A Rolling Horizon Heuristic with Optimality
Guarantee for an On-Demand Vehicle Scheduling
Problem

Johann Hartleb

Rotterdam School of Management, Erasmus University Rotterdam, The Netherlands
Institute for Road and Transport Science, University of Stuttgart, Germany
hartleb@rsm.nl

Marie Schmidt
Rotterdam School of Management, Erasmus University Rotterdam, The Netherlands

schmidt2@rsm.nl

—— Abstract

We consider a basic vehicle scheduling problem that arises in the context of travel demand models:
Given demanded vehicle trips, what is the minimal number of vehicles needed to fulfill the demand?
In this paper, we model the vehicle scheduling problem as a network flow problem. Since instances
arising in the context of travel demand models are often so big that the network flow model becomes
intractable, we propose using a rolling horizon heuristic to split huge problem instances into smaller
subproblems and solve them independently to optimality. By letting the horizons of the subproblems
overlap, it is possible to look ahead to the demand of the next subproblem. We prove that composing
the solutions of the subproblems yields an optimal solution to the whole problem if the overlap of
the horizons is sufficiently large. Our experiments show that this approach is not only suitable for
solving extremely large instances that are intractable as a whole, but it is also possible to decrease
the solution time for large instances compared to a comprehensive approach.

2012 ACM Subject Classification Applied computing — Transportation; Theory of computation
— Network flows; Mathematics of computing — Network flows

Keywords and phrases Rolling Horizon Heuristic, Vehicle Scheduling, Network Flow

Digital Object Identifier 10.4230/0OASIcs.ATMOS.2020.15

1 Introduction

On-demand transport services are becoming more and more popular among travelers and
they have the potential to replace a significant part of the traditional public transport services
in the near future. To be able to react on and regulate such services in a meaningful way,
it is important for infrastructure managers and local authorities to model and estimate
the impact of on-demand services on the utilization of streets. Recently, many microscopic
approaches ([11], [2], [6]) have been proposed to model on-demand services. These rely on
simulation of individual agents to obtain a virtual traffic volume and estimate the impact of
on-demand vehicles on the infrastructure. In contrast to that, macroscopic approaches such
as [13] model vehicle and traveler movements as flows to estimate the utilization of streets.

In this paper, we focus on macroscopic approaches and discuss a simple vehicle scheduling
model for on-demand vehicles: Given demanded vehicle trips, what is the minimal number
of vehicles needed to fulfill the demand? The resulting vehicle schedule describes vehicle
itineraries and yields both the required size of the vehicle fleet and the positions of the
vehicles over time. With this information, the utilization of streets can be estimated.

Most existing vehicle scheduling approaches are developed for operational purposes to find
an assignment of vehicles to planned trips ([7], [5], [3]). Recent vehicle scheduling approaches
focus on the integration of further operational aspects, for example, the integration of
? Johann Hartleb an.d Marie Schmid.t:,

5v icensed under Creative Commons License CC-BY
20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS

2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 15; pp. 15:1-15:18

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8101-1542
mailto:hartleb@rsm.nl
https://orcid.org/0000-0001-9563-9955
mailto:schmidt2@rsm.nl
https://doi.org/10.4230/OASIcs.ATMOS.2020.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

15:2

Rolling Horizon Heuristic for Vehicle Scheduling

related planning steps ([14], [4]) or the integration of recharging strategies of battery electric
vehicles ([16], [12]). Compared to these approaches, the application of vehicle scheduling to
estimate the impact of on-demand services in macroscopic models brings two differences:
(1) The demanded vehicle trips are not planned trips but correspond to expected passenger
demand in a macroscopic model. Hence, they might be of fractional value. (2) Compared to
scheduled public transport, the amount of on-demand vehicle trips can be extremely large.
Especially the second difference makes many existing optimization approaches unsuitable
as corresponding problems easily exceed the size of tractable instances. In [10], the vehicle
scheduling problem is modeled as a network flow problem that computes the size of the
necessary vehicle fleet and their itineraries. Due to the large instances in realistic applications,
[10] solve the vehicle scheduling model with a simple heuristic approach that constructs
the vehicle schedule chronologically. While this approach scales well also with very large
instances, no guarantee on the solution quality is given. It remains unknown whether the
found vehicle schedule is optimal or how far it is from an optimal solution.

The contribution of this paper is a rolling horizon approach to solve the vehicle scheduling
model introduced in [10] to optimality. The rolling horizon approach is a heuristic that splits
instances into tractable subproblems and solves them independently. By enforcing overlap of
the horizons of these subproblems, it is possible to look ahead to the demand of the next
horizon and include that information while solving the current subproblem. As a consequence,
the decisions taken in the current subproblem are well suited for the next subproblem and
the overall solution quality can be improved. For a sufficient length of the overlap, we prove
that a globally optimal solution can be found by composing the locally optimal solutions
for the horizons. In numerical experiments we could solve intractable instances from [10] to
optimality. Furthermore, we could show that using the rolling horizon approach can bring a
speed-up in solution time for certain instance size compared to a comprehensive approach.

The remainder of this paper is structured as follows. In Section 2, the vehicle scheduling
problem from [10] is introduced and in Section 3 we describe the rolling horizon heuristic in
detail as our proposed solution approach. For a sufficiently long overlap of the horizons, we
provide an optimality guarantee for the rolling horizon heuristic in Section 4. By modifying
the formulation, we can strengthen the conditions for optimality. In Section 5, we show
in numerical experiments that using the rolling horizon heuristic can help to speed up the
solution process for large instances and Section 6 concludes the paper.

2 Problem setting

The problem discussed in [10] is to find a minimal vehicle schedule, a feasible routing of a
minimal number of vehicles meeting all given demand. A macroscopic model is considered in
which neither the demand nor the resulting size of the vehicle fleet need to be integer.

In this setting, the considered time frame and observation area are discretized into a set of
time intervals T and a set of traffic zones Z. The distance ¢, ., between two zones is given as
multiples of time intervals, i.e., d,,,, = n means that driving from zone z, to z4 can be done
in n time intervals. It is assumed that vehicle trips within a zone can be performed in one
time interval, i.e., 6., = 1 Vz € Z. The passenger demand is given aggregated to demanded
vehicle trips d,, ., between origin z, and destination zone 24, starting at the beginning of
time interval ¢t. The trips end at the beginning of time interval ¢ + §,_,,, determined by
the distance between origin and destination zone and the start time. Vehicle trips either
correspond to demanded person trips or, in applications with trip pooling, comprise multiple
person trips. For carsharing or ridesharing applications, we assume that the pooling of person
trips was done in a preceding step, for example, by the approach of [8].

J. Hartleb and M. Schmidt

Horizon 2

Horizon 1 Overlap

Figure 1 Instance with 3 zones and 8 time intervals. A possible assignment of time intervals to
two overlapping horizons {¢,,...,t1} = {1,...,5} and {t,,...,t2} = {4,...,8} is indicated.

We denote an instance consisting of a set of zones Z, a set of time intervals T, a distance
function 4, ., and aggregated demand d,_.,; by Z = (Z,T,§,d). For an instance Z, the aim

is to compute a vehicle schedule with a minimal number of vehicles that meet the demand.

The fleet size and the vehicle routes in the schedule can be used to estimate the infrastructure
utilization. Deadheading trips are allowed to relocate vehicles, and vehicles waiting in a
traffic zone can be modeled as empty trips within a zone.

2.1 Network representation

This problem can be visualized in a time-space network, see Figure 1 for an instance with
3 zones and 8 time intervals. For each combination of z and ¢ in the planning horizon, we
introduce a node (z,t). These nodes are displayed in a grid structure with time intervals
t on the horizontal and traffic zones z on the vertical. Each node (z,t) represents a traffic
zone z at the beginning of a time interval t. The distance d,,,, between two zones z, and
zq is represented by the horizontal length of the arcs between the corresponding nodes. An
arc (2o, 24, t) between two nodes represents a possible vehicle trip between two zones z, and
z4, starting at time interval ¢. The arrival time ¢ + 9, ., results from the start time ¢ and
the distance 0, ,,. For readability, we omit the arrival time in the notation of an arc. The
demanded vehicle trips d,_,,: are modeled as lower bounds on the arc (z,, z4,t). A minimal
flow in this network corresponds to a vehicle schedule with a minimal number of vehicles.

2.2 Model

In [10] it is proposed to model the vehicle scheduling problem as a network flow problem
([1], [15], [3]) on the time-space network as introduced in Section 2.1. They formulate the
following linear program V'S to find vehicle tours with a minimal number of vehicles.

min Z Z frozal (1a)

20€EZ 2q€Z
s.t. Jeozat = ozt V20,24 € Z, VtET (1b)
S Fartt=by = > fezn Vze Z, VteT\ {1} (1c)
20€7: 24€Z
t—0.,.>1
frozat € Ry V2o,24 € Z, Nt €T (1d)

15:3

ATMOS 2020

15:4

Rolling Horizon Heuristic for Vehicle Scheduling

The flow variables f,_,,+ € Ry denote the number of vehicle trips from zone z, to zone zg4,
starting at the beginning of time interval ¢. The objective (1a) is to minimize the total
number of vehicles, expressed by the number of vehicle trips starting in the first time interval.
The resulting number of vehicles for a flow f is also referred to as flow value |f|. The first set
of constraints (1b) ensures that the demand is satisfied. If f, ,,: > d., .., that is, if there
are more vehicle trips than demanded, this can be interpreted as empty trips for vehicle
relocation or waiting in a traffic zone if z, = z4. To obtain a feasible vehicle flow, the second
set of constraints (1c) requires that the number of vehicles is preserved in each zone z at the
beginning of each time interval ¢. The domains of the flow variables f in (1d) show that the
vehicle trips do not need to be integer valued.

2.3 Difficulty of problem

The problem V'S is a continuous linear program and can therefore be solved efficiently with
available solvers for moderately sized instances. The coefficient matrix is totally unimodular,
hence, the problem of finding integer flows is polynomially solvable for integer demand
Aozt € Z (see [9], problem [ND37], second comment). However, to determine the impact of
on-demand vehicles on traffic and infrastructure in realistic cases of application, the number
of time intervals and traffic zones may be enormous and yield intractable instances.

[10] discuss an application instance for the city area of Stuttgart. In this instance, the
observation area is separated into |Z| = 1175 traffic zones and the time frame of one full day
is segmented in |T| = 96 time intervals of 15 min. The numbers of variables and constraints
of this instance is in the order of 10® and the corresponding optimization model could not be
build with the general purpose solver Fico Xpress 8.8 on a laptop with 32GB RAM®.

To handle extremely large instance sizes, [10] propose a simple heuristic that chronolo-
gically processes the nodes in the network and gradually constructs a vehicle schedule. By
backtracking and repairing the vehicle schedule during construction, they can achieve good
solutions for huge instances. However, the algorithm does not provide an approximation
guarantee for the constructed vehicle schedules (see [17] for more information on approx-
imation algorithms). That means, it cannot be guaranteed how close the solution is to an
optimal one. Furthermore, no optimality gap is provided by design of the algorithm.

3 Rolling horizon heuristic

In this paper, we propose using a rolling horizon heuristic to solve the model V'S. The idea
is to divide the considered time frame into shorter time horizons and solve one subproblem
for each time horizon. The solutions to the subproblems can then be composed to a solution
for the full time frame.

3.1 Generalization of linear program

To be able to compose the solutions of the subproblems to a feasible global solution, the
optimization model V'S from [10] is generalized. We consider an additional input of vehicles a;
that become available in zone z at the beginning of time interval ¢. Available vehicles to be
considered in one subproblem are a result of the flow fixed in previous subproblems. We

! Hardware: Intel® Core” i7-6700HQ CPU with 32GB of RAM; OS: Windows 10 Enterprise 2015 64-bit

J. Hartleb and M. Schmidt

denote the generalized input by Z = (Z,T,d,d,a) and generalize the optimization program
to VS:

min Z Z Jrozal = Qz1 (2a)

20€EZ 24€Z
s.t. foozgt = dzpzpt V2o,24 € Z, VNt €T (2b)
S eyt as = Fona Veez, VteT\{1} (2
20€Z: 2q4€EZ
t—02,-2>1
Z fzzdl > az1 VzeZ (2d)
zq€Z
fzozdt € R-}- VZO,Zd S Z, VteT (26)

As in the program VS, the objective (2a) is to minimize the total number of vehicles
needed to serve the demand. Since the flow variables f comprise all moving vehicles (including
those that are given as available vehicles), available vehicles @ in the first time interval are
subtracted in the objective. This corresponds to minimizing the number of additional vehicles
needed for serving the demand. The constraint (2b) ensuring that all demand is satisfied
remains unchanged and is the same as constraint (1b). It is necessary to generalize the flow
conservation constraints (2c¢) by treating available vehicles a,; as incoming flow in nodes
(z,t). Furthermore, an additional set of constraints (2d) ensures that the outgoing flow in
the first interval considers all available vehicles a since this time interval is not covered in
the flow conservation constraints (2c). Note, that for a = 0 the program V'S coincides with
the program V'S.

3.2 Overlapping horizons

The idea of the rolling horizon heuristic is to divide the time frame into horizons and solve
one subproblem for each horizon. By letting the horizons overlap it is further possible to look
ahead to the demand of the next horizon. That means, the demand in the overlap with the
next horizon is considered in the subproblem of the current horizon. However, the vehicle
trips to satisfy this demand is not yet fixed in the solution to the current subproblem, but in
the solution to the next subproblem.

The longer the overlap, the more demand can be considered, which allows to move vehicles
to positions that are well-suited for meeting demand in the next horizon. These positions of
vehicles are considered as available vehicles a,; in the subproblem for the next horizon.

A possible division of a time frame into two overlapping horizons is indicated in the
example network in Figure 1. In this example, the first horizon {1,...,5} spans over the
first five time intervals. In the first subproblem, all demand starting in these five intervals is
considered. However, only the flow starting before the overlap, that is, starting in the first
three time intervals is fixed in the solution of the first subproblem. The flow in the overlap is
fixed by solving the subproblem of the second horizon {4, ..., 8}.

3.3 Algorithm

With the generalized optimization model V'S we can define the rolling horizon heuristic.

Its general idea is to solve the problem for smaller horizons that may be overlapping and
compose the partial solutions to a solution for the full problem. Let h denote the number of

15:5

ATMOS 2020

15:6

Rolling Horizon Heuristic for Vehicle Scheduling

time intervals in each horizon and let o denote the number of overlapping time intervals in
the rolling horizon heuristic. Naturally, we require 0 < o < h.

Algorithm 1 Rolling horizon heuristic.

=

Input: Instance Z = (Z, T, d,d), length of horizon h, horizon overlap o

Output: Vehicle flow f

Initialize first horizon from time interval 1 to h, initialize variables for
available vehicles a and flow f with 0;

3 Initialize: i+ 1,¢, < 1, ¢, < h,a,: <0 Vze ZteT,
frozat <0 Vzo,2q4€ Z,t €T,

Iterate through horizons until end of time frame is reached;

while ¢; < |T'| do

Solve the subproblem corresponding to the current horizon ¢ and get flow f;

5 f « Solve subproblem(Z,{t,,...,ti},a, f);

Update number of available vehicles from fixed flow for next horizomns;

6 Qyp Z frozt—s.,.) V2€Z, te{ti—o,...,ti —o+maxd,, ., — 1};
20€Z:
1§t—6zoz<ti—0
Update bounds of next horizon and goto next horizon by increasing counter i;

7|t ti+th—o

tiv1 < &+ I
9 141+ 1;

N

IS

When reached end of time frame, truncate last horizon at |T|;
10 ¢+ |T);

Solve the subproblem corresponding to the last horizon ¢ and get flow f;
11 f < Solve subproblem(Z, {t;,...,t:},a, f);
12 Return f;

The pseudocode for the heuristic is presented in Algorithm 1. This algorithm processes
one horizon {t;,...,t;} after another (Line 4), with the first horizon starting in the first
time interval (Line 3). The horizons span h time intervals (Line 8) and each two consecutive
horizons have an overlap of o time intervals (Line 7). For each iteration, the subproblem
corresponding to the current horizon is called (Line 5 & 11), which is explained in detail in
Algorithm 2. Afterwards, the available vehicles are updated to communicate information
from the solution of one subproblem to the next (Line 6). Available vehicles are a mean to
model fixed vehicle trips that started before the overlap. By definition, these trips end at
latest max d,, ., — 1 time intervals after the beginning of the overlap.

Algorithm 2 Solve subproblem.

=

Input: Instance Z, horizon {t,...,t}, available vehicles a, (partial) vehicle flow f
Output: Updated vehicle flow f

Initialize sub-instance Z constrained to the horizon;

N

3 Initialize: T < {t,...,t}, Z < (Z,T', 8|7, d|7',alr);
4 do

Solve generalized optimization problem and get optimal flow f/ for horizon T';
5 f < VS(T);

Update total vehicle flow with solution from subproblem;

Jegzat < [l ot Y20,2a € Z, t €T,

Add additional vehicles to time intervals before the horizon to conserve flow;
fozt & frzeAmin{}", , fL . —a.,0} VzeZ t<t

Return f;

(=)

~

®

J. Hartleb and M. Schmidt

In Algorithm 2, the optimization model V'S is called (Line 5) to find an optimal vehicle
schedule for the subinstance Z that is constrained to the current horizon (Line 3). After each

optimization call, the the total flow f is updated with the partial solution found (Line 6).

Note, that this overwrites the vehicle flow in the overlap with the previous horizon. This
procedure is equivalent to considering all demand in the current horizon, but just fixing the
flow before the overlap, as described in Section 3.2. The flow in the overlap is discarded
and then fixed with the solution of the next subproblem. If more vehicles were necessary to
serve the demand in the current horizon than in the previous horizons, additional vehicles
are added to the flow f (Line 7). This can be interpreted as introducing waiting vehicles in
a traffic zone during all previous horizons.

Algorithm 1 keeps the structure of the rolling horizon heuristic, and for each horizon the
total flow is extended by the vehicle flow found in Algorithm 2. At the end, Algorithm 1
returns a vehicle flow for the whole time frame that is composed by the optimal partial flows
for the horizons.

4 Quality of the solution

In this section, we prove that the vehicle schedules found by the rolling horizon heuristic in
Algorithm 1 are optimal for certain choices of the overlap o. We start with the argument
that the rolling horizon heuristic finds a feasible solution.

» Definition 1. A flow f is called feasible for an instance T if it satisfies all demand and
fulfills the flow conservation in each vertex, i.e., if constraints (1b) and (1c) hold.

Since the partial solutions are optimal and hence feasible solutions to the flow problems
per horizon, the demand is satisfied by the composed vehicle flow. By carrying over vehicles
to next horizon with the help of available vehicles a, and by introducing additional waiting
vehicles in previous horizons, the flow conservation holds.

» Observation 2. Hence, the composed vehicle schedule found by the rolling horizon algorithm
is a feasible vehicle schedule for the whole time frame of an instance T.

» Theorem 3. The rolling horizon heuristic finds an optimal solution for an instance T if

>2- 0 -1
0= z(,IgiDG{Z FoZd
Sketch of proof. The main idea of the proof for Theorem 3 is simple: Since the overlap is
long enough, any vehicle trip that was fixed in the solution of a previous horizon can be
corrected by another vehicle trip in any desired direction, if necessary. We prove Theorem 3

by induction and start with the observation that the flow f! for the first horizon is optimal.

Next, we consider a flow for the first ¢ horizons, denoted by f?, and assume that it is
optimal for the first 4 horizons. That means, it is optimal for the instance Z = (Z,T%, 6, d)
with restricted time frame T% := {1,...,#;}. Hence, the vehicle schedule f! is a feasible

flow that meets all demand starting at latest at time interval Z;, the end of the " horizon.

Remember that the flow in the overlap {¢;—o,...,%;} is not fixed yet but will be overwritten in
the next iteration of the rolling horizon heuristic. The key is to show that fixing vehicle trips
that start up to t < #; — o, the beginning of the overlap, does not prevent the rolling horizon

heuristic to find an optimal solution fi*! for the first i 4+ 1 horizons if 0 > 2 - max§, ., — 1.

To do the induction step, we first consider the demand in the overlap, and, afterwards,
vehicles that are not necessary to meet demand in the overlap. Since f? is a feasible flow
for the first ¢ horizons, all demand in the overlap is satisfied. Of course, this demand is

15:7

ATMOS 2020

15:8

Rolling Horizon Heuristic for Vehicle Scheduling

also met in any feasible solution for ¢ + 1 horizons. With some adaptions on the flow in
the overlap, it can be shown that any optimal solution f? for ¢ horizons can be extended by
any optimal solution after the overlap. Since these adaptions require extensive notation, We
give a detailed proof for this in Appendix A. The underlying idea of the proof is, that it is
not important which vehicles meet the demand, but it is ensured that sufficient vehicles are
available to meet the demand in the overlap.

For the remaining vehicles, we focus on vehicle trips in f? that start before, and end at or
after the beginning of the overlap #; — o. Vehicle trips that end earlier do not interfere with
the next horizon, and vehicle trips that start later are overwritten by the solution for the
next horizon. Hence, these trips in f? do not restrict the solution for the (i + 1) horizon.

The trips under consideration start before the overlap, hence at ¢t <#; — 0o — 1 and end at
latest at ¢ <t; —o— 1+ maxd,,_,,. Relocating the vehicles that have executed these trips to
an arbitrary traffic zone from their current location takes at most another maxé, ., time
intervals. Hence, these vehicles are able to meet demand starting from any zone at time
interval t <t; —o—1+42-maxJ,,,,. For o > 2-maxd,_,, — 1, the vehicles are able to meet
demand just after the overlap at t < ;.

Together, this shows that fixing vehicle trips starting before the overlap in the solution
of one subproblem and carrying this decision over to the next subproblem by the means of
available vehicles, does not prevent finding a globally optimal solution. There are sufficient
vehicles to meet demand starting in the overlap and the remaining vehicles can be relocated
to any zone to meet demand after the overlap. |

Theorem 3 gives a lower bound on the overlap to ensure finding optimal solutions. It is
further possible to show that this lower bound is minimal.

» Lemma 4. For o < 2-maxd,, ., — 1, optimality of the rolling horizon heuristic cannot be
guaranteed.

Proof. We consider an example instance containing two zones and five intervals. The
maximum distance between two zones is 0152 = do1 = 2. There is only demand of 1.0 vehicle
trips within the first zone starting in time intervals 1 and 5, i.e., d111 = di15 = 1.0 and
dy,»,t = 0.0 otherwise. An outline of the underlying network can be found in Figure 2a.

One optimal solution is to use one vehicle that stays within the first zone all the time
and satisfies the demand during the first and the fifth time interval. This solution is

fiir=1.0vte {1,...,5} and f, ., = 0.0 otherwise,

with an objective value of |f| = 1.0. Applying the rolling horizon heuristic to this instance
with a horizon length of h = 4 and an overlap of o = 2 = 2maxJ,_,, — 2, optimality cannot
be guaranteed.

When considering the first horizon {1,...,4}, demand d;;5 = 1.0 lies outside the horizon
and is not considered yet. Therefore, routing 1.0 vehicles to the second zone after meeting
demand d;11 is an optimal solution to the first subproblem. This partial solution

fi11 = fiza = fo2a = 1.0 and f,,.,+ = 0.0 otherwise

with an objective value of |f| = 1.0 is depicted in Figure 2b. Given this partial solution, it is
impossible to satisfy the demand in the fifth time interval with the same vehicles. When
considering the second horizon {3,...,5}, the vehicle trip fi22 to the second zone cannot
be reverted since it started before the overlap, and it is impossible to send the 1.0 vehicles

J. Hartleb and M. Schmidt

(a) Instance: Net-
work with 2 zones
and 5 time inter-
- vals, indicated de-
mand and visualized
distances.

(b) An optimal solu-
tion to first horizon
{1,2,3,4}. This pre-
vents finding a glob-
ally optimal solu-
tion.

(c) An optimal solu-
tion to second hori-
zon {3,4,5}. Previ-
- ously fixed flow en-
forces use of addi-
tional vehicles.

) - i‘fﬂmj()y:: :

Figure 2 Example network with 2 zones and 5 time intervals and suboptimal solution found by
the rolling horizon heuristic for an overlap of o = 2 time intervals. Dashed lines indicate potential
vehicle trips, thick edges positive flow, and grey lines and vertices are outside of the considered
horizon. Numbers in brackets on edges show demand, numbers without brackets show vehicle flow.

back to the first zone in time. In this case, another 1.0 vehicles have to be added to satisfy
demand dj15 in the fifth interval, yielding a suboptimal global solution. This solution

flll == 20, fllt =1.0V2 S t S 5, f122 = f224 = f225 = 1.0 and onZdt = 0.0 otherwise

has an objective value of |f| = 2.0 and can be seen in Figure 2c.

Note, that this example can be generalized to provide a counterexample for any maximal
distance between two zones. Consider a network with the same pattern: two zones and a dis-
tance of 012 = d21 between these two zones. Define the demand by d111 = d;1(2 max Gageytl) =
1.0 and d.,.,+ = 0.0 otherwise. Then, the rolling horizon with a setting of A = 2max4,_.,
and 0 = 2maxd,_,, — 2 might fail to find the optimal solution with the same argumentation.
This generalization shows that a choice of 0 = 2max§,_,, — 1 is indeed the smallest value
for the horizon overlap that ensures an optimal solution for Algorithm 1. <

The counter example in the proof of Lemma 4 abuses the fact that an unreasonable
decision to route an empty vehicle to another zone can appear in an optimal solution. By
preventing this kind of unreasonable vehicle trip, the condition for the optimality guarantee
of the rolling horizon heuristic can be strengthened. In this context, a vehicle trip to a
different zone is considered unreasonable if it does not satisfy any demand d_,,; or if it is
not performed to satisfy any demand in the zone of its destination. Staying within zones is
never considered to be unreasonable as it is also used to model waiting vehicles during a
time interval. This is formalized in the following definition.

» Definition 5. A flow f is called unreasonable if for an arc (2o, z4,t) with z, # zq none
of the two conditions holds

1. Flow f, ., satisfies demand d_.,¢, ©.€., [z 20t = dsyzgt-

2. Flow f, ., s performed to have enough vehicles available to meet demand d, ¢ starting

15:9

ATMOS 2020

15:10

Rolling Horizon Heuristic for Vehicle Scheduling

in zone zg at t' ==t +0,,,,, and otherwise there were too few vehicles, i.e.,

onZdt + Z fzzd(t’fézzd) = Z dzdzt’-

ZoF£2EZ: 2€Z
6., >1
As a consequence, if it is ensured that no flow is unreasonable, all vehicles stay in the
destination zone z4 of their last satisfied demand d,_,,; unless they are needed to satisfy
demand. In particular, sending 1.0 vehicles from the first to the second zone in the counter
example is unreasonable. Preventing unreasonable flow helps to improve the condition for an
optimality guarantee.

» Theorem 6. If it is ensured in each iteration that no vehicle flow is unreasonable, the
rolling horizon heuristic finds an optimal solution for the whole time frame if

02 zDI,I;?}G{Z 6zozd '

Sketch of proof. The idea for the proof of Theorem 6 follows the structure of the one for
Theorem 3. In this case, the vehicle trips that start before the overlap end at the beginning
of the overlap t = t; — o, unless they meet demand. Then, after relocating them, the vehicles
are able to meet demand at ¢ <t; — o + maxd,,,,, i.e., at t <¢; for 0 > maxd,,,,.

Since the flow is not unreasonable, the fixed vehicle trips that end after ; — o either meet
demand or relocate vehicles to meet demand in the zone of destination. Hence, they are not
a restriction to finding a globally optimal solution as these trips have to be performed in any
feasible solution. With the same argumentation as in proof of Theorem 6, it follows that the
rolling horizon heuristic finds an optimal solution under the given conditions. |

Again, it is possible to show that this value is minimal.

» Lemma 7. For o < maxd,,,, optimality of the rolling horizon heuristic cannot be guaran-

teed, even if it is ensured in each iteration that no vehicle flow is unreasonable.

Proof. To show that the rolling horizon heuristic might not be optimal if 0 = maxd,, ., —1
we again provide a counterexample. This instance has two zones and maxd,,,, + 2 intervals,
where the case of maxJd,, ,, = §12 = 2 is depicted in Figure 3a. The only demand in this

instance is di11 = daao(maxs.,. +2) = 1.0. An optimal solution is

zZozg

Ji11 = fi122 = foo(maxs., ., +2) = 1.0 and [.+ = 0.0 otherwise

zZozq

with an optimal objective value of 1.0.
With the assumption of no unreasonable flow, the rolling horizon heuristic with parameter
setting h = maxd, ., +1 = 3 and o = maxd, ., — 1 = 1 cannot find an optimal solution

for this instance. In the first horizon {1,...,max¢. ., + 1}, demand dao(max 8rgeyt2) is not
considered and flow f111 = f112 =+ = fii(max §apayt1) = L0 08 fixed, see Figure 3b for the
case maxJd, ,, = 012 = 2. In the second horizon {3,...,maxd, ., + 2} it is not possible

any more to route the available vehicle from the first zone to the second zone to satisfy
demand dzg(max Bagey
introduce 1.0 additional vehicles in the second zone, which yields the suboptimal solution

+2) = 1.0. This situation can be seen in Figure 3c. It is necessary to

fi1e = foor = 1.0Vt € T and f,, ., = 0.0 otherwise

with the objective value 2.0. This shows that in case of no unreasonable flow the rolling
horizon heuristic only is guaranteed to find an optimal solution for o > max4d,_.,. |

J. Hartleb and M. Schmidt

(a) Instance: Net-
work with 2 zones
and 4 time inter-
.- vals, indicated de-
mand and visualized
distances.

S S
Il Il
o —

(b) An optimal solu-
tion to first horizon
{1,2,3}. This pre-
vents finding a glob-
ally optimal solu-
tion.

ES3
I
o)

(c) An optimal solu-
tion to second ho-
rizon {3,4}. Previ-
- “-s..c ously fixed flow en-
103107 forces use of addi-
= - tional vehicles.

1.0(0.0)

1.0(0.0)

§>

120(0.0) _/,—/"lfﬁ(—ﬂ/.b)
»O=

o
o

Figure 3 Example network with 2 zones and 4 time intervals and suboptimal solution found by
the rolling horizon heuristic for an overlap of o = 1 time interval. Dashed lines indicate potential
vehicle trips, thick edges positive flow, and grey lines and vertices are outside of the considered
horizon. Numbers in brackets on edges show demand, numbers without brackets show vehicle flow.

Unreasonable flow can, for example, be prevented by using the objective function (3):

Z Z fzozdl - azol + Z Z Czozd Zfzozdt- (3)

20€Z zq€Z 20€Z zq€Z teT

with artificial routing costs c¢. By setting ¢,, =0 and 0 < ¢,,_,, < |Tlﬂ| Vzo # 24 € Z, waiting
in a zone is always preferred to an unreasonable flow. The upper bound on ¢,, ., ensures
that never additional vehicles are acquired to save artificial routing costs. This means, using
objective (3) with that cost setting minimizes the number of vehicles and at the same time
prevents unreasonable flow.

5 Numerical experiments

In their paper, [10] discuss instances with up to 10® vehicles trips which leads to a similar
amount of variables. While it was not possible to build an optimization model V'S for such
huge instances with the solver FICO Xpress on a laptop with 32GB RAM, optimal solutions
for these instances could be found with the rolling horizon heuristic on the same machine.

Besides the fact that huge instances become tractable, splitting the problem into subprob-
lems can speed up the solution process for tractable instance sizes. We conduct experiments
on randomly generated instances with |T| = 96 time intervals, a maximal distance of
max ¢, ., = 10 time intervals between zones, and a varying number of zones |Z|. The rolling
horizon heuristic is used with the adjusted objective function (3) and a minimal overlap
of o = 10 that ensures finding an optimal solution. For each instance size, that means, for
each number of zones |Z], five randomly generated instances are solved with various settings
for the horizon length h. The horizon length h and the overlap o determine the number of
subproblems p that need to be solved during the rolling horizon heuristic. Applying the
rolling horizon heuristic with a horizon length of 96 time intervals means solving the whole
problem at once and is considered as the base case.

15:11

ATMOS 2020

15:12

Rolling Horizon Heuristic for Vehicle Scheduling

Table 1 Solution times for varying instance sizes (number of zones |Z|) and length of horizon h.
The top two rows indicate the length per horizon h and the corresponding number of subproblems
p. The first two columns state the number of zones |Z| and the resulting number of vehicle trips.
The last column gives the best absolute solution time in seconds per instance size. The remaining
columns show the solution times relative to the best solution time per instance size.

z 1 2 3 4 5 6 7 8 9 10 11

96 53 39 32 28 25 23 21 20 19 18
|Z] trips rel CPU abs CPU [s]
20 3.810* 1.0 1.17 1.27 1.43 140 1.53 1.69 1.84 1.90 2.05 2.15 1.0
40 1.510° 1.02 1.01 1.0 1.10 1.16 1.23 1.25 1.36 1.37 1.42 1.65 4.3
60 3.510° 1.31 1.06 1.0 1.06 1.09 1.15 1.15 1.22 1.26 1.44 1.41 10.7
80 6.110° 1.42 1.11 1.0 1.03 1.04 1.14 1.12 1.19 1.20 1.21 1.27 22.1
100 9.610° 149 1.08 1.01 1.0 1.02 1.03 1.06 1.09 1.16 1.19 1.27 38.4
120 1.410° 1.78 1.18 1.0 1.00 1.10 1.04 1.12 1.16 1.15 1.21 1.20 62.2
140 1.9 10? 172 117 1.04 1.0 1.05 1.06 1.07 1.08 1.12 1.13 1.15 95.8
160 2.510° 1.76 1.18 1.03 1.03 1.0 1.05 1.04 1.06 1.10 1.14 1.12 142.2
180 3.110° 1.82 1.18 1.04 1.0 1.03 1.02 1.04 1.02 1.04 1.05 1.10 194.0
200 3.810° 1.95 1.42 117 1.12 1.07 1.0 1.04 1.09 1.05 1.07 1.11 241.7
220 4.610° 1.93 1.25 1.08 1.10 1.07 1.03 1.0 1.05 1.08 1.10 1.08 316.1
240 5.5105 1.81 1.19 1.02 1.0 1.03 1.04 1.07 1.06 1.09 1.05 1.07 437.2

Table 1 shows relative and best absolute solution times for finding a globally optimal
solution, averaged over five random instances for each instance size. Both the number of
trips and the average absolute solving time increase exponentially with the number of zones,
indicating that large instances are hard to solve.

A value of 1.0 in the top left corner indicates that it is fastest to solve the instances with
20 zones at once, i.e., with a horizon length of h = 96. With decreasing length of the horizon,
and thus increasing number of subproblems, the solution times increase. For example, solving
the same instances by splitting them up into 11 horizons spanning 18 time intervals each,
thus solving 11 (smaller) subproblems, takes more than twice as long as the fastest option.

The larger the instances, the more it pays off to solve a larger number of small subproblems
instead of only few but large subproblems. With the tendency to increase further, solving
instances with number of trips in the order of magnitude of 10 at once took almost twice as
long as solving them with the rolling horizon approach in the best setting. Comparably low
computation times could be achieved with various settings for the horizon length.

6 Conclusion and Outlook

6.1 Conclusion

This paper presents an alternative way to solve a simple vehicle scheduling problem as it
occurs, for example, in the context of traffic estimation. The aim is to meet given demand
with the least amount of vehicles possible. For certain applications such as on-demand
services, the number of demanded trips can be extremely large, making real-world instances
intractable.

We propose a rolling horizon heuristic to solve large instances of this problem. The
principle is to split the considered time frame into small horizons and solve a vehicle scheduling
problem for each horizon. For a sufficient overlap of the horizons, we prove that a solution
composed by the partial solutions of the horizons is globally optimal. By introducing artificial
routing costs, we could further relax the condition on the optimality criterion which makes
finding optimal solutions less expensive.

J. Hartleb and M. Schmidt

In experiments we find that the rolling horizon approach has a runtime advantage over
solving a full model already for moderately sized instances, which illustrates the benefit of
our approach also for instances of medium size.

6.2 Outlook

The presented rolling horizon approach was motivated with and developed for the application
of vehicle scheduling in macroscopic demand models. However, the underlying theory of the
solution approach is more general. The vehicle scheduling problem V'S is modeled as a general
network flow problem on a directed cycle-free graph. Hence, the presented rolling horizon
approach is also applicable to a wider set of applications that can be modeled similarly.

Furthermore, it would be interesting to investigate whether the basic idea of the proof
can be adjusted to be used in an even broader range of applications. The key ingredient of
the proof is that decisions do not influence the remote future, which is the case in many
applications with time-space networks, for example. Therefore, it might be possible to
prove that a rolling horizon solution approach is capable of finding optimal solutions in
other applications as well. This could be especially interesting for applications of online
optimization where information is revealed successively.

—— References

1 Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows. Working
paper (Sloan School of Management); 2059-88. Cambridge, Mass.: Alfred P. Sloan School of
Management, Massachusetts Institute of Technology, 1988. URL: https://dspace.mit.edu/
handle/1721.1/49424.

2 Joschka Bischoff, Michal Maciejewski, and Kai Nagel. City-wide shared taxis: A simulation
study in Berlin. In 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), pages 275-280. IEEE, 2017.

3 Stefan Bunte and Natalia Kliewer. An overview on vehicle scheduling models. Public Transport,
1(4):299-317, 20009.

4 Samuela Carosi, Antonio Frangioni, Laura Galli, Leopoldo Girardi, and Giuliano Vallese. A
matheuristic for integrated timetabling and vehicle scheduling. Transportation Research Part
B: Methodological, 127:99-124, 2019.

5 A El-Azm. The minimum fleet size problem and its applications to bus scheduling. In Computer
scheduling of public transport 2, pages 493-512, 1985.

6 Daniel J Fagnant and Kara M Kockelman. Dynamic ride-sharing and fleet sizing for a system
of shared autonomous vehicles in Austin, Texas. Transportation, 45(1):143-158, 2018.

7 Brian A Foster and David M Ryan. An integer programming approach to the vehicle scheduling
problem. Journal of the Operational Research Society, 27(2):367-384, 1976.

8 Markus Friedrich, Maximilian Hartl, and Christoph Magg. A modeling approach for matching
ridesharing trips within macroscopic travel demand models. Transportation, 45(6):1639-1653,
2018. doi:10.1007/s11116-018-9957-5.

9 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

10 Johann Hartleb, Markus Friedrich, and Emely Richter. Umlaufbildung fiir on demand-
fahrzeugflotten in makroskopischen nachfragemodellen (preprint). In HEUREKA’20: Opti-
mierung in Verkehr und Transport, FGSV 002/127, 2020.

11 Michael Heilig, Tim Hilgert, Nicolai Mallig, Martin Kagerbauer, and Peter Vortisch. Potentials
of autonomous vehicles in a changing private transportation system — a case study in the
Stuttgart region. Transportation research procedia, 26:13—21, 2017.

15:13

ATMOS 2020

https://dspace.mit.edu/handle/1721.1/49424
https://dspace.mit.edu/handle/1721.1/49424
https://doi.org/10.1007/s11116-018-9957-5

15:14

Rolling Horizon Heuristic for Vehicle Scheduling

12 Tao Liu and Avishai Avi Ceder. Battery-electric transit vehicle scheduling with optimal number
of stationary chargers. Transportation Research Part C: Emerging Technologies, 114:118-139,
2020.

13 Emely Richter, Markus Friedrich, Alexander Migl, and Johann Hartleb. Integrating rideshar-
ing services with automated vehicles into macroscopic travel demand models. In 2019 6th
International Conference on Models and Technologies for Intelligent Transportation Systems
(MT-ITS), pages 1-8. IEEE, 2019.

14 Anita Schobel. An eigenmodel for iterative line planning, timetabling and vehicle scheduling
in public transportation. Transportation Research Part C: Emerging Technologies, 74:348-365,
2017.

15 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

16 Min Wen, Esben Linde, Stefan Ropke, P Mirchandani, and Allan Larsen. An adaptive large
neighborhood search heuristic for the electric vehicle scheduling problem. Computers &
Operations Research, 76:73-83, 2016.

17 David P Williamson and David B Shmoys. The design of approximation algorithms. Cambridge
university press, 2011.

A Proof of optimality

To proof Theorem 3, some additional definitions and observations are helpful. From Obser-
vation 2 we know that a composed solution for an instance Z found by the rolling horizon
heuristic is feasible. It remains to prove that the solution does not require more vehicles
than an optimal solution to the program V.S. To this end, we introduce necessary notation
to examine the vehicle flow per vehicle tour.

» Definition 8. A v-vehicle tour is a sequence

T = ((zolzdltl)a sy (Zonzdntn))

of n consecutive vehicle trips with a positive flow of value v € Ry. Consecutive trips are
characterized by

2di = Zoig1 0N L+ 05,2, = tip1 V1 <i<n.

A v-vehicle tour can be imagined as a tour that is driven by exactly v vehicles. Obviously,
a vehicle schedule consists of many vehicle tours:

» Observation 9 ([15]). A feasible flow f can be decomposed into a finite set of vehicle tours
{Ti}r such that the sum of all vehicle tour values y, vy equals the total flow |f|. Each of
the vehicle tours spans the whole time frame, i.e.,

t1=1andt,+9., ., >|T|.
Such a decomposition is not unique.

Next, we introduce vehicle duties to keep track of which vehicle tour serves which demand.

» Definition 10. Let T = (Z,T,4,d) be an instance and let f be a feasible vehicle schedule,
decomposed to a set of vehicle tours. A mapping v from a vehicle tour T and a vehicle
trip (zo, 24, t) to a positive value,

e (T7 (Zoa Zdat)) — R-i-

is called vehicle duty if the following three conditions hold:

J. Hartleb and M. Schmidt

1. The value is only positive if the vehicle trip is in the tour,
v (7, (20, 245 t)) > 0 = (20, 24, t) € T
2. The value is at most the value v of the vehicle tour,

Y (7, (20, 24, 1)) < .

3. The sum of values for one vehicle trip (zo, z4,t) sum up to the demand d,_.,+ on that
trip,

Z Y (Tv (Zm Zd,s t)) = dzozdt v(Zo; Zd, t)

7: (Zo,2d,t)ET

A vehicle duty can be interpreted as assigning all demand to vehicle trips that meet the
demand.

» Observation 11. For each feasible flow f decomposed to a set of vehicle tours, there exists
a vehicle duty such that the tour value v of each vehicle tour equals the value of the last
positive demand assigned to the tour. Demand d, . is called the last demand assigned to
the tour if there is no other demand d, v assigned to that tour with t' > t.

For any vehicle duty, this can easily be constructed by iteratively splitting each v-vehicle
tour not fulfilling this criterion into two v; and vy vehicle tours with the same sequence of
vehicle trips where at least one tour fulfills the criterion.

» Definition 12. Such a vehicle duty is called maximal vehicle duty.

Proof of Theorem 3. We show that a composed vehicle schedule of the rolling horizon

heuristic is optimal for the whole time frame by induction over the number of horizons.

Induction basis It is easy to see that the optimization program V'S finds an optimal solution
f1 for the first horizon {t;,...,t1} = {1,...,h}.

Induction hypothesis We consider a solution f? of the rolling horizon algorithm for the first 4
horizons and as induction hypothesis we assume that the solution is optimal. That means,

it is not possible to satisfy all demand d_,,; for t < ¢; with less than xt == | f!| vehicles.

This flow f? is fixed up to the beginning of the overlap and may not be changed by the
solution of a future horizon. The flow in the overlap,
by the solution of the next horizon and may change.
Induction step Let f* be an optimal solution for ¢+ 1 horizons, for example found by solving
the optimization model V.S. Our aim is to show that a solution from the next iteration
of the rolling horizon heuristic with an overlap of o > 2-max9, ,, — 1 is optimal for i + 1
horizons. This is done by constructing a feasible flow f**! for the first ¢ 4+ 1 horizons that
is identical to the flow f? before the overlap and uses z* := |f*| vehicles. Since we can
construct such a solution, Algorithm 2 in the rolling horizon heuristic will find a solution

i . .
2.zt fOr t > t; — o0 is overwritten

that is at least as good.

First, we consider a decomposition of the flow f? into finitely many vehicle tours 7%, and
a maximal vehicle duty ¢ assigning all demand to the vehicle tours. We ’cut off’ each vehicle
tour 7°
| after meeting the last demand that starts in the overlap and that is assigned to that
tour, or else,
Il if no demand starting in the overlap is assigned to that tour in the vehicle duty, after
the first vehicle trip that ends in the overlap.

15:15

ATMOS 2020

15:16

Rolling Horizon Heuristic for Vehicle Scheduling

To formalize, let

Ti = ((zola Zd1, tl)a R (Zolm Zdk> tk)a (zok+1a Zdk+1> tk+1)7 ey (ZOna Zdn tn))

be a vehicle tour in flow f?. Let (2o, zdx,tx) be the last vehicle trip starting in the overlap
with demand assigned to the tour 7%, or else, be the first vehicle trip that ends in the overlap.
Then, the rear part after this vehicle trip, starting with (2,441, Zdg11, te+1), is cut off, which
yields the incomplete tour

7' = (201, Zd1,t1)s - - - » (Zok» Zdk, t))-
This can be interpreted as letting all vehicles from vehicle tour 7% wast in zone zg at time
interval ty + 9., 2y, -
I We denote the number of all vehicles waiting in vertex (z,t) after meeting demand that
starts in the overlap by w!, and initialize the set of vertices where these vehicles are
waiting as

Wh={(z,t): wl, >0, 2€ 2 t;—0o<t <t +maxs.,.,}.

Il Equivalently, we denote the number of all vehicles waiting in vertex (z,t) after the first
vehicle trip ending in the overlap by w!l.
This leaves us with incomplete vehicle tours that start in the first time interval and end
sometime after the beginning of the overlap with waiting vehicles.
Next, we use these incomplete vehicle tours as a basis for the flow fi*! that we want to
construct as a solution for the first ¢ + 1 horizons. We set

= Z v(t") Vze,2za € Z, t€{1,...,1;}

7' (20,2d,t)ET!

where v(7') is the flow value of vehicle tour 7/. We want to highlight three characteristics of

fiJrl:

1. Since the tours 7/ are not cut off before the start of the overlap, fi*! is identical to flow f°
up to the beginning of the overlap. This is required for the construction of f**! since all
vehicle trips before the overlap are fixed by design of the rolling horizon heuristic.

2. Since it is defined by incomplete tours, f*! is not a feasible flow (yet). The flow
conservation does not hold at some nodes. In this proof, we show that it is possible to
extend it to a feasible flow at these nodes.

3. Since the tours 7/ are cut off after meeting the last demand, fi*! does meet all demand
starting up to the end of the overlap.

Our goal is to show that we can complete f+! to a feasible flow for i 4+ 1 horizons while
using z* vehicles. The sum of all flow values of the incomplete tours is z?, equal to the flow
value of f%. It holds that 2* < x*, otherwise f? is not optimal for the first ¢ horizons as f*|;
would be a better solution, which contradicts the induction hypothesis. In case that z! < z*
we add (z* — 2%) more vehicles to fi*! at an arbitrary zone, for example by letting them
stay in the first zone until the beginning of the overlap:

R (TR CAR)

This increases the number of waiting vehicles w% in node (1,%;) by (z* — 2%). Then, the

sum of all flow values in f*! is 2*, as in any optimal flow f*.

J. Hartleb and M. Schmidt

Next, we consider an arbitrary but fixed optimal solution f* for i+ 1 horizons, decomposed
into finitely many vehicle tours 7*, and a vehicle duty v* assigning all demand to the vehicle
tours 7*. Let T be the set of all tours 7* in f*. Our aim is to extend the incomplete tours
in fi*! with the rear parts of the tours in f*.

I First, we consider waiting vehicles w!, that met demand starting in the overlap. We
extend f*+! according to the following procedure:
While W is not empty, we choose an arbitrary node (z,t) € W'. By definition of W,
at least wl, demanded vehicle trips end in node (z,t). Hence, there exist vehicle
tours 7* € T that this demand was assigned to, otherwise f* was infeasible. We
extend ! at node (z,t) with these tours 7* from f* until there are no more waiting
vehicles w!, in node (z,t):
While w!, > 0, we take such a tour 7* with tour value v(7*) and remove it from the
set 7. If v(7*) > w!,, we split the tour 7* into two tours with the same sequence
of vehicle trips as 7%, one tour 7, with flow value w!,, and one tour 7*_, with flow
value v(7*) — wl,. Else, for v(7*) < wl,, we take the tour with the full value v(7*)
and define 75 = 7*.
We extend fi*! at node (z,t) with tour 7% and put 7;_,, back into the set 7.
Extending fi*! with tour 7, means, we increase the flow value fzi:r,id,t,
vehicle trip (z,/, z4’,t') in tour 7% after node (z,t) by the value v(7.}),

for each

R o Fu(ry) V(20,24 t) eyt >t

zo'zq't! 2o’ 24 w*
Based on this extension of fi*!, we update the number of waiting vehicles:

At the current node (z,t), there are v(7)) waiting vehicles less, hence, we
set wl, == wl, —v(7}). Moreover, it might be that some further demand d., /¢
starting in the overlap after node (z,t) was assigned to vehicle tour 7, in the
optimal flow f*, i.e. v* (755, (20, 24’,t')) > 0 for t < t' < ¢;. Then, we assign
this demand to the newly extended tour in f**! as well. In particular, we undo
the assignment of this demand to another tour 71! in fi*1,

If demand d, /., was the last demand assigned to tour 7i+1 this has two

consequences: First, it caused waiting vehicles wi o) after the demanded
, zd

RN
vehicle trip (2o, z4',t"). We remove these waiting vehicles since the demand is
met by the newly extended vehicle tour in f*+! as well:
wid’(t’+52012d/) = max{wid'(turazg,“,) =" (T, (20,24, 1)), 0}
Second, since the assignment of the last demand to tour 7¢*! is undone, either
another demand d i, with ¢; — o < t” < ¢ is the last demand, or no other
demand that starts in the overlap is assigned to tour 7¢*!. In the first case,
we increase the number of waiting vehicles wid/,(t/, S) after that demand
by v*(7.5, (20’ z4', ")) since it is now the last demand. In the second case,
we increase the number of waiting vehicles wg by v*(7%, (20, zd',t')), where
node (2,1) is the first node of tour 7*** in the overlap.
If w!, = 0 for any node (z,t) after updating of the number of waiting vehicles, we
remove it from W' and continue with the next node in W,
This procedure extends f**! with vehicle trips from f* until there are no more waiting
vehicles w!, at node (z,t). During this construction, also the waiting vehicles at other
nodes might be changed. We want to emphasize that this procedure is well-defined

15:17

ATMOS 2020

15:18

Rolling Horizon Heuristic for Vehicle Scheduling

and finite. There exist sufficient vehicle tours in the set 7 to be chosen from in
the procedure. For each node (z,t), at most vehicle tours with a total flow value
of incoming demand at (z,t) are requested from set 7. Since all demand is met by
the solution f*, these tours exist. Furthermore, we reduce the waiting vehicles in all
future nodes by the flow value of a tour, if a tour with assigned demand is removed
from 7. Hence, taking a tour 7* with assigned demand ending in (z,t) from set T
is well-defined. In each update of the number of waiting vehicles, the total number
of waiting vehicles never increases. Furthermore, it is impossible to process waiting
vehicles caused by the same demand twice, which makes the procedure finite.
This procedure is applied to all nodes with waiting vehicles w! until the set of waiting
vehicles W1 is empty. After this procedure, we obtain an incomplete flow f+! with some
complete tours that start in the first time interval and reach the end of the horizon, and
some waiting vehicles w'! after the beginning of the overlap that were not treated yet.
Il Second, we consider these waiting vehicles w!! after the beginning of the overlap.
We start with determining the amount of waiting vehicles w'': Let denote the sum of
the flow values of the complete tours constructed in case I. Since these tours are based on
flow f? and extended with tours from the optimal solution f*, the sum of the flow values
of the vehicle tours left in the set of tours 7T is equal to the total number of waiting
I namely (z* —). The waiting vehicles w!l are present at nodes (z,t) after
the first vehicle trip that starts before and ends in the overlap. Hence, the vehicles are
waiting in zone z at the beginning of time interval ¢ with

vehicles w

t<t—o—1+maxd,,,,.

It is important to note that all demand in the overlap is met by the complete tours
constructed in case I and we do not need to take care of this.

We disconnect the remaining vehicle tours in the set 7 at the first node (2/,t') after the
overlap into two incomplete tours. Then, it is possible relocate the waiting vehicles to
zone 7z’ within at most maxd,_,, time intervals, that means the vehicles can be available
in zone 2’ at latest at

t<t;—o—1+2-maxd, ,, <t <t.

That means, it is possible to relocate the waiting vehicles w' within the overlap and
extend fi+! with the rear parts of the disconnected vehicle tours from f*.
As a result, we obtain a feasible flow f*! for the first ¢ + 1 horizons that uses x* vehicles.
This flow is identical to flow f? before the overlap, and identical to flow f* after the overlap.
For the time intervals in the overlap, we constructed f*! in such way that it connects f*
and f*. By construction, it is ensured that all demand is satisfied and with the help of
waiting vehicles we could connect the flows ensuring flow conservation at each node.
Since it is possible to construct a flow fi*! with these characteristics, the rolling horizon
algorithm will find a vehicle schedule for ¢ + 1 horizons that is at least as good. The theorem
follows by induction. |

	Introduction
	Problem setting
	Network representation
	Model
	Difficulty of problem

	Rolling horizon heuristic
	Generalization of linear program
	Overlapping horizons
	Algorithm

	Quality of the solution
	Numerical experiments
	Conclusion and Outlook
	Conclusion
	Outlook

	Proof of optimality

