Distance-Based Solution of Patrolling Problems
with Individual Waiting Times

Peter Damaschke =
Department of Computer Science and Engineering, Chalmers University, Géteborg, Sweden

—— Abstract

In patrolling problems, robots (or other vehicles) must perpetually visit certain points without
exceeding given individual waiting times. Some obvious applications are monitoring, maintenance,
and periodic fetching of resources. We propose a new generic formulation of the problem. As its
main advantage, it enables a reduction of the multi-robot case to the one-robot case in a certain
graph/hypergraph pair, which also relates the problem to some classic path problems in graphs:
NP-hardness is shown by a reduction from the Hamiltonian cycle problem, and on the positive side,
the formulation allows solution heuristics using distances in the mentioned graph. We demonstrate
this approach for the case of two robots patrolling on a line, a problem whose complexity status is
open, apart from approximation results. Specifically, we solve all instances with up to 6 equidistant
points, and we find some surprising effects, e.g., critical problem instances (which are feasible
instances that become infeasible when any waiting time is diminished) may contain rather large
individual waiting times.

2012 ACM Subject Classification Mathematics of computing — Graph theory
Keywords and phrases Patrolling, Periodic scheduling, Shortest path, Well-quasi ordering

Digital Object Identifier 10.4230/0ASIcs.ATMOS.2021.14

Acknowledgements The author would like to thank the master’s students Anton Gustafsson and

Iman Radjavi for providing experimental results and for critical discussion of an earlier draft.

1 Introduction

Planning of periodically returning complex tasks for an unlimited time horizon and with
different request frequencies is an abundant type of problems. For example, traffic companies
want to offer clocked connections with different frequencies, and they have to construct
timetables to serve these demands. Similarly, vehicles of shipping agencies may have to
pick up, transport, and deliver goods from and to certain points periodically, and within
prescribed maximum time intervals, and their routes must be planned. However, in the
present paper we consider a type of problems that is conceptually somewhat simpler, in that
fixed places rather than routes must be served, in a certain sense.

A set of distinguished points is given. Each of them must be perpetually visited by some
vehicle, such that at most some prescribed waiting time elapses between any two consecutive
visits of this point. These waiting times are individual, that is, they can differ for different
points. As an application example, certain important places in some technical installation
must be visited for monitoring and maintenance purposes, or for fetching some product
or removing garbage. Some places need attention more frequently than others. If several
identical vehicles are available, it does not matter which vehicle serves which point. Rather,
every point must always be served within the prescribed waiting time by some of the vehicles.
The problem is to plan a schedule for all these visits.

In a more general setting, a number of such tasks must be perpetually done within
prescribed waiting times as described above, but we have some more freedom: Any task can
be performed at several alternative places, and we can arbitrarily choose one of them. For
instance, a pipe or lead or supply line may be checked at different points; consumable goods
that must be renewed periodically may be fetched at various places to choose from, etc.

© Peter Damaschke;
37 licensed under Creative Commons License CC-BY 4.0

21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2021).
Editors: Matthias Miiller-Hannemann and Federico Perea; Article No. 14; pp. 14:1-14:14

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ptr@chalmers.se
https://orcid.org/0000-0003-4047-7594
https://doi.org/10.4230/OASIcs.ATMOS.2021.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

14:2

Distance-Based Solution of Patrolling Problems

Visiting points periodically is called patrolling. In this paper we introduce a generic
PATROLLING problem which encompasses some classic path problems in graphs as well as
various patrolling problems from the literature [1, 3, 4, 6, 7, 8, 9] where also applications are
discussed. The following part is more abstract and technical.

An instance of the PATROLLING problem, as we define it now, consists of an undirected
finite graph G = (V, E) named the position graph, whose n vertices are called positions,
furthermore, m + 1 subsets P, C V (i =0,...,m) called properties, and positive integers t;
(i=0,...,m), where t; is called the waiting time of property P;. In other words, a problem
instance is a graph and a hypergraph (on the same vertex set) with integer hyperedge weights.

We may say that v € V “has the property” P; if v € P;. Nothing special is assumed
about the hyperedges P;, and a position may have several properties. Note that our indices
begin with ¢ = 0; the only reason is that this will yield more convenient expressions when we
study a specific class of instances later on.

As usual, a cycle C in a graph G is a sequence vy, ..., v, of vertices v; € V such that
vjvj41 is an edge for every j € {1,...,k — 1}, and viv; is an edge, too. It is important to
notice that C' may cross itself, that is, vertices may appear in C' multiple times. The start
vertex is immaterial, that is, any cyclic shift v;41,...,vk,v1,...,v; is the same cycle. We
may walk a cycle C perpetually, which means to go round C infinitely often. A round trip
on a path is the cycle obtained by travelling the path back and forth. Now we are ready to
specify the problem.

PATROLLING:

Given a graph and a hypergraph on the same vertex set, and an individual waiting time
t; for every hyperedge (property) P;, find a solution cycle C in G, satisfying the following
condition for every i: When we walk C, there are never t; consecutive vertices without
property P;.

Next we connect this formal definition to the above scenario of moving vehicles. From
mow on we call them “robots” rather than vehicles, to comply with the terminology in earlier
literature.

Imagine that some robot can move around in the graph. At every moment, the robot
is at some position in V. Time is discrete, and in every time step the robot can move to
some adjacent position. (We may also allow it to stay at its current position, but this option
has no benefits, in terms of the problem.) For every index 4, the robot must visit P; at least
once in every time interval of ¢; steps, and in the case |P;| > 1 it is immaterial which vertex
with property P; is chosen. The problem can also be formulated in directed graphs, but in
this paper we consider only the undirected case where movements are reversible.

Most importantly, our formulation of PATROLLING also encloses cases where a fleet of
r > 1 robots in a position graph H must perpetually visit every property P; with waiting
time at most ¢;. (Note that it is not prescribed which of the robots visits P; next. The only
demand is that P; must always be visited by some robot within the next ¢; time units.) A
reduction of this multi-robot version to PATROLLING is quite obvious: We define a position
graph G whose vertices are the r-tuples of vertices of H, indicating all robots’ positions.
Hence, for constant r, the blow-up is polynomial. Two vertices (u1,...,u,) # (v1,...,v,) are
adjacent if and only if, for every index j, the vertices u; and v; are identical or adjacent in
H. Moreover, to any r-tuple we assign all properties of its entries, and no further property.
Now, the single robot in G represents r robots in H.

P. Damaschke

In more complicated applications of PATROLLING, vertices of the position graph may
model states of a system rather than points in space. For instance, a small factory may want
to regularly produce an assortment of diverse products, but it must adapt its machines each
time when it switches to another product. Then we may use vertices and edges to represent
arrangements of the machines and transitions between them, respectively.

We remark that, in PATROLLING, we are actually looking for an infinite path I in G
where, for every index ¢, no subpath of ¢; vertices is disjoint from P;. But for simple reasons
we can aim at a solution cycle instead: If I exists, we can divide I in subpaths of s := max; t;
vertices. Since at most n® different such subpaths can exist, by the pigeonhole principle,
some subpath with at most s(n® + 1) vertices begins and ends with the same subpath of s
vertices, which contains at least one vertex of each property. By identifying these two ends
we get a solution cycle. This justifies our formulation with a cycle, and it also shows the

existence of some solution cycle with length at most sn®, if (to,...,t,) has a solution at all.

If G has maximum degree A, then similarly we get the existence of a solution cycle of length
at most nsA®. A quite different argument yields another upper bound of ns™. We mention
these further bounds here without proof, as we will not further use them.

However, some order-theoretic concepts will be central. For any two vectors V and W of
m + 1 waiting times we write V' < W if every waiting time in V is smaller than or equal to
the corresponding waiting time in W, and V < W if V< W but V # W.

Given a position graph with a family of m + 1 properties, we call an integer vector
T = (to,-..,tm) feasible if PATROLLING has a solution cycle with waiting time at most ¢;

for every property P;, and we call a feasible vector T critical if no vector T’ < T is feasible.

Also the solution cycle itself is called feasible or critical.

As we noticed in [5], for every fixed hypergraph, the number of critical vectors is finite,
since the set of positive integer vectors of fixed length is well-quasi ordered (WQO). Hence
also t is always bounded by some constant. However, WQO alone does not hint to specific
bounds on the number of critical vectors, the maximum waiting times therein, and the
lengths of solution cycles. Time bounds from naive exhaustive search would be prohibitive.

Therefore, the main goal of the present work is to provide heuristics for actually solving
certain instances of PATROLLING, i.e., for constructing solution cycles or showing infeasibility.
We will see that distances in the position graph are very informative for the problem.

A particularly intriguing case is the problem from [1] where two robots are patrolling on a
line. This might appear to be a simple setting at first glance, but it is far from being simple.
In [5] we have shown the existence of a PTAS: Any desired approximation ratio 1+ ¢ for the
waiting times can be achieved by solving a discrete problem with m + 1 equidistant points,
where m only depends on €. But the weak spot is that just this discrete version is poorly
understood, and even its complexity status (polynomial or NP-hard) is still open. (The
existence of a PTAS does not hinge on this unknown complexity, as it requires polynomial
time only for every fixed e.) This is amazing, noticing that the one-robot problem on a line
is trivial. Feasible two-robots instances can require some well choreographed “pas de deux”.
As pointed out in [5], the practical usability of the PTAS depends on exact solutions to
discrete problem instances up to some size m. Therefore we use this particular problem as
our playground and case study for our approach to PATROLLING, although the ideas are by
no means limited to this case. We may also use them for more robots and other topologies
(trees, cycles, grids, etc.). Since they contain two robots on a line as a special case, it is
sensible to start with that. It seems worth considering also for other reasons: By way of
contrast, in PATROLLING in a metric space where all distances are 1 (known as PINWHEEL

14:3

ATMOS 2021

14:4

Distance-Based Solution of Patrolling Problems

SCHEDULING), r robots do not add interesting aspects; just the waiting times are scaled by a
factor r, because all robots can freely jump. Two robots on a line seems to be the “simplest”
nontrivial case where the number of robots matters, due to the underlying metric.

We notice that the PERIODIC LATENCY problem in [2] (where also further related problems
with many potential applications are mentioned) is very similar to PATROLLING, and the
multiple robots version on the line can be solved in polynomial time by dynamic programming.
However, a crucial difference is that every point must be assigned to a unique robot there,
whereas in PATROLLING, robots can share their work arbitrarily.

We apply the above simple reduction from two robots to one robot. While it complicates
the position graph and the family of properties (see Section 3.1), this is more than compensated
by simpler descriptions of solutions, just by cycles traversed by one token in one graph.
Moreover, we can take advantage of distances in the position graph.

Contributions

Our first contribution is the generic formulation of the PATROLLING problem itself, as
motivated above. Then we relate it to some classic path problems in graphs, and we provide
some simple but powerful distance-based lower bounds on the waiting times. Next we use
them to solve instances of the two-robots-on-a-line problem. We can solve them completely
and for arbitrary m, when some small waiting times (up to 3) are present. For larger waiting
times, the problem becomes considerably more intricate. To our surprise, instances with
tr, = 2 and tx41 = 3 for some index k are already more peculiar, and there exist many critical
vectors under this constraint, some with pretty large ty and t¢,,. This tempers our initial
hopes that it could be a practical method to enumerate all critical vectors and a solution
to each. (Such an enumeration would trivially solve all other instances as well.) But the
results show that this innocently looking problem is surprisingly deep and structurally rich.
Nevertheless, to show these effects and also the power of the distance approach, we try to
enumerate the critical vectors for small sizes m. In the paper we do this completely for
m <5 (remember that despite WQO this is not trivial even for fixed m) and still partially
for m = 6. We conclude with the general lessons and directions for further research. In the
technical part, readers may skip many of the detailed case inspections without losing track.

2 Distances in the Position Graph

Let d(u,v) denote the distance of the vertices u and v in G = (V| E), or in any related graph
when it is clear from context. The distance is the length, i.e., number of edges, of a shortest
u-v-path. For X|Y C V, an X-Y-path is any z-y-path where x € X and y € Y. We define
d(X,Y) = min{d(z,y)|z € X,y € Y} and abbreviate d({z},Y) by d(z,Y).

We use R C V to denote any set satisfying that every solution cycle must be entirely in
G|[R], the subgraph of G induced by R, and equipped with the properties P; N R. The range
of a property P; to be the set R; := {v € V|3u € P; : d(u,v) < |t;/2]}. Obviously, every
solution cycle must be entirely in R;. Thus we may initially set R := (), R;. By applying
further necessary conditions we might then be able to restrict R further.

Similarly, we use R’ C E to denote any set of edges satisfying that every solution cycle
can only traverse edges in R’. Initially we can make R’ the set of all edges in G[R]. But we
might also be able to restrict R’ further. For instance, if t; = 2, then edges not incident to
P; can be deleted from R'.

As simple as the following lemma is, it gives powerful lower bounds on the waiting times
in feasible instances.

P. Damaschke

» Lemma 1. Lett > 0 be an integer, and P; and P; any two properties, where t; < 2t + 1.
Then every solution cycle satisfies the following:
Every visit of P; is at the link of a P;-P; path and a P;-P; path, one of which has length
at most t.
If t =d(P;, P;) and t; = 2t, then both mentioned paths have length t.
Ift =d(P;, Pj) and t; = 2t + 1, then one of the mentioned paths has length t, and the
other path has length t or t + 1.
Moreover, we cannot visit any vertex v with d(v, P;) >t + 1.

Proof. Consider the path between the last/first visit of P; before/after any visit of P;. Since
its length is at most 2¢ 4+ 1, one of the two mentioned subpaths has a length at most ¢t. The
next two assertions follow instantly from the definition of d(P;, P;). Finally, the length of the
path between the last/first visit of P; before/after some visit of v would be at least 2(¢t + 1),
which contradicts ¢; < 2t + 1. <

Some reformulations and special cases of Lemma 1 are also useful: Applying it to
t := d(P;, P;) — 1 for any two properties P; and P}, we get by contradiction that ¢; > 2t 42 =
2d(P;, P;). Hence

ti 2 2 mjax d(PZ, PJ)
holds for every fixed j. By setting instead t := d(P;, P;) we get assertions for every solution
cycle for t; < 2d(P;, Pj) + 1: In this case the mentioned paths of length ¢ must be shortest
P;-Pj-paths. Let D be the vector with components t; := 2max; d(P;, P;) for ¢ =0,...,m.
The above inequality says that every feasible vector T satisfies T' > D. If D itself is feasible,
then D is therefore the only critical vector.

The following theorem is not difficult, however, it may be interesting to notice the
connection to some classic path problems.

» Theorem 2. PATROLLING with two properties is equivalent to finding some shortest
path between the two hyperedges, and HAMILTONIAN CYCLE is polynomial-time reducible to
PATROLLING, which is therefore NP-hard.

Proof. Consider instances with only two properties X and Y. By Lemma 1, both waiting
times must be at least 2d(X,Y’). Conversely, if both waiting times are at least 2d(X,Y),
then the round trip on any shortest X-Y-path is a solution cycle.

Next we present a reduction from HAMILTONIAN CYCLE. Given any graph with v vertices,
we declare every single vertex a property, and we set all waiting times equal to v. Then
any Hamiltonian cycle is obviously a solution cycle. Conversely, consider any subpath of v
vertices in a solution cycle for PATROLLING. Due to the waiting times v, it must contain
every vertex, hence it must contain every vertex exactly once. Furthermore, the next vertex
in the cycle must equal the first vertex of this path. Thus we have identified a Hamiltonian
cycle in the graph. |

We remark that membership in NP is unclear, because there may not exist a polynomial
bound on the cycle length for PATROLLING in general, such that the standard way of verifying
a solution in polynomial time is not available,

For the remainder of the paper we introduce some more terminology. A constraint is an
inequality or equation of the form ¢ < c or t; = ¢, with a constant ¢, or a conjunction of
some of them. Given a graph and a hypergraph of properties, we call a constraint feasible if
it can be satisfied by a feasible vector, and infeasible else. If a constraint contains equations,
we call a vector critical under the constraint if it is feasible, but no waiting time outside the
equations can be lowered. Such a vector is not necessarily critical, because it might still be
possible to lower some of the waiting times that are fixed by the constraint.

14:5

ATMOS 2021

14:6

Distance-Based Solution of Patrolling Problems

3 Two Robots on a Line

3.1 The Position Graph

In the case of PATROLLING studied in [5], which is a discretized version of the problem
from [1], two robots are patrolling on a line. To be precise, the position graph H is the path
with m + 1 vertices indexed 0, ..., m, and the m + 1 properties are the single vertices.

We set up the stage where the following study will take place. Let x and y be integer
variables for the robots’ positions, where 2 > y. (Whenever the robots meet, we can swap
their roles.) Then the vertex set of the position graph G from the reduction in Section 1
consists of all points with integer coordinates (z,y), where 0 <y <m, 0 <z < m, and x > y.
We informally call G “the triangle”, since its convex hull forms a right triangle with one
cathetus on the z-axis and the hypotenuse on the line y = x. We can identify the hypotenuse
with H, as i is mapped to (¢,7). Two vertices (x,y) # (2',y’) of G are adjacent if and only if
both |z — 2’| <1 and |y — ¢/| < 1. Property P; coming from vertex i of H is the union of
the vertical line = 7 and the horizontal line y = ¢ which meet at point (¢,4) on H. That is,
every P; is I'-shaped, except for Py and P,, which are the catheti of the triangle.

As a detail, vertices on H are never needed in a solution cycle C: Assume that C' contains
a vertex (4,4) whose two neighbors in C are not in H. Then these two vertices are identical or
adjacent. If both have the property P;, we can simply remove (i,7) from C'. If the neighbors
are (4,7 — 1) and (i + 1,7 — 1), we can replace (i,7) in C with (i + 1,4), and similarly in the
symmetric case, or if both neighbors are (i + 1,7 — 1). If C' contains a path of two or more
vertices in H, then let (¢ —1,7— 1) and (4,%) be its end, hence the next vertex in C'is (i +1,7)
or (i+1,i—1) or (i, — 1). In either case we can replace (4,7) in C with (4,7 — 1) or remove
it. Thus we successively get rid of all vertices in H, hence it suffices to use the triangle of
vertices (x,y) with « > y.

Defining a; := 14 — [t;/2] and b; := i + |t;/2], the range R; of property P; is the set of
all vertices in the triangle that satisfy a; < x < b; Va; <y < b;. For the interval lengths
we have b; — a; = 2|t;/2], which equals ¢; for even t;, and t; — 1 for odd ¢;. Below we will
describe the intersection R := ("), R; of ranges.

All critical solutions where the intervals [0, m] N [a;, b;] in H have an empty intersection
are obtained as follows [1]: For any fixed d € [1,m — 2], split H into [0, d] and [d + 1,m], and
let one robot zigzag in each of these two parts. We rephrase this known result:

» Proposition 3. For m > 3, all critical vectors with Vi : t; > 2 and (;[a;, b;] =0 are given
by t; = 2max{i,d —i} for alli < d, and t; = 2max{j —d—1,m— j} for all j > d+1, where
d is any fized integer with 1 < d < m — 2.

By the informal notion of a BB path (abbreviation of “billiard ball path”) we mean a
path consisting of straight line segments with slope +1 or —1 that changes direction only by
reflection at the border of R. The solution cycles to the critical vectors in Proposition 3 are
then exactly the BB paths in [d + 1,m] x [0, d].

» Definition 4. Let My denote the set of all critical vectors from Proposition 3.

From now on we assume for the waiting times that the intervals [0,m] N [a;, b;] in H have
a nonempty intersection, which is denoted [a, b] := [0, m] N (), [as, b;]. With ¢’ := max; a;
and b := min; b; we have a = max{a’,0} and b = min{b’,m}. These two numbers are
cornerstones in the characterization of the intersection R of ranges given below.

P. Damaschke

R contains the stripes a < x < b and a < y < b. Furthermore, R cannot contain vertices
with < a or y > b, but R may intersect the rectangle @ := [b+ 1, m] x [0,a — 1]. For any
vertex (z,y) € @, the following statements are equivalent: (z,y) € R <= Vi: (z,y) € R;
= Viiy>a; Ve <b < Ai:y<a; Nx>b;. Geometrically this means that Q N R is
obtained from @ by cutting out all quadrants with upper left corner of the form (b;+1,a; —1),
hence @ N R is the region above some increasing staircase curve. Now we also characterize
which of these quadrants intersect Q at all.

» Lemma 5. Every feasible vector satisfies t; > 2i for i < a, and t; > 2(m — j) for j > b.
Furthermore, if all these inequalities are satisfied, then Q N R is obtained from @Q by cutting
out all quadrants with upper left corner of the form (b + 1,ar — 1), for all k € [a,b]. In fact,
we have a; <0 fori < a, and b; > m for j > b.

Proof. As argued above, we must cut out exactly the mentioned quadrants; it remains to
show that only the indices k € [a,b] are needed. Thus, consider any i < a. (For j > b we
proceed similarly.) From the definition of a; and b; we conclude b; — a; +1 > t;. Since no
vertices (z,y) with z < a are in R, only the horizontal line of P; crosses R, which implies

2d(Py, P;) = 2i in R. Lemma 1 implies t; > 2d(P,, P;) = 2i, or the instance is not feasible.

Stacking these inequalities together, we obtain b; — a; + 1 > 2i. Since b; — a; is even, this
further implies b; — a; > 2i. Since also (a; + b;)/2 = 14, it follows a; < 0, thus the quadrant
with upper left corner (b; + 1,a; — 1) does not intersect Q. <

The following lemma only rephrases some inequalities known from the definition of [a, b]
and from Lemma 5, and presents lower bounds on the waiting times for every fixed [a, b].

» Lemma 6. Every feasible vector satisfies t; > 2i and t; > 2(b — 1) for alli < a, and
similarly, t; > 2(m — j) and t; > 2(j — a) for all j > b.

Another general remark is: Due to the inherent symmetry of the problem, every statement
about a vector (to, ..., %) holds also true for its reversal. To avoid many tiresome repetitions
of this fact, from now on, every vector we talk about can also mean its reversal. In other
words, we do not distinguish between (to,...,¢m) and (tm,. .., o).

3.2 Short Waiting Times

In this section we study the consequences of the presence of the smallest possible waiting
times t;, in a critical vector (to,...,tn) ¢ Mo. The motivation is twofold. Firstly, R is then
mainly composed of two narrow stripes, which should make the solution cycles relatively
simple. Secondly, given some vector of waiting times (tg, ..., %), even if we only aim at
solutions with good approximation ratios rather than exact solutions, the smallest t; could
not be relaxed. The following theorem collects some cases of instances with small waiting
times that can be completely solved. Quite surprisingly, the constraint ¢ty =2 A tp41 = 3
turned out to be a much more subtle case (expect if k = 1), therefore it is not listed in the
following result.

» Theorem 7. PATROLLING for two robots on a line is solvable in O(m) time when (to, ..., tm)
contains some 1, or two neighbored 2s, or two neighbored 3s, or one 2 neighbored by two 4s.
Moreover, each of the following constraints yields exactly one critical vector under the
respective constraint:

14:7

ATMOS 2021

14:8

Distance-Based Solution of Patrolling Problems

t =1 for any m and k;
th=tkr1=2form>3and1 <k<k+1<m-1;
th =2 Aty =3 form > 4;

ty =tgr1 =3 form>5and2<k<k+1<m-2.

Furthermore, no critical vector has to = 3 or t,, = 3, and every critical vector not captured
by the above cases satisfies T > (4,4,2,...,2,4,4).

» Definition 8. We define My to be the set of the critical vectors under the constraints in
Theorem, 7.

The remainder of this section is devoted to the proof of Theorem 7. The scheme is as
follows. We consider some constraint with some small waiting time(s) and the resulting
position graph with vertex set R and edge set R’ as defined in Section 3.1. Recall that R is
the union of stripes a < z < b and a < y < b plus some subset of @, and that d(P;, Py) =i
and d(P;, Py,) = m — j holds for all ¢ < ¢ and j > b, implying ¢; > 2i and t; > 2(m — j).
Note that we will define the position graph and interval [a, b] using the considered constraints
only. (They might further shrink due to other waiting times, but this does not affect the
following conclusions.) In this position graph we will observe that d(P;, P,,) = m —i — ¢ and
d(Py, Pj) = j — c holds for some fixed number ¢ and for certain (maybe all) indices i < a
and j > b. Then Lemma 1 also yields ¢; > 2(m —¢ —¢) and t; > 2(j — ¢) for these indices. If
we can construct a solution cycle that matches all lower bounds, it follows that the obtained
vector of waiting times is the unique critical vector under the constraint.

Let T = (to,...,tm) always denote some critical vector. Wildcard symbol * may be used
for unspecified coordinates. We will frequently apply Lemma 5 to obtain the position graphs,
and Lemma 1 and its consequences to obtain lower bounds, but without explicitly citing the
lemmas, for the sake of brevity.

Constraint tg = 1 implies that R is the line y = 0 from (1,0) to (m,0). Note that
d(Py,P;) =j—1and d(P;, P;) = m—j for all j. The round trip on R yields optimal waiting
times ¢; = 2max{j — 1,m — j} for all j > 1.

Constraint ¢t = 1, for some k with 1 < k <m — 1, implies a = b = k, hence R consists
of the lines x = k and y = k. That is, R is merely a path, and we have ¢ = 1, as we can
skip (k,k). The round trip on R yields ¢; = 2max{i,m —i — 1} for all i« < k — 1, and
t; =2max{j—1,m—j} forall j > k+1.

Every further critical vector T satisfies T > (2,...,2).
For m > 3, the set M contains the feasible vector given by the waiting times tg = t; = 2
and t; = 2max{j —2,m — j} for all j > 2.

Constraint ¢y < 3 implies b = 1. Hence all P; with j > 2 are vertical lines, thus their
waiting times cannot be smaller than in the above solution above from Mg It follows that
this solution is the only critical vector with ¢g < 3. In particular, no critical vector with
to = 3 exists, and similarly for ¢,,.

Every further critical vector T satisfies T' > (4,2, ...,2,4).

Constraint t;, = tx+1 = 2, for some k with 1 <k < k+1 < m—1, implies [a, b] = [k, k+1]
and ¢ = 2. See Figure 1. The round trip on the path consisting of the edge (k+1, k—1)(k+2, k)
and BB paths in the two stripes yields t; = 2max{i,m—i—2} foralli < k—1, t}, = tp11 = 2,
and t; = 2max{j — 2,m — j} for all j > k + 1. Hence this constraint admits exactly one
critical vector.

P. Damaschke 14:9

%7

Figure 1 Position graph for the constraint ¢, = tx+1 = 2. The picture illustrates the vertices in
R and, for simplicity, the edges that do not belong to R’. We use the same convention also in all
subsequent pictures. Vertex (k, k) is highlighted here.

L
e L] L] L]
o *——o

Figure 2 Position graph for the constraint t; = 2 A t3 = 3. The vertex in the lower left corner is
(1,0).

Constraint t; = 2 A to = 3 implies [a, b] = [1,2]. See Figure 2. Since d(Py, P,) =m — 3,
we have tg > 2(m — 3).

Constraint t; = 2 A ta = 3 A tg = 2(m — 3) forces every solution cycle to include some
shortest Py-P,,-path, and thus the edge (3,0)(4,1), if m > 4. Since to < 3, the previous
vertex must be (2,1), whose distance to P; (j > 3) is j — 2. This shows ¢; > 2(j — 2) for
every j > 3. For m > 5, the round trip on the path that begins with (2,1)(3,0)(4,1) and
continues as BB path in the horizontal stripe attains these bounds: tg = 2(m — 3), t; = 2,
to =3, and t; = 2max{j — 2,m — j} for all j > 3. This shows that this constraint admits
exactly one critical vector.

For tg = 2(m — 3) + 1, the conclusions in the previous paragraph still hold true. Since
the vector with tg = 2(m — 2), t; =t = 2, and the same values t; for all j > 3 is feasible
(as seen earlier), we conclude that a larger ¢y does not yield further critical vectors. Thus,
already the constraint ¢; = 2 A t5 = 3 admits only one critical vector.

Constraint ¢; < 3 A t3 < 3 implies that the solution cycle from t; = 2 A t; = 3 still has
optimal waiting times for the same reasons, hence raising ¢; from 2 to 3 does not provide a
new critical vector.

Constraint to = ¢t3 = 3 implies [a,b] = [2,3]. See Figure 3. The round trip on
(2,1)(3,0)(4,1)(5,2)...(m,*), where the last part is a BB path in the horizontal stripe,
achieves tg = 2(m — 3), t1 = 2(m —4), to = t3 = 3, and t; = 2max{j — 2, m — j} for all
j > 4. From d(Py, P,) = m — 3 and d(P1, P,,) = m — 4 we see that tg and ¢; are optimal.
We claim that all ¢;, j > 4, are optimal, too. In fact, since d(P;, Py) = j — 3, every solution
cycle with t; < 2(j — 3) + 1 would have to contain some shortest Py-Pj-path. But every such
path contains the edge (3,0)(4, 1), and since ¢t = 3, the previous vertex must have z = 2.
Hence every solution cycle touches the line x = 2 whose distance to P; is j — 2.

Figure 3 Position graph for the constraint t; = 2 A t3 = 3. The vertex in the lower left corner is
(2,0). The horizontal stripe can be longer than displayed here.

ATMOS 2021

14:10

Distance-Based Solution of Patrolling Problems

T

Figure 4 Position graph for the constraint ¢ = 2. Vertex (k, k) is highlighted.

Constraint ¢, = ty+1 = 3, for some k with 3 < k < k+1 < m—3, implies [a, b] = [k, k+1]
and ¢ = 3. The round trip on the BB path going with slope +1 through (k+2, k — 1) achieves
t; = 2max{i,m —i—3} for all i <k —1, t =tp41 =3, and t; = 2max{j — 3, m — j} for all
7 > k+ 2, and these waiting times are optimal under the mentioned constraint.

At this point, remember that every further critical vector T satisfies T' > (4,2,...,2,4).

Constraint t; = 2 alone implies ¢ < b < 2. Thus t;g > 4, t;1 = 2, to > 4, and
t; > 2max{j — 3,m — j} for all j > 3. Here, t, > 4 holds since t, < 3 was already treated
earlier, and ¢; > 2(j — 3) comes from d(Ps, P;) = j — 3. But these waiting times constitute
some smaller vector in Mj. The conclusion is literally the same for ¢; = 3. It follows that
every further critical vector T even satisfies T' > (4,4,2,...,2,4,4).

Constraint t; = 2, for some k with 2 < k < m — 2, implies [a,b] = [k — 1,k + 1] and
c = 2. See Figure 4. Here is a solution cycle that matches the resulting lower bounds: We
traverse the path Z = (k,k —2)(k+ 1,k — 1)(k + 2, k), then some BB path to P, that starts
and ends in (k + 2, k), then Z backwards, then some BB path to Py that starts and ends
in (k,k — 2), and so forth. Regardless of the parities of k and m — k and of the choice of
the BB path in the case of even lengths, the waiting times are ¢; = 2max{i,m — i — 2} for
all i <k —2, and t; = 2max{j — 2,m — j} for all j > k + 2. The values of t;_1 and tx41
achieved by this path depend on k and m — k, but they are at most 4.

3.3 The Smallest Instances

Using the general results on critical vectors with the smallest waiting times, we can now
demonstrate how to solve the smallest instances for all or “most” vectors of waiting times.
Cases with m < 4 are easy to settle and therefore omitted. Case m = 5 is still simple:

» Proposition 9. For m =5 there is no critical vector T ¢ Mo U M;.

Proof. Let T = (to,...,t5). Note that T > (4,4,2,2,4,4). If t5 < 3 then d(Py, P5) > 3, hence
T>(6,4,2,2,4,6) € M;. Similarly we can rule out ¢t3 < 3. It follows T' > (4,4,4,4,4,4) >
(4,2,4,4,2,4) € M,. <

But already the case m = 6 reveals the subtlety of the problem.

» Proposition 10. For m = 6, all critical vectors T ¢ My U M; are (6,4,4,3,4,4,6)
and (8,4,2,4,4,6,8), and several vectors T > (8,4,2,3,4,6,8) that are critical under the
constraint to = 2 N t3 = 3.

Proof. Let T = (to,...,ts). Note that T > (4,4,2,2,2,4,4).

If t3 = 2 then ty > 3 and t4 > 3. If now to > 4 and t4 > 4 then (see the end of Section 3.2)
we have T > (8,6,4,2,4,6,8) > (8,6,2,2,4,6,8) € M;. Hence ty = 3 or t4 = 3. It suffices
to consider one of these symmetric cases. Constraint t3 = 2 A ¢4 = 3 (see Figure 5) implies,
by applying Lemma 1, that 7' > (8,6,4,2,3,6,8) > (8,6,4,2,2,6,8) € M;. This excludes
ty = 2 and shows T > (4,4,2,3,2, 4,4).

P. Damaschke

Figure 5 Position graph for the constraint ¢t3 = 2 A t4 = 3. The leftmost line is z = 3.

Figure 6 Position graph for m = 6 and the constraint t2 = 2 A t3 = 3. The leftmost line is x = 2.

Let t3 = 3. If some of the neighbors equals 3 as well, then we have a constraint from
Theorem 7. Hence both neighbors are at least 4, or some equals 2. We also have 2 < a < b < 4.
Now b = 2 would imply t3 > 6 by Lemma 6. Hence b > 3, therefore ¢y > 6, again by Lemma 6.
By symmetry this also holds on the other side. Therefore t5 = 3 implies T' > (6,4, 2, 3,2,4,6).

Constraint to =4 A t3 = 3 A t4 = 4 now yields T > (6,4,4,3,4,4,6), which is achieved
by the round trip on (3,0)(4,1)(5,2)(6,3). Hence this is the only critical vector under this
constraint.

It remains to study the constraint to = 2 A t3 = 3, and vectors with ¢3 > 4.

Assume that both ¢2 > 4 and t4 > 4, in other words, T' > (4,4, 4, 3,4,4,4). Assume that
also tg < 5. Then a < b < 2. Hence, by Lemma 6, we even have T' > (4,4,4,6,4,6,8) >
(4,2,4,6,4,4,6) € M. This shows ty > 6 and by symmetry also ¢,, > 6, hence T" >
(6,4,4,3,4,4,6), which was already feasible. It follows that t3 < 3 or t4 < 3. By symmetry
we can suppose to < 3.

This yields 1 <a <2 <b <3, thus T > (4,4,2,3,4,6,8) by Lemma 6. From d(Py, Ps) > 3
we also get tg > 6, thus T' > (6,4,2,3,4,6,8). Now, if to = 3then T > (6,4,3,3,4,6,8) € M;.
This finally shows t5 = 2. Since now the edge (3,0)(4, 1) is no longer in R/, the bounds are
further raised to d(Py, Ps) > 4 and T > (8,4,2,3,4,6,8). If t3 = 4 then we get the critical
vector (8,4,2,4,4,6,8), achieved by the cycle (2,0)(3,1)(4,2)(5,3)(6,2)(5,1)(4,2)(3,1). So
there only remains the constraint to = 2 A t3 = 3. <

Figure 6 shows the position graph for the constraint to = 2 A t3 = 3 that we discuss a bit
further now.

Recall that critical vectors 7' under this constraint satisfy T > (8,4,2,3,4,6,8). Since
(8,6,2,2,4,6,8) € My, every such critical vector has t; < 5. Hence every solution cycle must
contain some P;-Fgs path of length 2, and therefore the path (3,2)(4,1)(5,2)(6,3).

Constraint t; =4 A to = 2 A t3 = 3 requires this path to appear on both sides of (6, 3),
which enforces (3,2)(4,1)(5,2)(6,3)(5,2)(4,1)(3,2).

Constraint to = 2 A t3 = 3 A t4 = 4 enforces, by similar arguments, every solution cycle
to contain a path (4,2)(3,1)(2,0)(3,1)(4,2).

Moreover, every visit of Ps and Py, respectively, necessarily happens within such a path.

Constraint to = 2 A t3 = 3 Aty = 4 A t5 = 6 enforces (5, *)(4,2)(3,1)(2,0)(3,1)(4, 2)(5, %).

Constraint t71 = 4 AN to = 2 Atg = 3 ANty = 4 A t; = 6 now obviously enforces
both (3,2)(4,1)(5,2)(6,3)(5,2)(4,1)(3,2) and (5,%)(4,2)(3,1)(2,0)(3,1)(4,2)(5, *), and since
these paths “disagree”, they must occupy disjoint subpaths of any solution cycle. Fi-
nally, consider any “consecutive” visits of Ps and Py, that is, without other such visits in

14:11

ATMOS 2021

14:12

Distance-Based Solution of Patrolling Problems

between. They are surrounded by the mentioned paths, and furthermore, at least some
(4,*) must exist between them. However, a single vertex (4,*) is not enough, because
then Py, P, P; must all be visited by (4, *)(5, %), which is obviously impossible. Hence we
must place at least two vertices there. On the other hand, the round trip on, for instance,
(6,3)(5,2)(4,1)(3,2)(3,1)(4,2)(5, 3)(4,2)(3,1)(2, 0) has waiting times (18,4,2,3,4,6,18), and
this vector is critical.

This example illustrates two aspects: Small waiting times in the middle can cause very
large waiting times at the ends, and the distance lower bounds are strong enough to uniquely
identify large parts of the solution cycles, which makes their construction quite efficient.
Systematic search with the help of a computer program' produced, e.g., as many as 10
critical vectors for m = 6 under the constraint to = 2 A t3 = 3, and the waiting time 18 in
the example above is the highest one appearing in them. Slightly relaxed waiting times at
inner points allow smaller waiting times at the ends, and some combinations of times can be
chosen independently, which explains the exploding number of critical vectors. Enumeration
for slightly larger m gave a similar picture, after considerably larger computation time, and
with growing numbers of critical vectors.

4 Discussion and Conclusions

We have formulated the PATROLLING problem, even with several robots, as a problem dealing
with only one vehicle that has to visit “properties” in one so-called position graph. (This
plays a bit with the ambiguity of the word property which can also mean an object located
somewhere.) The main advantage is that we can use the distances in this graph for solving
instances of the problem: They yield simple lower bounds on the waiting times, moreover,
waiting times in critical vectors are often equal to (or close to) these lower bounds. Hence
their solution cycles must traverse shortest paths between the respective properties, and they
are sometimes even unique. Moreover, certain combinations of (e.g., small) waiting times
make the resulting position graphs simple. All this facilitates the construction of solution
cycles or the verification of infeasible instances.

We have mainly studied the case of two robots patrolling on a line, whose complexity is
open. As argued in Section 1, this problem is not as narrow as one might think, rather, it is
the natural case to study first. The above ideas are used to determine all critical vectors for
the smallest m, partly manually (as shown here), and partly supported by an implementation
using further pruning techniques that are hard to summarize here. (However, a small side
remark is that, due to the shape of the position graphs, shortest paths can be computed very
quickly by a greedy algorithm.)

We found surprisingly many critical vectors, mainly caused by a certain combination of
small waiting times in the interior of the line segment. Although pre-computation and plain
enumeration of the critical instances is apparently not the method of choice for solving given
single instances (as initially hoped), this study gives useful pointers to solution techniques.
Still, vectors being far from criticality seem to be harder to solve. The ultimate goal would
be to generalize these observations, in order to derive either a polynomial algorithm, or at
least a better practical approximation algorithm than in [1, 5], or to identify gadgets for an
NP-hardness proof. (We remark that unresolved complexities are typical in this field, e.g.,
the complexity status of PINWHEEL SCHEDULING [6, 8, 9] is notoriously open.)

! provided by Anton Gustafsson and Iman Radjavi

P. Damaschke

Note that a superpolynomial number of critical vectors does not yet rule out a polynomial
algorithm. Furthermore, the methods we have demonstrated here to construct all critical
vectors may similarly be used heuristically to find some critical vector being smaller than
any given input vector 7', or proving T infeasible. Some hope for fast algorithms comes from
a certain “stratification” of waiting time vectors: We observed that instances containing
some small waiting times behave differently than instances where all waiting times are large
in relation to m, and also the size of the intersection [a,b] of ranges plays some role.

Other open problems for two robots on a line, besides the complexity, have arisen: Is the
number of critical vectors actually exponential in m? Are the largest waiting times linearly
bounded in m? How long can their solution cycles be, in the worst case?

Moreover, since two robots on a line is only a special case and a first testbed, we would
like to apply our insights also to more robots and more general topologies, such as trees and
grids. But it seems to be a reasonable procedure to first aim for a thorough understanding
of the “smallest” non-trivial case. The heuristics developed here should extend more or less
straightforwardly to more general cases of PATROLLING. But we do not expect to transform
results to seemingly similar problems, e.g., as mentioned earlier, PERIODIC LATENCY behaves
differently and seems to be simpler from the outset.

—— References

1 Huda Chuangpishit, Jurek Czyzowicz, Leszek Gasieniec, Konstantinos Georgiou, Tomasz
Jurdzinski, and Evangelos Kranakis. Patrolling a path connecting a set of points with
unbalanced frequencies of visits. In A Min Tjoa, Ladjel Bellatreche, Stefan Biffl, Jan van
Leeuwen, and Jiri Wiedermann, editors, SOFSEM 2018: Theory and Practice of Computer
Science — 44th International Conference on Current Trends in Theory and Practice of Computer
Science, Krems, Austria, January 29 — February 2, 2018, Proceedings, volume 10706 of Lecture
Notes in Computer Science, pages 367-380. Springer, 2018. doi:10.1007/978-3-319-73117-9_
26.

2 Sofie Coene, Frits C. R. Spieksma, and Gerhard J. Woeginger. Charlemagne’s challenge: The
periodic latency problem. Oper. Res., 59(3):674—683, 2011. doi:10.1287/opre.1110.0919.

3 Jurek Czyzowicz, Kostantinos Georgiou, and Evangelos Kranakis. Patrolling. In Paola
Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors, Distributed Computing by Mobile
Entities, Current Research in Moving and Computing, volume 11340 of Lecture Notes in
Computer Science, pages 371-400. Springer, 2019. doi:10.1007/978-3-030-11072-7_15.

4 Jurek Czyzowicz, Adrian Kosowski, Evangelos Kranakis, and Najmeh Taleb. Patrolling trees
with mobile robots. In Frédéric Cuppens, Lingyu Wang, Nora Cuppens-Boulahia, Nadia Tawbi,
and Joaquin Garcia-Alfaro, editors, Foundations and Practice of Security — 9th International
Symposium, FPS 2016, Québec City, QC, Canada, October 24-25, 2016, Revised Selected
Papers, volume 10128 of Lecture Notes in Computer Science, pages 331-344. Springer, 2016.
d0i:10.1007/978-3-319-51966-1_22.

5 Peter Damaschke. Two robots patrolling on a line: Integer version and approximability. In
Leszek Gasieniec, Ralf Klasing, and Tomasz Radzik, editors, Combinatorial Algorithms —
81st International Workshop, IWOCA 2020, Bordeauz, France, June 8-10, 2020, Proceedings,
volume 12126 of Lecture Notes in Computer Science, pages 211-223. Springer, 2020. doi:
10.1007/978-3-030-48966-3_16.

6 Peter C. Fishburn and J. C. Lagarias. Pinwheel scheduling: Achievable densities. Algorithmica,
34(1):14—38, 2002. doi:10.1007/s00453-002-0938-9.

14:13

ATMOS 2021

https://doi.org/10.1007/978-3-319-73117-9_26
https://doi.org/10.1007/978-3-319-73117-9_26
https://doi.org/10.1287/opre.1110.0919
https://doi.org/10.1007/978-3-030-11072-7_15
https://doi.org/10.1007/978-3-319-51966-1_22
https://doi.org/10.1007/978-3-030-48966-3_16
https://doi.org/10.1007/978-3-030-48966-3_16
https://doi.org/10.1007/s00453-002-0938-9

14:14

Distance-Based Solution of Patrolling Problems

Leszek Gasieniec, Ralf Klasing, Christos Levcopoulos, Andrzej Lingas, Jie Min, and Tomasz
Radzik. Bamboo garden trimming problem (perpetual maintenance of machines with different
attendance urgency factors). In Bernhard Steffen, Christel Baier, Mark van den Brand,
Johann Eder, Mike Hinchey, and Tiziana Margaria, editors, SOFSEM 2017: Theory and
Practice of Computer Science — 43rd International Conference on Current Trends in Theory
and Practice of Computer Science, Limerick, Ireland, January 16-20, 2017, Proceedings,
volume 10139 of Lecture Notes in Computer Science, pages 229-240. Springer, 2017. doi:
10.1007/978-3-319-51963-0_18.

Robert Holte, Louis E. Rosier, Igor Tulchinsky, and Donald A. Varvel. Pinwheel schedul-
ing with two distinct numbers. Theor. Comput. Sci., 100(1):105-135, 1992. doi:10.1016/
0304-3975(92)90365-M.

Shun-Shii Lin and Kwei-Jay Lin. A pinwheel scheduler for three distinct numbers with a tight
schedulability bound. Algorithmica, 19(4):411-426, 1997. doi:10.1007/PL00009181.

https://doi.org/10.1007/978-3-319-51963-0_18
https://doi.org/10.1007/978-3-319-51963-0_18
https://doi.org/10.1016/0304-3975(92)90365-M
https://doi.org/10.1016/0304-3975(92)90365-M
https://doi.org/10.1007/PL00009181

	1 Introduction
	2 Distances in the Position Graph
	3 Two Robots on a Line
	3.1 The Position Graph
	3.2 Short Waiting Times
	3.3 The Smallest Instances

	4 Discussion and Conclusions

