of success.

To remedy this, we introduce the framework of structured contracts to formalize what it means
for a stateful program to be correctly implemented on the ledger. Using small-step semantics, our
approach relates low-level ledger transitions to high-level transitions of the smart contract being
specified, thus allowing users to prove that their abstract specification is adequately realized on
the blockchain. We argue that the framework is versatile enough to cover a range of examples,
in particular proving the equivalence of multiple concrete implementations of the same abstract
specification.

Building upon prior meta-theoretical results, our results have been mechanized in the Agda
proof assistant, paving the way to rigorous verification of smart contracts.
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1 Introduction

Many modern cryptocurrency blockchains are smart contract-enabled, meaning that they
provide support for executing user-defined code as part of block or transaction processing.
This code is used to specify agreements between untrusted parties that can be automatically
enforced without a trusted intermediary. Examples of such contracts may include distributed
exchanges (DEXs), escrow contracts, auctions, etc.

There is a lot of variation in the details of how smart contract support is implemented
across different platforms. On account-based platforms such as Ethereum [6] and Tezos [17],
smart contracts are inherently stateful and their states can be updated by transactions.
Smart contracts in the extended UTxO (EUTxO) model, such as Cardano [20] and Ergo
[13], on the other hand, take the form of boolean predicates on the transaction data and are
inherently stateless. In this model, transactions specify all the changes being done to the
ledger state, while contract predicates are used only to specify permissions for performing the
UTxO set updates specified by the transaction, such as spending UTxOs or minting tokens.
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10:2 Structured Contracts in the EUTxO Ledger Model

Functional EUTxO programming is a less conventional paradigm than the stateful
contracts of the account-based model [30, 14]. However, it has a notable advantage: the
changes made by a transaction applied to the ledger are predictable, including the outputs of
the contracts that it runs on-chain [20, 2]. This is because the data inspected by the executed
contracts, the exact cost of on-chain contract execution, and UTxO set changes, are all fixed
at the time of transaction construction. The unpredictability of transaction application and
contract execution outcomes results in vulnerabilities in account-based models, such as the
reentrancy or replay attacks [18, 17], which do not exist in the EUTxO model.

Like many prominent platforms [17, 6, 24, 31, 29], the Cardano implementation of the
EUTxO ledger [20] is specified as a transition system. The reason for this design choice is
that the evolution of the ledger takes place in atomic steps corresponding to the application
of a single transaction. What sets the Cardano specification apart, however, is the formal
rigor of its operational small-step semantics specification [12].

Many common contract applications require a model of stateful computation. There
are multiple existing approaches to implementing and verifying specific designs of stateful
programs running on the ledger [7, 15, 10], however, there are currently no principled standard
practices for doing so. We propose the structured contract framework (SCF) as an extension
of this approach to contract specification. It enables users to instantiate a small-step program
specification that runs on the ledger via the use of smart contract scripts.

Generalizing the constraint-emitting-machine design pattern introduced in the seminal
EUTxO paper [9] to establish a correspondence between high-level abstract state machines
and low-level transactions, SCF formalizes the notion of stateful program running on the
EUTxO ledger, and what it means for it to be implemented correctly. We do so by requiring
instantiation of a stateful program to include a proof of a simulation relation between its
specification and the ledger specification. Our generalization allows formalizing invariants
(a.k.a. safety properties) of contracts for which it was not previously done in a uniform way.
For example, we can express invariants of stateful contracts with state distributed across
multiple UTxOs, as well as on the totality of tokens under a specific policy.

The class of contracts which can be instantiated in SCF is made up of all stateful contracts
with implementations for which valid ledger evolution guarantees that the evolution of the
on-chain contract state adheres to its specification. We argue that SCF constitutes a novel
principled approach to stateful smart contract architecture that is amenable to formal analysis
and suitable for a wide range of smart contract applications. The main contributions of this
paper are:

(i) a formulation of the structured contract framework (SCF) on top of a simplified
small-step semantics for EUTxO ledgers;

(ii) a case study expressing the minting policy of a single NFT as a structured contract;
(iii) a case study demonstrating the use of SCF to define two distinct ledger implementations

of a single specification, including one that is distributed across multiple UTxO entries
and interacting scripts.

We have mechanized our results in the Agda proof assistant [25], which are publicly
available in HTML format:

https://omelkonian.github.io/structured-contracts/

In the future, we hope to integrate this framework into the existing Agda specification of
Cardano’s small-step ledger semantics.1

1 https://github.com/IntersectMBO/formal-ledger-specifications

https://omelkonian.github.io/structured-contracts/
https://github.com/IntersectMBO/formal-ledger-specifications
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2 EUTxO ledger model

The EUTxO ledger model is a UTxO-based ledger model that supports the use of user-defined
Turing-complete scripts to specify conditions for spending (consuming) UTxO entries as well
as token minting and burning policies. The EUTxO model has been previously expressed
in terms of a ledger state containing a list of transactions that have been validated, and
a set of rules for validating incoming transactions [7]. We demonstrate here that it can
be expressed as a labeled transition system with the UTxO set as its state, specified in
small-step semantics, similar to the specification of the deployed Cardano ledger [20]. The
transaction validation rules of the existing model are interpreted as constraints of the UTxO
state transition rule in our model. Note that while in a realistic system transactions are
applied to the ledger in blocks, here we abstract away block structure for simplicity.

Specifying transition relations. For some Env, State and Input, the transition relation
TRANS ⊆ Env × State × Input × State contains 4-tuples (e, s, i, s′) ∈ TRANS where e ∈ Env
is the environment, s ∈ State is the start state, i ∈ Input is the input, and s′ ∈ State is the
end state.

A specification TRANS consists of one or more transition rules. The only 4-tuples that
are members of TRANS are those that satisfy the preconditions of one of its transition rules.
By convention, all variables that appear unbound in a given rule are universally quantified,
unless they are bound by an explicit existential (∃ ) or let-binding (:=). In the context of
specifying transition rules, membership in TRANS is also denoted by the following notation:

e ⊢ s i−−−−→
trans

s′

Input, environment, and labeled transition systems. The input and the environment
together are used to calculate the possible end state(s) for a given start state, making up the
label of the transition between the start and end states. If the transition relation is functional,
there is exactly one end state for a given start state and label. We adopt the conventional
distinction between environment and input due to its usefulness in the blockchain context [12].
In particular, input comes from users, e.g. transactions they submit. The environment, on
the other hand, is outside the user’s control, such as the blockchain time.

2.1 Ledger types
The ledger types and rules that we base this work on are, for the most part, similar to those
presented in existing EUTxO ledger research [7]. We make some simplifications in order to
remove details not relevant to this work. We give an overview of these for completeness,
and clarify any omitted types in Appendix A. Notation we use that is outside conventional
set-theoretic notation is listed in Figure 3, and explained in the text. Here, B,N,Z denote
the type of Booleans, natural numbers, and integers, respectively. Some types described
below are mutually recursive, so there is no natural order in which to describe them.

Value. We define Value := PolicyID 7→ (TokenName 7→ Quantity) as a nested map structure,
closely following the original formulation as finitely supported functions [7]. A term of this
type is a bundle of multiple kinds of assets. The type of an identifier of a class of fungible
assets is given by AssetID := PolicyID×TokenName. Quantity := Z is an integral value, which
can be negative in the case of indicating quantities of tokens to be burned. For a given

FMBC 2024



10:4 Structured Contracts in the EUTxO Ledger Model

v ∈ Value, the nested map associates a quantity to each asset ID. The quantities of all assets
with IDs not included in v are implicitly 0. Value forms a partial order, as well as a group
with addition (+) and the empty map (∅) as the zero [8]. The components of AssetID are:

(i) a script of type PolicyID := Script, which is executed any time a transaction is minting
assets with this minting policy. If it validates, the transaction is allowed to mint the
assets under this policy (specified in the mint field of the transaction), meaning that
these assets are added to the the total amount of assets a transaction is transferring
(see (v) and (ix) in Section 2.2) ;

(ii) a TokenName := [Char], which is a character list specified by the user at the time of
minting transaction construction, and is used to differentiate assets under the same
minting policy. A minting policy may condition on token names.

UTxO set. The type of the UTxO set is a finite key-value map UTxO := OutputRef 7→
Output. The type of the key of this map is OutputRef := Tx × Ix, with Ix := N. A
(tx, ix) ∈ OutputRef is called an output reference. It consists of a transaction tx that created
the output to which it points, and index ix, which is the location of particular output in
the list of outputs of that transaction. The pair uniquely identifies a transaction output. In
practice, an injective function, which encodes a transaction as a natural number, is applied
to a tx for inclusion in an output reference, so that OutputRef is the type N × Ix. However,
we omit this for simplicity and readability.

An output (a, v, d) ∈ Output := Script × Value × Datum consists of (i) a script address a

(field validator), which is run when the output is spent, (ii) an asset bundle v (field value),
and (iii) a datum d (field datum), which is some additional data.

Data. Data is a type used for representing data encoded in a specific way. It is similar
in structure to a CBOR encoding, c.f. the relevant Agda definitions2 accompanying the
seminal EUTxO papers [9, 7]. Data of this type is passed as arguments to scripts. The types
Datum := Data and Redeemer := Data are both synonyms for the Data type. Conversion
functions are required in order for a script to interpret Data-type inputs as the datatypes it
is expecting. When the context is clear, the decoding function is called fromData, and the
encoding one is toData.

Slot number. A slot number slot ∈ Slot := N is a natural number used to represent the
time at which a transaction is processed.

Transactions. The data structure Tx specifies a set of updates to the UTxO set. A
transaction tx ∈ Tx contains (i) a set tx.inputs ∈ OutputRef × Output × Redeemer of inputs
each referencing entries in the UTxO set that the transaction is removing (spending), with
their corresponding redeemers, (ii) a list of outputs tx.outputs, which get entered into the
UTxO set with the appropriately generated output references, (iii) a pair of slot numbers
tx.validityInterval representing the validity interval of the transaction, (iv) a tx.mint ∈ Value
being minted by the transaction, (v) a redeemer for each of the minting policies being
executed tx.mintRdmrs ∈ Script 7→ Redeemer, and (vi) the map tx.sigs of (public) keys that
signed the transaction, paired with their signatures.

2 https://omelkonian.github.io/formal-utxo/UTxO.Types.html#DATA

https://omelkonian.github.io/formal-utxo/UTxO.Types.html#DATA
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Scripts. A smart contract, or script, is a piece of stateless user-defined code with a boolean
output, and has the (opaque) type Script. Scripts are associated with performing a specific
action, such as spending an output, or minting assets. If a transaction attempts to perform
an action associated with a script, that script is executed during transaction validation,
and must return true (validate) given certain inputs. A script specifies the conditions a
transaction must satisfy in order to be allowed to perform the associated action. We do not
specify the language in which scripts are written, but we presume Turing-completeness. We
write script pseudocode using set-theoretic notation.

The input to a script consists of (i) a summary of transaction data, (ii) a pointer to the
specific action (within the transaction) for which the script is specifying the permission,
(iii) and a piece of user-defined data we call a Redeemer. A redeemer is defined at the time
of transaction construction (by the transaction author) for each action requiring a script
to be run. Evaluating a minting policy script s to validate minting tokens under policy p,
run by transaction tx with redeemer r, is denoted by JsK(r, (tx, p)). To evaluate a script
q, which validates spending input i ∈ tx.inputs with datum d and redeemer r, we write
JqK(d, r, (tx, i)).

2.2 Ledger transition semantics
Permissible updates to the UTxO set are given by the transition system LEDGER ⊆
Slot × UTxO × Tx × UTxO. The output of the function checkTx : Slot × UTxO × Tx → B
determines whether a transaction is valid in a given state and environment. The output of
checkTx(slot, utxo, tx) is given by the conjunction of the following checks, which are consistent
with the previously specified EUTxO validation rules [7] :

(i) The transaction has at least one input:

tx.inputs ̸= {}

(ii) The current slot is within transaction validity interval:

slot ∈ tx.validityInterval

(iii) All outputs have positive values:

∀o ∈ tx.outputs, o.value > ∅

(iv) All output references of transaction inputs exist in the UTxO:

∀(oRef , o) ∈ {(i.outputRef, i.output) | i ∈ tx.inputs}, (oRef 7→ o) ∈ utxo

(v) Value is preserved:

tx.mint +
∑

i∈ tx.inputs, (i.outputRef 7→ o)∈ utxo

o.value =
∑

o∈ tx.outputs
o.value

(vi) No output is double-spent:

∀ i, j ∈ tx.inputs, i.outputRef = j.outputRef ⇒ i = j

(vii) All inputs validate:

∀ (i, o, r) ∈ tx.inputs, Jo.validatorK(o.datum, r, (tx, (i, o, r))) = true

FMBC 2024



10:6 Structured Contracts in the EUTxO Ledger Model

(viii) Minting redeemers are present:

∀ (s 7→ ) ∈ tx.mint, ∃ r , (s, r) ∈ tx.mintRdmrs

(ix) All minting scripts validate:

∀ (p, r) ∈ tx.mintRdmrs, JpK(r , (tx, p)) = true

(x) All signatures are correct:

∀ (pk 7→ s) ∈ tx.sigs, checkSig(tx, pk, s) = true

Membership in the LEDGER set is defined using checkTx. The single rule defining LEDGER,
called ApplyTx, states that (slot, utxo, tx, utxo′) ∈ LEDGER whenever checkTx(slot, utxo, tx)
holds and utxo′ is given by { i 7→ o ∈ utxo | i /∈ getORefs(tx) } ∪ mkOuts(tx).

ApplyTx

utxo′ := { i 7→ o ∈ utxo | i /∈ getORefs(tx) } ∪ mkOuts(tx)

checkTx(slot, utxo, tx)

slot ⊢
(

utxo
) tx−−−−→

ledger

(
utxo′ )

The value utxo′ is calculated by removing the UTxO entries in utxo corresponding to the
output references of the transaction inputs, and adding the outputs of the transaction tx to
the UTxO set with correctly generated output references. The function getORefs computes
a UTxO set containing only the output references of transaction inputs, paired with the
outputs contained in those inputs. The function mkOuts computes a UTxO set containing
exactly the outputs of tx , each associated to the key (tx, ix), where the index ix is the place
of the associated output in the list of tx outputs. For details, see Figure 4.

The EUTxO ledger definition [9], on which we base our semantics, models the ledger as
a list of transactions, recorded in the order of processing. In essence, this is the reflexive-
transitive closure of the step relation above, where there is a special initial transaction with
no inputs a.k.a. the genesis transaction. We have deliberately left a full treatment of trace
properties for future work: our model currently says nothing about an initial state and only
specifies how to update an arbitrary UTxO set in accordance with the LEDGER rule. It is
worth mentioning that validation check (i) would contradict the genesis transaction, although
it is necessary for subsequent transaction in order to ensure replay protection: a transaction
valid at some given point in time cannot again be valid in the future.

3 Simulations and the structured contract formalism

Intuitively, a stateful program is correctly implemented on the ledger whenever its state is
observable in (i.e. computable from) the ledger state, and whenever the ledger state is updated,
the observed program state is updated in accordance with the program’s specification. In
this section, we formalize the notion of smart contract scripts correctly implementing a
specification.

The purpose of a smart contract script is to encode the conditions under which a
transaction can update a part of the ledger state with which the script is associated, e.g.
change the total quantity of tokens under a given policy. This interpretation of the use of
stateless code on the ledger justifies a stateful program model for representing most programs
running on the ledger. Stateful programs are implemented using one or more interacting
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scripts controlling the updates of the contract state data within the ledger state. In this
section, we specify what is required to construct a simulation relation between two transition
systems specified via small-step semantics, and define a subset of such simulations that
corresponds to the set of all (correctly) implemented stateful contracts on an EUTxO ledger.

3.1 Simulations
We instantiate the definition a simulation [23] with labeled state transition systems expressed
as small-step semantics specifications.

Simulation definition. Let TRANS and STRUC be small-step labeled transition systems.
A simulation of TRANS in STRUC, denoted by (STRUC, ∼, ≃) ⪰ TRANS, consists of of the
following types together with the following relations :

_ ⊢ _ _−−−−→
trans

_ ⊆ Env × State × Input × State

_ ⊢ _ _−−−−→
struc

_ ⊆ Env′ × State′ × Input′ × State′

_ ∼ _ ⊆ State × State′

_ ≃ _ ⊆ (Env × Input) × (Env′ × Input′)

such that the following holds :

Sim

(e, i) ≃ (e′, j) u ∼ s e ⊢
(

u
) i−−−−→

trans

(
u′ )

∃ s′, u′ ∼ s′ ∧ e′ ⊢ (s) j−−−−→
struc

(s′)
(1)

Instantiating a simulation of TRANS in STRUC requires specifying TRANS, STRUC,
π, πTx, and fulfilling the proof obligation Sim.

3.2 Structured contracts
The simulation definition we give is general, however, the rest of this work is geared towards
reasoning about the programmable via user-defined scripts. For this reason, we define a
particular class of simulations of LEDGER. Since scripts are not allowed to inspect block-level
data (e.g. the current slot number), we fix the environment of the structured contract
specification to be a singleton type {⋆}. We also require that ∼ is a partial function, rather
than a relation, which computes a specific contract state for a given UTxO state (or fails,
returning ⋆). Additionally, we require that ≃ is a function.

▶ Definition (Structured contract). Let (STRUC, ∼, ≃) ⪰ LEDGER be a simulation. We say
that it is a structured contract whenever Env = ⋆, and there exist two functions π : UTxO →
State ∪ {⋆}, πTx : Tx → Input such that :

utxo ∼ s := (π(utxo) = s)
(slot, tx) ≃ (⋆, i) := (πTx(tx) = i)

Discussion. This definition states that a ledger step (slot, utxo, tx, utxo′) with π(utxo) ̸= ⋆,
there is a step given by (⋆, π(utxo), πTx(tx), π(utxo′)) ∈ STRUC which corresponds to the
ledger step. It is possible that a transaction updates the UTxO set but not the contract
state, so that π(utxo) = π(utxo′).

FMBC 2024



10:8 Structured Contracts in the EUTxO Ledger Model

We do not assume that a valid contract state can be computed from an arbitrary UTxO
state. For this reason, the function π is partial. For example, it is possible that two copies
of the same NFT exist in a given ledger state. When programmed correctly, an NFT
minting policy would not allow this to happen. When reasoning about properties of such a
policy, we ignore ledger start states where the NFT uniqueness condition has already been
violated. Defining a class of structured contracts for which the relation in Equation 1 is a
bisimulation [23] between STRUC and LEDGER is a more difficult problem, and we leave it
for future work.

4 NFT minting policy as a structured contract

Our first structured contract example expresses a specific minting policy. Constructing
structured contracts specifying the evolution of the quantity of tokens under a specific policy
is a tool for formal analysis of minting policy code. In particular, for a correctly defined
minting policy, we are able to express and prove the defining property of an NFT under
this policy: at most one such token can exist on the ledger. Instantiating an NFT as a
structured contract allows us to state and prove a property that is quite naturally expressed
for account-based blockchains with stateful NFT contracts, such as the ERC-721 [16], but
poses a challenge for EUTxO ledger program analysis. For the Agda mechanization of this
example, see the accompanying code at:

https://omelkonian.github.io/structured-contracts/NFT.html.

We first pick an identifier for the policy we wish to express, myNFTPolicy. Before writing
the policy code, we define a system NFT to specify how we want the total number of tokens
on the ledger under this policy to behave. Here, the state type is State := Value, and
Input := Tx.

UpdateNFTTotal

i := { (myNFTPolicy 7→ tkns) ∈ tx.mint}

∅ ≤ s ≤ s + i ≤ { myNFTPolicy 7→ {∅ 7→ 1} }

⊢
(

s
) tx−−→

nft

(
s + i

)
This specification states that the only allowed transitions are (i) a constant one, and

(ii) adding a single NFT { myNFTPolicy 7→ {∅ 7→ 1} } ∈ Value, to the state – if one does
not yet exist. An NFT whose total ledger quantity obeys this specification can never be
burned, must be the only token under its policy, and must have the empty string ∅ as a
name. It also does not require any authentication to be minted. To define the policy and
projection functions, we pick an output reference myNFTRef which we call an anchor. That
is, myNFTRef must be spent by the NFT-minting transaction as a mechanism to ensure that
no other transaction can mint another NFT under this policy. Next, we define the projection
function,

π(utxo) :=
{

s if (s = { myNFTPolicy 7→ {∅ 7→ 1} } ∧ ¬ hasRef) ∨ s = ∅
⋆ otherwise

where

s := { p 7→ tkns | p 7→ tkns ∈
∑

7→out∈utxo
out.value, p = myNFTPolicy }

hasRef := (myNFTRef 7→ ∈ utxo)

https://omelkonian.github.io/structured-contracts/NFT.html


P. Vinogradova et al. 10:9

Here, π(utxo) returns a non-⋆ result when either no tokens under the myNFTPolicy policy
exist, or only the token { myNFTPolicy 7→ {∅ 7→ 1} } exists under this policy, and the
anchor myNFTRef is not in the UTxO. We define the policy,

myNFTPolicy := mkMyNFTPolicy(myNFTRef)

JmkMyNFTPolicy(myRef )K( , (tx, pid)) := ∃ (myRef , , ) ∈ tx.inputs
∧ { myNFTPolicy 7→ {∅ 7→ 1} } ∈ tx.mint

To prove Sim for the NFT contract (see Appendix B for a proof sketch, which is also
mechanized in Agda), we need to make an additional assumption,

NFT re-minting protection. ∀ (slot, utxo, tx, utxo′) ∈ LEDGER,

((π(utxo) = ∅ ∧ myNFTRef ∈ getORefs(tx)) ∨ π(utxo) > ∅) ⇒ tx ̸= myNFTRef.fst (2)

This assumption guarantees that if an NFT with policy myNFTPolicy exists on ledger
state utxo, the transaction myNFTRef.fst, whose output was spent as a condition for minting
the NFT, cannot be valid again in utxo. It also requires that a transaction spending
myNFTRef cannot be the same transaction that added myNFTRef to the UTxO set. Under
reasonable constraints on an initial ledger state, replay protection (c.f. Section 2) is a global
invariant of EUTxO ledger state traces (as proven in prior work on EUTxO under the name
“uniqueness” [7]), from which we can directly derive re-minting protections.

We note here that, as exemplified by Assumption 2, the SCF approach to implementation
allows us to express specific consequences of trace-based ledger transition system properties
as local invariants. This enables the separation of reasoning about the global behavior of the
ledger from reasoning about the correctness of contract implementation, for which we can
make use of relevant local invariants of ledger behavior.

NFT property example. At most one NFT under the policy myNFTPolicy can ever exist in
any utxo that is valid for NFT : for any utxo such that π(utxo) ̸= ⋆,

π(utxo) ⊆ { myNFTPolicy 7→ {∅ 7→ 1} }

This is immediate from the definition of π, however, this result is meaningful. By definition
of Sim, and the fact that NFT is a structured contract, it is not possible to transition from a
UTxO state valid for NFT (i.e. π(utxo) ̸= ⋆) to a state which is not valid for NFT. That is,
with (slot, utxo, tx, utxo′) ∈ LEDGER, the updated state π(utxo′) must also always have at
most one NFT under myNFTPolicy. This also implies that at most one can ever be minted
by a valid transaction applied to a utxo valid for NFT.

5 Multiple implementations of a single specification

In this section we present an example of a specification that has more than one correct
implementation, one of which is distributed across multiple UTxO entries. The guarantee
that the two implement the same specification enables contract authors to meaningfully
compare them across relevant characteristics, such as space usage, or parallelizability.

FMBC 2024



10:10 Structured Contracts in the EUTxO Ledger Model

5.1 Toggle specification

We define (and mechanize in the corresponding Agda code) a specification wherein the state
consists of two booleans, and only one can be true at a time. We set the contract input to
be {toggle} ∪ {⋆}. The two booleans in the state are both flipped by the input toggle, and
unchanged by ⋆. We define the transition system TOGGLE :

Noop (
x, y

) ⋆−−−−−→
toggle

(
x, y

) Toggle (
x, y

) toggle−−−−−→
toggle

(
y, x

)
5.2 Toggle implementations

The naive implementation uses the datum of a single UTxO entry to store a representation
of the full state of the TOGGLE contract. The distributed implementation uses datums in
two distinct UTxO entries to represent the first and the second value of the boolean pair
that is the TOGGLE state.

Thread token scripts. We use the thread tokens mechanism [7] to construct a unique
identifier of the UTxO (or pair of UTxOs) from which the contract state is computed. The
mechanism for ensuring uniqueness of a thread token is the same as for the NFT contract
example in Section 4. It relies on the replay protection property of the ledger, ensuring that
if a thread token exists on the ledger, it must be unique. In both the naive and distributed
implementations, the thread token minting policy guarantees that thread tokens are generated
in quantity of at most 1 by a transaction that spends a specific output reference myRef.

For the naive implementation, one thread token is sufficient to identify the state-bearing
UTxO. Upon minting, the policy requires the token to be placed into a UTxO locked by a
specific script, which is passed as a parameter to the minting policy. This script (discussed
below) ensures the correct evolution of the contract state. The datum in the UTxO containing
the thread token is the initial state of the contract encoded as a pair of booleans (by the
partial decoder function fromDataN : Data → B ∪ {⋆}). It can be any pair of correctly
encoded booleans. See Figure 5 for the policy pseudocode.

For the distributed implementation, two distinct NFTs are needed to identify the UTxOs
containing the TOGGLE state data. Both NFTs are under the same minting policy and must
be minted by a single transaction, but have distinct token names, ”a” and ”b”. Upon being
minted, the policy requires that they are placed in separate UTxOs, locked by the same script
(discussed below). The datum in each must be decodeable (by fromDataD : Data → B ∪ {⋆})
as a boolean. See Figure 6 for the policy pseudocode.

Validator scripts. We require different UTxO-locking scripts for our two distinct imple-
mentations. Both scripts serve the following function: when the UTxO locked by the script
is spent, the script must ensure that thread tokens are propagated into UTxOs that are
locked by the same validator as the spent UTxOs containing the thread tokens, and that the
datums in those UTxOs are correct. This implements the Toggle rule. The Noop rule applies
when the transaction does not spend the thread tokens.

For the naive version, the datum in the new UTxO containing the thread token must
decode as a pair of booleans whose order is reversed as compared to the booleans encoded in
the datum of the spent UTxO that previously contained the thread token. We define it by :
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JtoggleValN (myRef)K((b, b′), r, (tx, i)) := ttt = i.output.value ∧ r = toggle
∧ ∃ o ∈ tx.outputs, (b′, b) = (o.datum) ∧ (o.validator = vi) ∧ (ttt = o.value)
where

vi := i.output.validator
ttt := {toggleTTN (myRef, vi) 7→ {encode(vi) 7→ 1}}

The function encode : Script → [Char] encodes a script as a string for the purpose of
specifying (via the token name) the output-locking script that must persistently lock the
thread token.

The distributed implementation script ensures that both the thread token-containing
UTxOs are spent simultaneously. Then, it checks that the booleans in the datums are
switched places : the one that was in the UTxO with token ”a” must now be in a new UTxO
with token ”b”, and vice-versa. The validator script is given in Figure 1.

JtoggleValD(myRef)K(b, toggle, (tx, i)) :=
((tta = i.output.value) ⇒

∃ o, o′ ∈ tx.outputs, i′ ∈ tx.inputs,
o.validator = o′.validator = vi ∧
tta = o.value ∧ ttb = o′.value ∧ i′.output.value = ttb
o.datum = i′.output.datum ∧ o′.datum = i.output.datum )

∧
((ttb = i.output.value) ⇒

∃ o, o′ ∈ tx.outputs, i′ ∈ tx.inputs,
o.validator = o′.validator = vi ∧
tta = o.value ∧ ttb = o′.value ∧ i′.output.value = tta
o.datum = i.output.datum ∧ o′.datum = i′.output.datum)

∧
((tta = i.output.value) ∨ (ttb = i.output.value))

where
vi := i.output.validator
tta := {toggleTTD(myRef, vi) 7→ {(encode(vi) ++ ”a”) 7→ 1}}
ttb := {toggleTTD(myRef, vi) 7→ {(encode(vi) ++ ”b”) 7→ 1}}

Figure 1 TOGGLE validator script for the distributed implementation.

Ledger representation. The state projection function computations return a valid contract
state (i.e. a pair of booleans) whenever the anchor reference myRef is not in the UTxO,
and thread tokens have been minted according to their policy and placed alongside the
appropriate datums and scripts. The input projection function returns toggle whenever a
transaction contains the thread tokens in its input(s), and ⋆ otherwise. For details, see
Figures 7 and 2.
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πd(utxo) :=



(a, b) if myRef /∈ { i | i 7→ o ∈ utxo } ∧ ∃! (i 7→ o, i′ 7→ o′) ∈ utxo,

tta = o.value ∧ ttb = o′.value
∧ o.validator = toggleValD(myRef) = o′.validator
∧ o.datum = a ∧ o′.datum = b

⋆ otherwise

πTx,d(tx) :=

{
toggle if ∃ i, i′ ∈ tx.inputs, i.output.value = tta ∧ i′.output.value = ttb
⋆ otherwise

Figure 2 TOGGLE distributed projections.

In Appendix C, we give a proof sketch for the simulation relations between TOGGLE and
LEDGER to complete the instantiation of the two versions of the structured contract. The
proofs are very similar to to those for the NFT contract, so we have not mechanized them.
To avoid duplication of thread tokens, we again need to make the additional assumption
that a transaction cannot be valid again if it has previously been applied. That is, for any
(slot, utxo, tx, utxo′) ∈ LEDGER, with π(utxo) ̸= ⋆, necessarily tx ̸= myRef.fst.

TOGGLE property example. The following property states that in any step of TOGGLE,
either the state booleans are swapped, or stay the same. Its proof is immediate from the
specification, regardless of the implementation.

(⋆, (a, b), i, (c, d)) ∈ TOGGLE ⇒ (c, d) = (b, a) ∨ (c, d) = (a, b)

6 Related work

Scilla [14] is a intermediate-level language for expressing smart contracts as state machines
on an account-based ledger model. It is formalized in Coq, and the contracts written in
it are amenable to formal verification. In our work we pursue the same goal of correctly
implementing stateful contracts and formally studying their behavior on the EUTxO ledger.

CoSplit [26] is a static analysis tool for implementing sharding in an account-based
blockchain. Sharding is the act of separating contract state into smaller fragments that
can be affected by commuting operations, usually for the purposes of increasing parallelism
and scalability. Our work allows users to build contracts whose state is distributed across
multiple UTxOs and tokens on the ledger. One of the benefits of an EUTxO ledger is that
transaction application commutes [2]. Therefore, no additional work is required to ensure
commutativity when updating only a part of a contract with distributed state.

The Bitcoin Modelling Language (BitML) [5] enables the definition of smart contracts in
a particular restricted class of state machines on the Bitcoin ledger, where a computational
soundness result securely establishes a relation between high-level BitML contracts and
low-level Bitcoin transactions. The BitML state machines are less expressive than the class
of specifications considered in our model, although subsequent work introduces recursion [3].
Another derivative of BitML, the ILLUM language [4], allows users to build Turing-complete
contracts that achieve a secure simulation to UTxO. A key difference between ours approach
and ILLUM appears to be the direction of the security proofs: our work presents users with
a framework for choosing an implementation and proving the property that “transactions can
only ever update the contract state according to the stateful contract specification”, whereas
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the work on ILLUM enables, given a specified contract transition, automatically constructing
specific transactions that are guaranteed to perform the corresponding contract update. The
goal in all the above cases is again similar to ours – to guarantee certain properties of on-chain
state machine implementations. Alas, we lack the accompanying meta-theoretical guarantees,
but we are confident similar properties hold for our system and hope to make this formal in
future work.

VeriSolid [22] synthesizes Solidity smart contracts from a state machine specification,
with support for formal verification. The underlying ledger model for VeriSolid is an account-
based model. Like BitML, VeriSolid is less flexible in the types of state machines that can be
implemented, and how they can be implemented, but offers more automation than our work.
Yet another language for expressing the formal semantics of (a subset of) Solidity exists [21],
has been specified in Isabelle/HOL, and was developed with the goal of improving formal
verification methods of smart contracts. This work differs from ours in the underlying ledger
model, as well as the direction of the ledger-contract simulation relation.

The K framework [27] is a unifying formal semantics framework for all programming
languages, which has been used as a tool to perform audits of smart contracts [28], as well
as specifying Solidity operational semantics [19]. Auditing is a common approach to smart
contract verification [1, 11], which will also be useful for structured contract specifications.

7 Conclusion

Previous work on stateful EUTxO contracts [7] constructs a consolidated (single-UTxO)
on-chain implementation for a given constraint-emitting machine (CEM), including a proof
that the contract state is always updated correctly by a given transaction. Constructing the
implementation and associated proof in this formalism is done uniformly, and holds for any
specification it is instantiated with. This fixed-implementation approach allows for specifying
only a small subset of possible constraints on the updating transaction data. In this work,
we introduce the structured contract framework, in which, for a particular specification, the
contract author decides on an implementation that satisfies their specific requirements (e.g.
on-chain memory constraints, distributed vs consolidated, etc.), and is not limited in the
constraints a state update may place on the transaction data.

Our formalism defines the space of all stateful contracts implementable on the EUTxO
ledger via user-defined scripts. Our work opens up the possibility of formal analysis of the
behavior of a much larger class of contracts which may have previously been implemented
ad-hoc, or via an ill-suited formalism. Instantiating our framework requires the definition of
a small-step stateful contract specification, projection functions which compute the state
and input values of a contract for a given UTxO state and transaction (resp.), and a proof of
the integrity of the implementation. Similar to the proof completed for the CEMs formalism,
the proof obligation in our framework ensures that on-chain state evolution of a contract
adheres to its specification.

We note that the existence of a valid UTxO state update corresponding to a given contract
update is not guaranteed, and such an update is difficult to construct in the general case. We
leave this for future work. Another limitation of our approach is the lack of proof automation,
which presents a challenge due to the fact that a contract state may be computed from a
given UTxO state by an arbitrary user-defined function. A full formalization of structured
contract behavior in terms of trace-based properties of contracts and their expression at the
ledger level is needed, and is the subject of future work.
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We present examples of contracts and safety properties satisfied by these examples: (i) a
stateful model of an NFT policy, and, for another simple contract, a pair of (ii) a distributed
and (iii) a consolidated implementation. Using our framework to construct more sophisticated
and realistic contract examples, such as DEXs or account simulations, is the subject of future
work. The approach we presented can also potentially be applied to existing contracts for
which a small-step specification can be constructed, making them more amenable to formal
verification.
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A EUTxO details

Figure 3 introduces non-standard syntax we use throughout.

H =
∞⋃

n=0

{0, 1}8n the type of bytestrings

⋆ : {⋆} the one-element set, and its one inhabitant
a : A ∪ {⋆} maybe type over A

fst : (A × B) → A first projection
(a, b) : Interval[A] intervals over a totally-ordered set A

Key 7→ Value ⊆ { k 7→ v | k ∈ Key, v ∈ Value } finite map with unique keys
[a1; ...; ak] : [C] finite list with terms of type C

++ : ([C], [C]) → [C] list concatenation
h :: t : [C] list with head h and tail t

Figure 3 Notation.

Figure 4 lists the primitives and derived types that comprise the foundations of the
EUTxO model, along with some ancillary definitions. (Outputs normally refer to transaction
IDs by hash, but we simplify here for clarity.)

B Sim relation proof sketch for NFT

Suppose (slot, utxo, tx, utxo′) ∈ LEDGER, and π(utxo) ̸= ⋆. There are two disjuncts :
(i) If i = { (myNFTPolicy 7→ tkns) ∈ tx.mint } = ∅, by preservation of value (rule (v) in

Section 2.2), the amount s of tokens under myNFTPolicy remains unchanged in utxo′.
If s = ∅, we get s′ = ∅ + ∅ = ∅. Then, by Assumption 2 we conclude that tx does not
add myRef to utxo. So, π(utxo′) is defined, and π(utxo) = π(utxo′) = ∅. If s > ∅, by
Assumption 2, we conclude that tx cannot add an output with reference myRef in the
utxo′. Since, by π(utxo) ̸= ⋆, we know that myRef was not in utxo either, we conclude
that there is no output with myRef in utxo′. So, π(utxo) = π(utxo′).

(ii) If i ̸= ∅, tokens under myNFTPolicy are being minted, and the policy must be checked
by ledger rule (ix) in Section 2.2. Necessarily, by myNFTPolicy, i = {pid 7→ {∅ 7→ 1}}.
If s = ∅, s′ = s + i = i is the new total amount of tokens under policy myNFTPolicy in
the UTxO. The unique output with reference myRef must be removed from the UTxO
by tx, so that it is not contained in utxo′. By Assumption 2, it is also not added back
by tx to utxo′. Then, π(utxo′) ̸= ⋆, and is equal to i. If s ≥ ∅, an output with reference
myRef is not in utxo′. So, myNFTPolicy fails, and the tx is not valid on the ledger.

C Sim relation proof sketch for TOGGLE

Suppose that (slot, utxo, tx, utxo′) and π(utxo) = (a, b). We first observe that each of the
thread tokens in either implementation is present in an input of the transaction if and only
if it is present in the output. This is because π(utxo) = (a, b) implies that the unique
token(s) already exists in the UTxO set, and the minting policy cannot be satisfied, which
holds because myRef ∈ { i.outputRef | i ∈ tx.inputs } contradicts π(utxo) = (a, b). So,
thread tokens are not being minted or burned, and, by rule (v) in Section 2.2, we can make
the required conclusion.
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Ledger primitives

J_K : Script → Datum × Redeemer × ValidatorContext → B
J_K : Script → Redeemer × PolicyContext → B

checkSig : Tx → PubKey → H → B

Defined types

Signature = PubKey 7→ H
OutputRef = (id : Tx, index : Ix)

Output = (validator : Script,
value : Value,

datum : Data)
TxInput = (outputRef : OutputRef,

output : Output,
redeemer : Redeemer)

Tx = (inputs : P TxInput,
outputs : [Output],
validityInterval : Interval[Slot],
mint : Value,

mintRdmrs : Script 7→ Redeemer,
sigs : Signature)

ValidatorContext = (Tx, (Tx, TxInput))
PolicyContext = (Tx, PolicyID)

Helper functions

toMap : Ix → [Output] → (Ix 7→ Output)
toMap( , [ ]) = [ ]
toMap(ix, u :: outs) = { ix 7→ u } ∪ toMap(ix + 1, outs)

mkOuts : Tx → UTxO
mkOuts(tx) = { (tx, ix) 7→ o | (ix 7→ o) ∈ toMap(0, tx.outputs) }

getORefs : Tx → P (OutputRef)
getORefs(tx) = { i.outputRef | i ∈ tx.inputs }

Figure 4 Primitives and basic types for the EUTxOma model.
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toggleTTN : OutputRef → Script → Script
JtoggleTTN (myRef, s)K( , (tx, pid)) := myRef ∈ {i.outputRef | i ∈ tx.inputs }

∧ tx.mint = {pid 7→ {encode(s) 7→ 1}}
∧ ∃ o ∈ tx.outputs,

o.value = {pid 7→ {encode(s) 7→ 1}}
∧ o.validator = s

∧ fromDataN (o.datum) ̸= ⋆

Figure 5 TOGGLE thread token minting policy for the naive implementation.

toggleTTD : OutputRef → Script → Script
JtoggleTTD(myRef, s)K( , (tx, pid)) :=

myRef ∈ {i. outputRef | i ∈ tx.inputs }
∧ tta + ttb = tx.mint
∧ ∃ oa, ob ∈ tx.outputs,

oa.value = tta ∧ ob.value = ttb
∧ oa.validator = ob.validator = s

∧ fromDataD(oa.datum) ̸= ⋆ ∧ fromDataD (ob.datum) ̸= ⋆

where
tta := {pid 7→ {(encode(s) ++ ”a”) 7→ 1}
ttb := {pid 7→ {(encode(s) ++ ”b”) 7→ 1}

Figure 6 TOGGLE thread token minting policy for the distributed implementation.

ttt := {toggleTTN (myRef) 7→ {encode(toggleValN (myRef)) 7→ 1}}
tta := {toggleTTD(myRef) 7→ {(encode(toggleValD(myRef)) ++ ”a”) 7→ 1}}
ttb := {toggleTTD(myRef) 7→ {(encode(toggleVal(D myRef)) ++ ”b”) 7→ 1}}

πn(utxo) :=


(a, b) if myRef /∈ { i | i 7→ o ∈ utxo }

∧ ∃! (i 7→ o) ∈ utxo, ttt = o.value
∧ o.validator = toggleValN (myRef) ∧ o.datum = (a, b)

⋆ otherwise

πTx,n(tx) :=
{

toggle if ∃ i ∈ tx.inputs, i.output.value = ttt
⋆ otherwise

Figure 7 TOGGLE thread tokens and naive projections.
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Now, there are two possibilities, π(tx) = ⋆ and π(tx) = toggle, for each of which we must
prove that (⋆, π(utxo), π(tx), π(utxo′)) and π(utxo) = π(utxo′).

Naive implementation.
(i) π(tx) = ⋆ : We have that ¬ (∃ i ∈ tx.inputs, i.output.value = ttt). Since an additional

token ttt cannot be minted or burned, we also conclude ¬ (∃ o ∈ tx.outputs, o.value =
ttt). By π(utxo) = (a, b), the utxo state contains a unique output with token ttt, datum
(a, b), and toggleValN (myRef) validator. By π(tx) = ⋆, that output was not spent, and
still exists in the UTxO set utxo′. By Assumption 2, since tx ≠ myRef.fst, the reference
myRef is not added to the inputs of utxo′. So, that π(utxo′) = π(utxo) = (a, b). Then,

(⋆, π(utxo), π(tx), π(utxo′)) = (⋆, (a, b), ⋆, (a, b)) ∈ TOGGLE

(ii) π(tx) = toggle : Implies that ∃ i ∈ tx.inputs, i.output.value = ttt. This means that
that the (unique) UTxO containing ttt is spent, and no ttt tokens are minted or burned.
Therefore, the transaction must create a single output in utxo′ with that token. The
script toggleValN (myRef) must be run because ttt is spent and, by π(utxo) = (a, b), was
locked by toggleValN (myRef). Because toggleValN (myRef) must validate, the unique
new output containing ttt must have a datum (b, a), the same validator. Again, myRef
is not added to the inputs of utxo′ by assumption. We conclude that π(utxo′) = (b, a).
Then,

(⋆, π(utxo), π(tx), π(utxo′)) = (⋆, (a, b), ⋆, (b, a)) ∈ TOGGLE

Distributed implementation. The proof for the distributed implementation is similar to
the one for the naive implementation, except we must keep track of two inputs and two
outputs containing two thread tokens. A transaction updating the state must necessarily
spend both outputs containing each of the tokens, and that the new UTxOs containing them
are such that the datum in UTxO with token tta now has the boolean that was in the datum
of ttb, and vice-versa. Both must still be locked by toggleValN (myRef).
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