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Abstract
When determining the paths of the passengers in public transport, the travel time is usually the
main criterion. However, also the ticket price a passenger has to pay is a relevant factor for choosing
the path. The ticket price is also relevant for simulating the minimum income a public transport
company can expect.

However, finding the correct price depends on the fare system used (e.g., distance tariff, zone
tariff with different particularities, application of a short-distance tariff, etc.) and may be rather
complicated even if the path is already fixed. An algorithm which finds a cheapest path in a very
general case has been provided in [6], but its running time is exponential. In this paper, we model and
analyze different fare systems, identify important properties they may have and provide polynomial
algorithms for computing a cheapest path.
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1 Introduction

Fare systems may be very diverse, containing a lot of different rules and regulations. Among
them is the unit tariff in which all journeys cost the same, no matter how long they are,
or kilometer-based distance tariffs which are used by most railway companies all over the
world. Very popular in metropolitan regions are zone tariffs (used in many German regional
transport networks and in many European cities, but also, e.g., in California). In most
regions, these fare systems come with special regulations: Journeys with less than a given
number of stops may get a special price, there might be network-wide tickets, or stations
belonging to more than one zone. The underlying fare system is usually independent of
the way tickets are bought: they can be provided as paper tickets from ticket machines or
from online sales, by usage of smart cards in check-in-check-out systems, or by other mobile
devices. Recently, some public transport companies offer the simple usage of a mobile device
for charging the beeline tariff between the start coordinates and the end coordinates of the
journey. Sometimes all these different fare systems are combined.

The question which we pursue in our paper is how to find the cheapest possibility to travel
between two stations. This question is relevant for several reasons. First, the passengers
would like to minimize their ticket prices as one among other criteria when planning their
journeys. Second, a public transport company can only estimate its income if ticket prices
are known for the demand. Simulating the journeys of the passengers together with their
ticket prices for some given demand is common for dividing the income of traffic associations
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between the single public transport providers. Third, for designing and improving fare
systems, it is necessary to be able to compute (cheapest) ticket prices.

A model together with an algorithm for computing cheapest paths which are able to cover
most of the possible regulations are developed in [6]. The idea is to define transition functions
between tickets over partially ordered monoids. However, since so many particularities are
covered, the algorithm needs exponential time. In this paper, we analyze properties of special
fare systems, for example, a plain distance tariff and two variations of zone tariffs. This does
not cover all particularities simultaneously, but allows to derive analytical properties and to
design algorithms which are based on shortest path techniques and hence run in polynomial
time for many common fare systems.

The properties we are going to investigate are the following:

No-stopover property: Can we be sure that passengers cannot save money by splitting a
journey into two (or more) parts and buying separate tickets for each of these sub-journeys?

No-elongation property: Can we be sure that passengers cannot save money by buying a
ticket for a longer journey although they only use a part of it?

In (real-world) fare systems, these two properties need not be satisfied. As will be shown,
there is also no relation between them. The third property we investigate is the well-known
subpath-optimality property from dynamic programming.

Subpath-optimality property: Is any subpath of a cheapest path again a cheapest path?

The first two properties are relevant from a real-world point of view, since they ensure
that a fare system is consistent and does not trigger strange actions (e.g., buying a ticket
for a longer path than needed) as a legal way of saving money. In Section 3 of [12] the
authors say that a fare system without the no-stopover property would be “impractical and
potentially confusing for the customer”. Still, as we will see, this property is not always
satisfied in real-world fare systems. The subpath-optimality property is relevant for the
design of algorithms.

1.1 Related Literature
Literature on fare systems is scarce compared to papers on timetabling or scheduling in public
transport. Early papers deal with the design of (fair) zone tariffs [9, 10, 3], a topic which
is still ongoing using different types of objectives, e.g., the income of the public transport
company [2, 7, 13]. Also the (backward) design of distance tariffs from zone tariffs has been
studied [11]. The computation of cheapest paths has been considered for distance tariffs
in a railway context in [12], while [4, 5] compute paths that visit the smallest number of
tariff zones. Recently, [6] present the so-called ticket graph which models transitions between
tickets via transition functions over partially ordered monoids and allows the design of an
algorithm for finding cheapest paths in fare systems which do not have the subpath-optimality
property. However, the running time of this approach need not be polynomial.

1.2 Our contribution
We present models for the following fare systems: unit tariff, distance tariff, beeline tariff,
zone tariff, and zone tariff with metropolitan zone. For these fare systems we analyze
the no-stopover property, the no-elongation property, and the subpath-optimality property.
Furthermore, we develop polynomial algorithms for computing cheapest paths for all of
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these cases. This shows that for many practically used fare systems, cheapest paths can be
computed in polynomial time although this is not the case for general fare systems [6].

2 Modeling Different Fare Systems

We consider different types of fare systems which we define in this section. We first specify
what a fare system is. We are not aware of such a formal definition in the literature.

Let a Public Transport Network (PTN) be given. PTN = (V, E) is a graph given by a set
of stops or stations V and a set E of direct connections between them. For simplicity we
assume the PTN to be an undirected graph which is simple and connected. The PTN can be
used to model railway, tram, or bus networks. The price of a journey through a PTN depends
not only on the start station and the end station of the journey, but also on the specific
path that has been chosen. Note that this is sometimes included implicitly, e.g., in railway
tickets which include origin and destination, but specify a geographical travel corridor which
is allowed for the journey (given by intermediate stops between which the corridor can be
looked up). Hence, we need the set of all paths of the PTN, which we denote by W.

I Definition 1. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system is a function p :W → R≥0 that assigns a price to every path in a PTN.

Note that a fare system always involves a PTN.
For a path W = (x1, . . . , xn), we denote a subpath (xi, . . . , xj) with 1 ≤ i < j ≤ n by

[xi, xj ]. The price of a subpath is hence given as p([xi, xj ]). The brackets [·] emphasize that
[xi, xj ] describes a path and not only a pair of stations. To look at paths in the PTN and not
at timetabled trips is a simplification because a ticket usually has a maximal duration how
long it is valid. Stopovers may be allowed as long as this maximal duration is not exceeded.
If a passenger combines two journeys, e.g., she first travels to the house of her uncle for a
visit and then travels to university to get some important documents, she might be able to
do this within the same ticket or she buys two separate tickets. In the latter case, we call
her path a compound path and its price is the sum of the prices of the two tickets that she
bought.

We now define the fare systems which we study in this paper. The simplest fare system
is a unit tariff in which all trips cost the same.

I Definition 2. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system p is a unit tariff w.r.t. p̄ ≥ 0 if p(W ) = p̄ for all W ∈ W.

Unit tariff fare systems are often considered as unfair. They are used within (even big)
cities. The contrary is that the price of a journey depends on the kilometers traveled. In a
distance tariff the length of the journey is used, while in a beeline tariff the airline distance
is the basis for the ticket price. To define these two fare systems, we use l(W ) to denote
the length of a path W = (x1, . . . , xn) (in kilometers), and l2(W ) = ‖xn − x1‖ as its beeline
distance. In order to compute l(W ), we assume that each edge in the PTN has assigned its
physical length, and to compute the beeline distance, we assume that the stations V of the
PTN are embedded in the plane such that the Euclidean distance l2 between every pair of
stations can be computed.

I Definition 3. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system p is a distance tariff w.r.t. p̄, f ≥ 0 if p(W ) = f + p̄ · l(W ) for all W ∈ W.

ATMOS 2020
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Figure 1 PTNs with zone partitions for Example 5.

I Definition 4. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system p is a beeline tariff w.r.t. p̄, f ≥ 0 if p(W ) = f + p̄ · l2(W ) for all W ∈ W.

Note that in case of p̄ = 0, both the distance tariff and the beeline tariff become unit
tariffs. An important property of the beeline tariff is that it does not depend on the whole
journey, but only on its start and end point. Most railway systems rely on distance tariffs
(or modifications). Beeline tariffs are rather new and often used for mobile tickets on
mobile phones or internet devices which track the journey of a passenger by using her GPS
coordinates and determining the price based on the beeline distance after the journey is over.

Zone tariffs are somehow intermediate between unit tariffs and distance tariffs. The whole
region is divided into tariff zones and the length of a journey is approximated by the number
of zones it visits. The ticket price then depends only on the number of visited zones. This is
considered as more fair than the unit tariff, but it is also more complicated. For modeling a
zone tariff, we use the PTN. The geographical zones imply a partition Z = {Z1, . . . , ZK}
of the set of stations V , i.e., V =

⋃
i=1,...,K Zi and the Zi are pairwise disjoint. For every

edge (x, y) ∈ E of the PTN, the value b(x, y) of the border function denotes the number
of zone borders crossed when traveling between x and y. If b(x, y) = 0, both stations x

and y belong to the same zone, while the reverse direction need not hold, see Figure 1c in
Example 5. We consider the border function as an additional edge weight which is given
together with the PTN. From that, we can derive for a path W = (x1, . . . , xn) the zone
function z(W ) = z(x1, . . . , xn) := 1 +

∑n−1
i=1 b(xi, xi+1), which determines the number of

zones which are visited by the path W . We illustrate the way to count zones in the following
example.

I Example 5. For the situations shown in Figure 1, we determine the value of the zone
function for the x1-x3-path.
(a) We have b(x1, x2) = 1, b(x2, x3) = 1. For W = (x1, x2, x3) we get z(W ) = 1 + 1 + 1 = 3.
(b) Here, b(x1, x3) = 2, hence for W = (x1, x3) we have z(W ) = 1 + 2 = 3.
(c) Although x1 and x3 belong to the same zone, the edge between them crosses another

zone. Hence, b(x1, x3) = 2 and for W = (x1, x3) we get z(W ) = 1 + 2 = 3.

We now have the preliminaries to define a zone tariff.

I Definition 6. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system p is a zone tariff w.r.t. the price function P : N≥1 → R≥0 if p(W ) = P (z(W )) for all
W ∈ W.

The price function P assigns a ticket price to each number of visited zones. If it is
constant, the zone tariff simplifies to a unit tariff.

Many zone tariffs include particularities. A common one is the definition of metropolitan
zones in which a subset of zones ZM ⊆ Z is combined to a common zone ZM =

⋃
Z∈ZM

Z,
the metropolitan zone. For journeys which cross the metropolitan zone or start or end there,
the zones are counted as in the basic zone tariff. For journeys within the metropolitan zone,
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Figure 2 PTN with zones for Example 8.

a special price is fixed. A higher price might be charged if the metropolitan zone has a
well-developed public transport network or is much larger than a usual zone. A lower price
might be chosen in order to make public transport more attractive, e.g., in city regions to
reduce the car traffic.

In order to describe the metropolitan zone, we could save which stations and which
edges of the PTN belong to ZM . Algorithmically, we define weights zM (e) ∈ {0, 1} for every
edge e ∈ E in the PTN by

zM (e) :=
{

0 if e is completely contained in ZM ,
1 otherwise.

Together with the border function b, we save the values of zM (e) as information with the PTN.
For a path W , we have zM (W ) :=

∑
e∈E(W ) zM (e). We say that a path W is included in the

metropolitan zone ZM if all of its stations and all of its edges are completely contained in ZM ,
i.e., if the path never leaves the metropolitan zone. Formally, this means that zM (W ) = 0.

The formal definition of this fare system is:

I Definition 7. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system p is a zone tariff with metropolitan zone ZM , a price function P : N≥1 → R≥0 and a
price PM ∈ R≥0 if we have for every path W ∈ W that

p(W ) =
{

PM if W is included in the metropolitan zone ZM , i.e., if zM (W ) = 0,
P (z(W )) otherwise.

I Example 8. As an example for metropolitan zones consider Figure 2. We have four zones
and the zones highlighted in gray form a metropolitan zone. For the path W1 = (x1, x2, x3)
which is included in the metropolitan zone, the metropolitan price p(W1) = PM is applied.
On the other hand, the price for the path W2 = (x1, x2, x3, x4) is computed as in the basic
zone tariff and is given by p(W2) = P (4).

Note that also zone tariffs with several metropolitan zones are possible (and can be
defined as above). Paths traveling through a metropolitan zone may be also treated in other
ways, e.g., the metropolitan zone always counts as two zones.

Each of the considered types of fare systems is uniquely defined by a PTN and some price
information, e.g., the fix price f and the price per kilometer p̄ for a distance tariff or the
price function P for a zone tariff.

3 Properties of Fare Systems

Before analyzing the no-stopover property, the no-elongation property, and the subpath
optimality property, we define them formally. For that, let a PTN = (V, E) with a fare
system p be given.

ATMOS 2020
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I Definition 9. A path (x1, . . . , xn) ∈ W satisfies the no-stopover property if

p([x1, xn]) ≤ p([x1, xi]) + p([xi, xn])

for all intermediate stops xi with i = 2, . . . , n− 1. A fare system satisfies the no-stopover
property if it is satisfied for all paths in the PTN.

The no-stopover property says that a compound path [x1, xi]◦[xi, xn] is never preferable to
buying a ticket for the complete path [x1, xn], i.e., making a stopover does never decrease the
ticket price. If a single path satisfies the no-stopover property, it might nevertheless be bene-
ficial to have multiple stopovers as the following path W = (x1, x2, x3, x4) with four stations
and the following ticket prices show: p([x1, x4]) = 10, p(x1, x2) = p(x2, x3) = p(x3, x4) = 3
and p([x1, x3]) = p([x2, x4]) = 7. However, in case that the no-stopover property holds for
the whole fare system p, also multiple stopovers of a single path are not helpful, since for
several stopovers at xi1 , . . . , xik

we have that

p([x1, xi1 ]) + p([xi1 , xi2 ])︸ ︷︷ ︸
≥p([x1,xi2 ])

+p([xi2 , xi3 ])

︸ ︷︷ ︸
≥([x1,xi3 ])

+ · · ·+ p([xik
, xn]) ≥ p([x1, xn]).

I Definition 10. A path (x1, . . . , xn) ∈ W fulfills the no-elongation property if it holds that
p([x1, xn−1]) ≤ p([x1, xn]). A fare system satisfies the no-elongation property if it is satisfied
for all paths in the PTN.

The no-elongation property says that buying a ticket for a longer path which includes
the journey a passenger really wants to travel is never preferable to buying the ticket for the
subpath, i.e., that p([xi, xj ]) ≤ p(W ) for W = (x1, . . . , xi, . . . , xj , . . . , xn). This holds, since
p([xi, xj ]) ≤ p([xi, xj+1]) ≤ . . . ≤ p([xi, xn]) and p([xi, xn]) ≤ p([xi−1, xn]) ≤ . . . ≤ p([x1, xn])
by considering the reverse path (xn, . . . , x1).

In Section 4.3 we will see that the no-stopover property does not imply the no-elongation
property, and Section 4.5 will show that the inverse implication does also not hold.

If the no-stopover and the no-elongation property both hold, then we do not need to
consider compound paths when searching for the cheapest possibility to travel between
two stations x and y and we do not need to look for paths between other pairs of stations
that contain an x-y-path as subpath. In other words, if both, the no-elongation and the
no-stopover property hold, there always exists a cheapest possibility to travel from x to y

which can be realized by a (non-compound) path, i.e., by a path [x, y] for which the passenger
buys one single ticket with price p([x, y]). This will be used later on and simplifies the
situation.

I Definition 11. A cheapest path (x1, . . . , xn) ∈ W satisfies the subpath-optimality property
if every subpath [xi, xj ], 2 ≤ i ≤ j ≤ n− 1 is again a cheapest path for its corresponding start
and end station. A fare system satisfies the subpath-optimality property if it is satisfied for
every cheapest path in the PTN.

4 Results and Algorithms for Computing Cheapest Paths

4.1 Unit tariff
As a simple warm-up, let us start with the unit tariff. It has the property that every path in
the PTN costs the same, so every path is a cheapest path.
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I Theorem 12. Let p be a unit tariff w.r.t. p̄. Then p satisfies the no-stopover property, the
no-elongation property and the subpath-optimality property.

Proof. Consider a path W = (x1, . . . , xn). For any i ∈ {2, . . . , n− 1}, the two corresponding
subpaths [x1, xi] and [xi, xn] satisfy p([x1, xi])+p([xi, xn]) = p̄+ p̄ ≥ p̄ = p(W ), so a stopover
at xi does not decrease the ticket price. Also, no subpath [xi, xj ] can be more expensive
than the original path W , hence the no-elongation property is satisfied. Since every path is
a cheapest path, also the subpath-optimality property is satisfied. J

Finding a cheapest path hence reduces to finding an arbitrary path between two stations
which can be done, e.g., by breadth-first search (in which case we would end up with a path
with a minimum number of edges). We receive:

I Corollary 13. For the unit tariff, a cheapest path can be found in polynomial time.

4.2 Distance tariff
For the distance tariff, we have for any pair of paths W1, W2 ∈ W that l(W1) ≤ l(W2) is
equivalent to p(W1) ≤ p(W2) by definition. Hence, a shortest path is always a cheapest path
and vice versa. Consequently, we can use any shortest path algorithm (with corresponding
speed-up techniques) for finding a cheapest path.

I Lemma 14. For a distance tariff, a cheapest path can be found in polynomial time.

Also, all three properties are satisfied for distance tariff fare systems.

I Theorem 15. Let p be a distance tariff w.r.t. f, p̄. Then p satisfies the no-stopover property,
the no-elongation property and the subpath-optimality property.

Proof. For the no-stopover property consider a path W = (x1, . . . , xn) with a possible
stopover at xi, i ∈ {2, . . . , n− 1}. Since l(W ) = l([x1, xi]) + l([xi, xn]), we know that

p([x1, xi]) + p([xi, xn)] = f + p̄ · l([x1, xi]) + f + p̄ · l([xi, xn])
= f + f + p̄ · l([x1, xn])︸ ︷︷ ︸

=p([x1,xn])

≥ p([x1, xn]),

hence the no-stopover property holds. For the no-elongation property note that l([x1, xn−1]) ≤
l([x1, xn]) and hence p([x1, xn−1]) ≤ p([x1, xn]) is satisfied. The subpath-optimality property
is satisfied, since it holds for classical shortest paths. J

4.3 Beeline tariff
For the beeline tariff, we use the Euclidean (airline) distance to determine the price of a
ticket. This means that the ticket price is only dependent on the location of the start and
end station, but not on the specific path chosen to travel between them. Consequently, all
paths between two stations x and y are cheapest paths and hence can be found in polynomial
time, e.g., by breadth-first search.

I Lemma 16. For a beeline tariff, a cheapest path can be found in polynomial time.

One might assume that a beeline tariff satisfies all three of our properties, but this is
only the case for the no-stopover and the subpath-optimality property.

I Theorem 17. Let p be a beeline tariff w.r.t. f, p̄. Then p satisfies the no-stopover property
and the subpath-optimality property.

ATMOS 2020
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3

x1 x3

x2

Figure 3 PTN in which the no-elongation property is not satisfied for the beeline tariff.

Proof. The no-stopover property holds, since the Euclidean distance satisfies the triangle
inequality, and hence p([x1, xn]) ≤ p([x1, xi]) + p([xi, xn]) for all x1, xi, xn ∈ R2 independent
of the specific path W = (x1, . . . , xn). Since all paths are cheapest paths, the subpath-
optimality property trivially holds. J

However, the no-elongation property is not satisfied for the beeline tariff in general as
the following small example demonstrates. This example shows that for every f ≥ 0 and
p̄ > 0, there is a PTN such that the induced beeline tariff does not satisfy the no-elongation
property, even if going back to the start station is not allowed.

I Example 18. Consider any beeline tariff regarding the PTN depicted in Figure 3. The
path W1 = (x1, x2) costs f + 5 · p̄, which is more than the costs f + 4 · p̄ of the elongated
path W2 = (x1, x2, x3).

In our example, passengers would save money by buying a ticket for the path W2, but
leaving the bus already at station x2. This is avoided in practice, since passengers are tracked
by their mobile devices and hence need to checkout at a station which is really visited.

We remark that instead of the Euclidean distance also other metrics can be used, see [15].

4.4 Zone tariff
For zone tariffs, the analysis is a bit more involved as for the fare systems discussed so far.
The first observation is that for zone tariffs, the zone prices P (k) determine if the no-stopover
property holds.

I Theorem 19. Let a price function P : N≥1 → R≥0 be given. All zone tariffs w.r.t. P

satisfy the no-stopover property if and only if P (k) ≤ P (i) + P (k − i + 1) for all k ≥ 3,
i ∈ {2, . . . , bk+1

2 c}, i, k ∈ N.
In particular, if all zone tariffs w.r.t. P satisfy the no-stopover property, then the increase

of the price function is bounded by P (k) ≤ (k − 1)P (2) for k ≥ 2.

The proof of the theorem is given in the appendix.

I Example 20. We provide some examples:
If the price function P is decreasing for k ≥ 2, i.e., if P (k + 1) ≤ P (k) for all k ≥ 2,
then every zone tariff w.r.t. P satisfies the no-stopover property. This is true since
P (i) + P (k − i + 1) ≥ 2P (k) ≥ P (k) for 2 ≤ i ≤ k.
However, this is an unrealistic price function, since longer trips are cheaper than shorter
trips, which is considered as unfair.
If the price function P is affine and increasing, i.e., if P (k) = f + k · p̄ with p̄ ≥ 0, then
every zone tariff w.r.t. P satisfies the no-stopover property. This can be verified by
computing
P (i) + P (k − i + 1) = f + p̄ · i + f + p̄ · (k − i + 1) = 2f + p̄ · (k + 1) ≥ f + p̄ · k = P (k),
and is a realistic choice of prices for a zone tariff.
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For general increasing price functions, the no-stopover property need not be satisfied. An
example is a zone tariff in which a path passes through three consecutive zones and in
which the zone prices are P (1) = 1, P (2) = 2 and P (3) = 5.

For the no-elongation property, there is the following criterion.

I Theorem 21. Let a price function P be given. All zone tariffs w.r.t. P satisfy the
no-elongation property if and only if P is increasing.

Proof. Let p be a zone tariff w.r.t. an increasing price function P . Note that for a path
W = (x1, . . . , xn) ∈ W, we have that z([x1, . . . , xn−1]) ≤ z(W ). Since P is increasing, we
obtain that p([x1, xn−1]) = P (z([x1, xn−1])) ≤ P (z(W )) = p(W ).

If P is not increasing, there is some k ∈ N≥2 such that P (k) < P (k − 1). We construct a
zone tariff in which the no-elongation property is not satisfied: Consider a zone tariff w.r.t. P

in which there is a path (x1, . . . , xk) with z([x1, xk]) = k and z([x1, xk−1]) = k− 1. Then we
have p([x1, xk]) = P (k) < P (k − 1) = p([x1, xk−1]). J

We now turn our attention to cheapest paths. The first observation interestingly shows
that for price functions which are non-increasing there need not even exist a cheapest path.

I Lemma 22. Let P be a price function for which there is some n ∈ N≥1 such that for
all k ≥ n there is some k′ > k with P (k′) < P (k), and let p be a zone tariff w.r.t P . Then a
cheapest path need not exist for p.

The proof constructs an instance, i.e., a PTN = (V, E) and two stations x, y ∈ V such
that no cheapest x-y-path exists in the induced zone tariff, and it can be found in the
appendix. This happens, for example, when the prices are strictly decreasing. Cheapest
paths always exist if the prices become constant for more than n zones. Still, there might
be cheapest paths with large detours compared to a shortest path. All these situations are
avoided if the price function is increasing.

I Lemma 23. If p is a zone tariff with an increasing price function P , there exist cheapest
paths.

Proof. Since P is increasing, longer paths can never be better, hence we only have to consider
simple paths. Since there is a finite number of simple paths between a given pair of stations,
a cheapest path must exist. J

Note that even in the case of an increasing price function, a cheapest path need not be
unique and there might even be two cheapest paths visiting different numbers of zones (if
the price function becomes constant).

I Theorem 24. Let the zone tariff p satisfy the no-stopover property, and let x, y ∈ V .
1. If the price function P is increasing, then any x-y-path W which visits a minimum number

of zones z(W ) is a cheapest path.
2. If the price function P is strictly increasing, then an x-y path W is a cheapest path

between x and y if and only if it visits a minimum number of zones.

Proof. First note that compound and elongated paths need not be considered, since the
no-stopover and the no-elongation property (due to Theorem 21) are satisfied. The first part
is clear due to the monotonicity of P . For the second part, we have P (k) < P (k + 1) for all
k ≥ 1. Hence, an x-y-path is cheapest if and only if it visits a minimum number of zones. J
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x1 x5

x2 x3 x4

(a) Illustration of Example 25.

x1 x4 x5

x2 x3

(b) Illustration of Example 27.

Figure 4 PTNs with zones for Examples 25 and 27.

Note that the assumption of the no-stopover property is necessary in Theorem 24. This is
illustrated in the following example. Here we consider a price function P which is increasing
and a zone tariff p w.r.t P which does not satisfy the no-stopover property. We construct a
path which visits a minimum number of zones, but which is not a cheapest path.

I Example 25. Consider the PTN depicted in Figure 4a and an increasing price function P

with P (1) = 1, P (2) = 2, P (3) = 10. The path W1 = (x1, x5) which visits three zones costs
p(W1) = 10, whereas the compound path W2 = (x1, x2) ◦ (x2, x3) ◦ (x3, x4) ◦ (x4, x5) which
visits more zones costs only p(W2) = 4 · 2 = 8.

We finally turn our attention to the subpath-optimality property.

I Theorem 26. Let p be a zone tariff with a strictly increasing price function P . If p satisfies
the no-stopover property, then the subpath-optimality property is satisfied.

The proof is in the appendix. Note that the subpath-optimality property is not satisfied
in general without the assumption of strict monotonicity as the following example shows.

I Example 27. Consider the zone tariff induced by the price function P given by P (1) = 1,
P (2) = 2 and P (k) = 3 for k ≥ 3 together with the PTN shown in Figure 4b. The path
W = (x1, x2, x3, x4, x5) is a cheapest x1-x5-path. However, the subpath (x1, x2, x3, x4) of W

with costs 3 is not a cheapest x1-x4-path because the path (x1, x4) with costs 2 is cheaper.

In order to construct an algorithm for computing cheapest paths in a zone tariff, we
assume that the price function is increasing and that the no-stopover property holds. We
can then use Theorem 24 and look for a path which visits the minimum number of zones.
This can be done by applying a shortest path algorithm to the PTN with edge weights given
by the border function b(e).

Algorithm 1 Zone tariff: finding a cheapest path.

Input :PTN (V, E), two stations x, y ∈ V

Output : x-y-path W

1 Compute a shortest x-y-path W in the PTN by applying a shortest path algorithm
using the border function b(e) as edge weight for e ∈ E.

2 return W

I Corollary 28. For a zone tariff with an increasing price function and which satisfies the
no-stopover property, a cheapest path can be found in polynomial time by Algorithm 1.
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x1 x2 x3 x4 x5 x6

Figure 5 PTN with zones for Example 29.

4.5 Zone tariff with metropolitan zone
We now add a metropolitan zone to a basic zone tariff. In order to simplify our analysis, we
make the following assumptions:

the price function P : N≥1 → R≥0 is increasing,
the underlying basic zone tariff satisfies the no-stopover property.

We first provide an example that the no-stopover property need not be satisfied for zone
tariffs with metropolitan zones.

I Example 29. Consider the PTN depicted in Figure 5. The zones highlighted in gray form a
metropolitan zone. Let P : N≥1 → R≥0, k 7→ k be a linear price function and PM := P (2) = 2.
We want to travel from x1 to x6. The path (x1, x2, x3, x4, x5, x6) costs p([x1, x6]) = P (6) = 6.
For this zone tariff with metropolitan zone, it is advantageous to exit and reenter at x2, i.e.,
to use the compound path (x1, x2) ◦ (x2, x3, x4, x5, x6) and benefit from the metropolitan
zone, since the price is given by p([x1, x2]) + p([x2, x6]) = P (2) + PM = 2 + 2 = 4.

Note that the situation described above occurs in real-world, e.g., in the Verkehrsverbund
Rhein-Neckar, see [15]. In order to analyze in which cases the no-stopover property neverthe-
less holds, we need to define the maximum metropolitan zone distance Dmax which finds for
any pair of stations x, y, both in the metropolitan zone ZM , an x-y-path included in ZM

visiting a minimum number of zones, and then takes the maximum over all these values:

Dmax := max
x,y∈ZM

min
x-y-paths W included in ZM

z(W ).

Dmax depends on the PTN (including the metropolitan zone) and is always finite. We
remark that Dmax can be larger than the number of zones belonging to the metropolitan
zone, see Figure 6a, where three zones belong to a metropolitan zone, but Dmax = 4. Further,
we assume that every passenger who travels within the metropolitan zone ZM uses a path
with a minimum number of zones. This yields that for every path W included in ZM we
have that z(W ) ≤ Dmax. With this notation we state the following result.

I Theorem 30. Let a price function P , a metropolitan price PM , and an integer d ∈ N≥1
be given. All zone tariffs with metropolitan zone w.r.t. P and PM on a PTN with Dmax = d

satisfy the no-stopover property if and only if P (d + k) ≤ PM + P (k + 1) for all k ∈ N≥1.

The proof of this theorem is provided in the appendix.

(a) Dmax is larger than the number
of zones in ZM .

x1 x2

x3

x4

x5

(b) PTN with zones for Example 33.

Figure 6 Two PTNs with zones, both including a metropolitan zone.

ATMOS 2020



13:12 Cheapest Paths in Public Transport: Properties and Algorithms

I Example 31. For the linear price function P (k) = k and PM := P (2) = 2, we know from
Theorem 30 that the no-stopover property is satisfied for all zone tariffs with metropolitan
zone on a PTN with Dmax = d if and only if P (d+k) ≤ PM +P (k +1) for all k ≥ 1. Plugging
in our price function P , we receive that d + k ≤ 2 + (k + 1). This is equivalent to d ≤ 3.

The no-elongation property is satisfied even with metropolitan zone if PM ≤ P (2).

I Theorem 32. Let a price function P and price PM be given. Then all zone tariffs
with metropolitan zone w.r.t. P and PM satisfy the no-elongation property if and only if
PM ≤ P (2).

Proof. Let p be a zone tariff with metropolitan zone ZM w.r.t. P and PM , and let
W = (x1, . . . , xn) ∈ W. We distinguish three cases.

If W is included in ZM , then p([x1, xn−1]) = PM = p(W ).
If [x1, xn−1] is included in ZM , but W is not, then W visits at least two zones and it holds
that p([x1, xn−1]) = PM ≤ P (2) ≤ p(W ) by assumption. On the other hand, if PM > P (2)
and W visits exactly two zones, we obtain that p([x1, xn−1]) = PM > P (2) = p(W ) and
the no-elongation property does not hold.
If [x1, xn−1] is not included in ZM , then the prices of W and its subpath [x1, xn−1]
are computed as in the basic zone tariff. Hence, we have p([x1, xn−1]) ≤ p(W ) by
monotonicity of P and Theorem 21. J

Finally, also the subpath-optimality property need not be satisfied.

I Example 33. Consider the PTN shown in Figure 6b. The zones highlighted in gray
form a metropolitan zone. Let P : N≥1 → R≥0, k 7→ k be a linear price function and
PM := P (2) = 2. In the induced zone tariff with metropolitan zone, the no-stopover
property is satisfied because Dmax = 3, see Example 31. A cheapest x1-x5-path is given
by W1 = (x1, x2, x4, x5), since this paths costs p(W1) = P (4) = 4 and the alternative path
W2 = (x1, x2, x3, x5) costs p(W2) = P (4) = 4 as well. The subpath (x2, x4, x5) of W1 with
costs P (3) = 3 is not a cheapest x2-x5-path, though. A cheaper path is given by (x2, x3, x5)
with costs PM = 2.

Note that the example above also shows that a path which visits a minimum number of
zones is not necessarily a cheapest path if a path within a metropolitan zone exists. Although
the subpath-optimality property does not hold, we can make use of the following lemma to
find a cheapest path.

I Lemma 34. Let p be a zone tariff with metropolitan zone ZM , price function P and price
PM ≤ P (2). Assume that p satisfies the no-stopover property and let x, y ∈ V . If there exists
an x-y-path which is included in ZM , then this is a cheapest path. Otherwise, an x-y path
which visits a minimum number of zones is a cheapest path.

Proof. Consider the first case in which there is an x-y-path W which is included in ZM . This
path costs PM . Any path that leaves the metropolitan zone costs at least P (2) ≥ PM , hence
W is a cheapest path. If there is no path included in ZM , the price of a path is computed by
the basic zone tariff and Theorem 24 can be applied. J

We conclude that we can compute a cheapest path in polynomial time in this case by
Algorithm 2. It is correct due to Lemma 34, hence we get the following result.

I Corollary 35. Let p be a zone tariff with metropolitan zone ZM , price function P and
price PM ≤ P (2) which satisfies the no-stopover property. Then a cheapest path can be found
in polynomial time.
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Algorithm 2 ZM2: finding a cheapest path.

Input :PTN (V, E), two stations x, y ∈ V

Output : x-y-path W

1 Compute a shortest x-y-path in the PTN by applying a shortest path algorithm using
zM (e) as edge weight for all e ∈ E.

2 if zM (W ) = 0 then
3 return W

4 else
5 Apply Algorithm 1 for finding a cheapest path regarding the basic zone tariff.
6 end

5 Conclusion

In this paper, we have provided models for many common fare systems, studied their
properties and provided polynomial algorithms, all of them based on shortest paths. As a
further step, we plan to investigate speed-up techniques for shortest paths (e.g., in [16, 1])
in order to make the computation of cheapest paths more efficient and to evaluate these
experimentally. Here it is particularly interesting to use the embedding of the PTN in the
plane, bidirectional search and the structure of the zones (for zone tariffs). The next step
is to include the ticket price as one criterion besides the travel time when determining the
routes for the passengers. This can be done efficiently if ticket prices can be computed by
common shortest path algorithms in the same network as the travel time, but with adapted
edge weights, as in [8]. Also, planning fare systems under different criteria (such as fairness,
income, low transition costs) is an interesting topic for further research.

Currently, we work on results for combining fare systems and for adding further particu-
larities such as a short-distance tariff, see [15]. We finally plan to include the ticket prices in
route choice models and integrate them into planning lines and timetables along the lines of
[14], but with an underlying realistic passengers’ behavior.
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Appendix

Proof of Theorem 19

Proof. If the inequality does not hold for some k and i, then consider the zone tariff w.r.t. P

for the PTN depicted in Figure 7a. The path (x1, . . . , xk) costs P (k), whereas the compound
path [x1, xi] ◦ [xi, xk] costs P (i) + P (k − i + 1), which is cheaper by assumption. Hence, the
no-stopover property is not satisfied for this zone tariff.

Now, we suppose that the inequality holds. Let p be any zone system w.r.t. P . For a
path W ∈ W, we define k := z(W ) and let W1 ◦W2 be a corresponding compound path.

x1 . . . xi . . . xk

(a) Illustration of Theorem 19.

x1 x2 x3 . . . xn

v

(b) Illustration of Lemma 22.

Figure 7 PTNs with zones for Theorem 19 and Lemma 22.
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Without loss of generality, we suppose that z(W1) ≤ z(W2), the other case is analogous.
It holds z(W1) + z(W2) = k + 1. Note that for k = 1 the only possible decomposition
is given by z(W1) = z(W2) = 1, and for k = 2 it is z(W1) = 1 and z(W2) = 2. The
corresponding inequalities are P (1) ≤ 2P (1) and P (2) ≤ P (1) + P (2), which are clearly
satisfied. Furthermore, for z(W1) = 1 the inequality P (k) ≤ P (1) + P (k) is fulfilled for all
k ∈ N≥1. Hence, let k ∈ N≥3 and i := z(W1) ∈ {2, . . . , bk+1

2 c}. Then z(W1) + z(W2) = k + 1
is equivalent to z(W2) = k − z(W1) + 1 = k − i + 1. By assumption we have

p(W ) = P (k) ≤ P (i) + P (k − i + 1) = p(W1) + p(W2).

Thus, the no-stopover property is satisfied for all zone tariffs w.r.t. P if the inequalities hold.

For the second part of the theorem, let the no-stopover property be satisfied for all zone
tariffs w.r.t. P , i.e., due to the first part of this proof we know that P (k) ≤ P (k +1− i)+P (i)
for all k ≥ 3, i ∈ {2, . . . , bk+1

2 c, i, k ∈ N. We prove the claim by induction over k and consider
the condition for i = 2. For k = 2, the inequality is clearly fulfilled. For k ≥ 3, we have

P (k) ≤ P (2) + P (k − 1) ≤ P (2) + (k − 2)P (2) = (k − 1)P (2).

This proves the claim. J

Proof of Lemma 22

Proof. Consider the situation shown in Figure 7b in which we want to travel from x = x1
to y = xn. The path with a minimum number of zones visits n zones. Note that for all
k > n, we can construct an x1-xn-path with length k as follows: If k − n is even, we choose
the path (x1, . . . , xn) and additionally commute sufficiently often, i.e., k−n

2 times between
two neighboring nodes. If k − n is odd, we choose the upper path (x1, v, x2, . . . , xn) and
additionally commute k−n−1

2 times between two neighboring nodes. Hence, the set of all
possible costs for x1-xn-paths is given by {P (k) : k ≥ n}. This set does not have a minimum:
Assume that P (k) is the minimum for some k ≥ n. By assumption there is some k′ > k such
that P (k′) < P (k), a contradiction to P (k) being the minimum. Thus, in this zone tariff,
there is no cheapest x1-xn-path. J

Proof of Theorem 26

Proof. Since the no-stopover property and the no-elongation property are satisfied, we do
not need to consider compound paths when searching for the cheapest possibility to travel
between two stations. Now assume that a cheapest path W has a subpath W1 which is not a
cheapest path. Then there exists a cheaper path W2 between the same stations as W1. Due
to the strict monotonicity, W2 visits fewer zones than W1. Replacing W1 by W2 in W yields
a new path W ′ which visits fewer zones than W and is hence cheaper, a contradiction. J

Proof of Theorem 30

Proof. First, assume there is some k such that P (d + k) > PM + P (k + 1). Consider the
PTN depicted in Figure 8, where Dmax = d. In the induced zone tariff with metropolitan
zone, the path (x1, . . . , xd+k), which costs P (d + k), is more expensive than the compound
path [x1, xd] ◦ [xd, xd+k], which costs PM + P (k + 1).

Conversely, we suppose that the inequalities are satisfied. Let a PTN with Dmax = d be
given. We show that the induced zone tariff with metropolitan zone satisfies the no-stopover
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x1 . . . xd xd+1 . . . xd+k

Figure 8 PTN with zones for Theorem 30.

property. By our assumptions, the no-stopover property is fulfilled for the basic zone tariff.
Furthermore, it is satisfied for paths included in ZM , since PM < 2PM . Hence, we will now
consider paths W ∈ W which are not included in ZM , but allow to apply the metropolitan
price for a subpath by making a stopover. Such a path must start or end in ZM . Let W

consist of the subpaths W1 and W2 where W1 is included in ZM without loss of generality.
We have z(W1) ≤ Dmax = d. Hence, it holds

p(W ) = P (z(W )) = P (z(W1) + z(W2)− 1)
P incr.
≤ P (d + z(W2)− 1)

≤ PM + P (z(W2)) = p(W1) + p(W2)

and the no-stopover property is satisfied. J
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