
Probabilistic SynSet Based Concept Location
Nuno Ramos Carvalho1, José João Almeida1,
Maria João Varanda Pereira2, and Pedro Rangel Henriques1

1 Departamento de Informática, Universidade do Minho
Braga, Portugal
{narcarvalho,jj,prh}@di.uminho.pt

2 Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Bragança
Bragança, Portugal
mjoao@ipb.pt

Abstract
Concept location is a common task in program comprehension techniques, essential in many
approaches used for software care and software evolution. An important goal of this process is
to discover a mapping between source code and human oriented concepts.

Although programs are written in a strict and formal language, natural language terms and
sentences like identifiers (variables or functions names), constant strings or comments, can still
be found embedded in programs. Using terminology concepts and natural language processing
techniques these terms can be exploited to discover clues about which real world concepts source
code is addressing.

This work extends symbol tables build by compilers with ontology driven constructs, extends
synonym sets defined by linguistics, with automatically created Probabilistic SynSets from soft-
ware domain parallel corpora. And using a relational algebra, creates semantic bridges between
program elements and human oriented concepts, to enhance concept location tasks.

1998 ACM Subject Classification D.2.5 Testing and Debugging: code inspections and walk-
throughs

Keywords and phrases program comprehension, program visualization, concept location, code
inspection, synonym sets, probabilistic synonym sets, translation dictionary

Digital Object Identifier 10.4230/OASIcs.SLATE.2012.239

1 Introduction

Program comprehension provides valuable insight in many software evolution and mainten-
ance tasks: bug hunting, fixing, feature improvements, etc. Reverse engineering techniques
often rely on a mapping between human oriented concepts and program elements [15]. This
mapping is required mainly because there is a big gap between the natural languages used
to discuss and describe concepts in the problem domain, and the formal programming lan-
guages used to actually implement them [5]. To address this issue a clear definition of the
program elements is required and also a way to relate these elements with human oriented
concepts.

Although programming languages grammars are very formal and strict, and strongly
limit the expressions and statements that can be composed to write programs, some small
degree of freedom is still given to the programmer to use some more natural terms, when
writing comments or naming functions and variables for example. These terms can give
clues to which concepts the implementation is addressing, and the meaningfulness of these
terms can have a direct impact in future program comprehension approaches [14].

© Nuno Ramos Carvalho, José João Almeida, Maria João Varanda Pereira, Pedro Rangel Henriques;
licensed under Creative Commons License NC-ND

1st Symposium on Languages, Applications and Technologies (SLATE’12).
Editors: Alberto Simões, Ricardo Queirós, Daniela da Cruz; pp. 239–253

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2012.239
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

240 Probabilistic SynSet Based Concept Location

In order to close this gap between languages a new structure needs to be devised to
represent program elements with information derived and extracted from program identifiers.
This work introduces the use of a Ontology Oriented Symbol Table (OntOSymbolTable),
to represent elements in the program. A symbol table enriched with relations gathered
from static analysis performed on source code. This table is used to represent some of the
elements in the program, which gives a more structured and formal way to reason about
source code. Program identifiers are present in this table and directly related with them
is a data structure called Probabilistic Synonym Set (ProbSynSet), an extended version
of synonymous sets used by linguistics to gather terms that are conceptually equivalent.
These key structures are used as clamps to sustain conceptual bridges between program
and other elements and are built from a terminology translation memory (in simple terms
a dictionary) called PTD. This particular dictionary is built from parallel corpora using
Natural Language Processing techniques [19], and can be used to expand the terms used to
represent a concept. An important detail is that the text used to build the parallel corpora
constrains the domain of terms that appear in the final dictionaries, this helps in keeping
the calculated related terms in the same context. A complete definition and more details
about these structures is presented in section 3.

The next section discusses other work in this area, and uses some of this work to motivate
and substantiate the approach introduced in this paper. Section 3 introduces some concepts
and definitions. Section 4 describes the relational algebra devised to relate program elements
with other concepts, and Section 5 discusses how this algebra can be used in the context of
concept location. Section 6 illustrates some case studies and experimental validation done
so far to support the initial claims. And the last section concludes with some final notes
and future work.

2 Related Work

Previous work shows the relevance of program identifiers when reverse engineering programs.
Lawrie et al have shown that terms used as program identifiers have a direct impact on future
comprehension tasks quality and accuracy [14]. A study by Takang et al, also shows that
programs that use full terms for program identifiers, instead of abbreviations, are easier to
understand [20].

Caprile et al state that program identifiers are one of the most relevant source of in-
formation about programs. This was so important that their work was about restructuring
named identifiers to improve other program comprehension activities [6].

The relevance of program identifiers used clearly affects future program comprehension
tasks, but how much can we rely on this source of information? The work of Anquetil et al try
do define what it means to have a "reliable naming convention" [3] to later improve program
readability, Deissenboeck et al propose a formal model that provides rules for concise and
consistent naming [7].

Abebe et al presented their use of Natural Language Processing techniques for parsing
program to extract concepts [1]. In this work they build an ontology from domain concepts
extracted from source code, that can be later used to suggest which files can be more relevant
to a specific software change. Although, there are many similar facts between this approach
and the one described in this paper, one major difference is that natural language resources
used by Abebe et al are found in the program, and some algorithms presented in this paper
take advantage of resources built outside the program scope. Also the suggested elements
where the concept can be found is more accurate than a file.

N. R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 241

Falleri et al also used Natural Language Processing techniques to enhance the extraction
of concepts from program identifiers analysis [10]. Their extracted artifact is similar to a
WordNet [11] and can be used later to browse concepts found in the program in a hierarchical
structure. Although, their work shares many objectives with this work, they are actually
quite different, mainly because Falleri et al are solely based their lexical structure in terms
used as identifiers, while in this work identifiers terms are expanded, and bags of conceptually
equivalent words are used.

Lawrie et al also discussed how to expand possible abbreviations found in term used as
program identifiers [13]. This work is directly related with the one described in this paper,
and furthermore an inclusion on this expanding approach into this workflow would surely
benefit the final results. Since the final terms used to map concepts would be using more
meaningfully vocabulary.

In other work, Enslen et al introduced an algorithm to automatically split program
identifiers in sequences of words. This is required mainly because unlike natural languages,
identifiers do not use spaces or punctuation to join lists of terms (due to programming
language syntax constrains), so other techniques are used [9]. Introducing this algorithm in
the work described in this paper would probably help produce better results, since instead
of processing an identifier that contains more than one term, for example using CamelCase,
the list of terms could be processed for more accurate results.

The approaches described in this paper could also be used to complement other existent
work. For example, Bacchelli et al discussed how to link e-mails free text with software
artifacts [4]. The approach described in this paper could be used to help mapping concepts
from both contexts.

These are some examples of previous work that help and motivate for improving tech-
niques and approaches for exploring program identifiers found in source code [8]. And also
show that there is a direct link between the meaningfulness of terms used as program iden-
tifiers and the degree of confidence and accuracy of the mapping between source code and
human concepts build based on those identifiers. The accuracy of this mapping can im-
prove future reverse engineering tasks, and improve program comprehension techniques and
results.

3 Definitions and Concepts

To make it easier to discuss our contributions, this section presents some concepts and
definitions.

3.1 Ontology Oriented Symbol Table

A symbol table is a data structure used to hold information about source code constructs,
usually created by a compiler or interpreter [2]. Entries in the symbol table contain informa-
tion about program identifiers, such as type or scope (it can vary depending on the language
transformation being done). In its’ simple form a symbol table can be defined as (note
that some important data is being omitted, memory addresses for variables for example,
this definition emphasizes the information required in the context of this work), that is why
this structure is called PseudoSymbolTable. Another advantage of this simplification is
that most probably it won’t be necessary a full-featured compiler to build this table, more
practical details on this subject in Section 4. In summary this table is a list, one triple for

SLATE’12

242 Probabilistic SynSet Based Concept Location

each identifier found in the program:

PseudoSymbolTable = (id× type× scope)∗

where,
id is the string that represents the term used as identifier;
type is the type of identifier (variable, function, etc.);
scope the scope where the identifier is declared, global or local, or a specific code block,

sometimes this could be simply the line where the identifier appears.

This section introduces an Ontology Oriented Symbol Table (OntOSymbolTable) defin-
ition that will be used later to create the resources required to implement concept location.
This table is defined as an hash-map 1 where the keys are program constructs identifiers
(PCid) and the values are defined by the Entry datatype:

OntOSymbolTable = PCid ⇀ Entry

Entry = id : String ×
type : PCType ×
prt : PCid ×
src : (File× Line) ×
pss : ProbSynSet

(...)

For each program identifier found a new entry is created in the table, where:
P Cid is a string identifying a program construct, this is unique for an entire program (even

for programs written across multiple files);
id is a string that represents the actual term used as identifier;
type the identifier type, not the type of variable the identifier is declaring (defined types

are described later), when in a ontology context this represents the IS_A relation;
prt represents the parent for this program element, for example a function, code block,

object or method, the element is identified by its’ corresponding PCid, in an ontology
context this represents the IN_CTX relation;

src specifies where the identifier can be found in the persistent storage medium, typically
a filename and a line number;

pss the ProbSynSet calculated from the identifier id, more details on this data structure
in the next section;

(...) states that this definition is not complete, more information is to be added like call
graphs edges and dependencies, but these elements are the most relevant in this article’s
scope.

The following types are defined to use has PCType: m

PCType = P + V + K + M

where,
P represents a procedure, can be used to represent functions or methods;
V represents a variable, used to represent local and global variables;

1 An association between keys and values, where the keys used are the program unique identifiers, and
the values the corresponding calculated structure for the identifier.

N. R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 243

1 P(authenticate)@F(auth . c : 14)
2 V(password)@F(auth . c : 3)
3 V(username)@F(auth . c : 2)
4 V(result)@P(authenticate)@F(auth . c : 15)
5 P(main)@F(auth . c : 20)

Figure 1 Example of a OntOSymbolT able textual representation.

K represents a constant, used to represent local and global constants;
M represents a module, used to represent aggregations of functions or methods (objects or

libraries for example).

A function called tNormalize was defined that is used to normalize program constructs’
types:

tNormalize : term −→ PCType

that given a term (normally obtained from the PseudoSymbolTable), returns the term

PCType. For example:
tNormalize("method") = P

tNormalize("function") = P

tNormalize("variable") = V

A OntOSymbolTable allows a more structured and systematic reasoning about program
elements, also more information can be added to build more complex artifacts, more on
this later. This definition is language agnostic, so far it was only used in the imperative
programming paradigm [21], like C/C++ or Java, but minor tweaks can be required if other
details characteristic to other paradigms need to be represented. This means that a front-end
can be easily built for a specific language, or a compiler refactored, to create this table, and
take advantage of all the features described in the next sections. Algorithm 1 summarizes
how to build this table.

Algorithm 1 Create a OntOSymbolTable as a hash-map.
Require: T : PseudoSymbolTable

oost← {} // start with empty hash-map
for all (idt, typet, scopet) ∈ T do

type← tNormalize(typet)
prt← {* parent PCid determined based on scopet *}
src← {* file and line number of identifier *}
pss← ProbSynSet(idt)
PCid← idt + +prt

oost[PCid]← (idt, type, prt, src, pss)
end for
return oost

A textual representation of the content of this table was also devised. Figure 1 is a
small snippet of the OntOSymbTab calculated from a C source file auth.c. For example in
Figure 1, line 1 is stated that a function name authenticate exists in file auth.c line 14, or
from Figure 1, line 4 that a local variable named result is defined in function authenticate
in file auth.c line 15.

SLATE’12

244 Probabilistic SynSet Based Concept Location

The next section defines probabilistic synonymous sets, used in a OntOSymbolTable and
how they are calculated.

3.2 Probabilistic Synonym Set
In linguistics, and in the terminology discipline for a given term a list of synonyms can be
built, this list is commonly called a SynSet, for more details about these sets please refer
to [11] [12] [19]. For this work an extended version of this data structure called ProbSynSet

is defined. A list of triples composed by a term t that represents the same concept as the
original term, a relation set r that represents the kind of relation between this term and
the original one (synonym or translation for example), and a probability p which defines the
degree of confidence that this term is actually conceptually equivalent to the original term.

ProbSynSet = Term ⇀ Triple

Triple = t : Term ×
r : RelSet ∈ {{S}, {T}} ×
p : Confidence ∈ [0, 1]

where,
t is a term (word) conceptually equivalent to the given term;
r is the relation that exists between t and the given term;
p is the degree of confidence that t is conceptually equivalent to the given term, p ∈ [0, 1].

The ProbSynSet is calculated using a Probabilist Translation Dictionary (PTD), this
can be seen as a common translation dictionary but with some important subtleties. First,
PTDs are usually build from parallel corpora [19] which means that the language domain
can be restricted to a specific domain. This is important because if translations are being
used to find synonyms, in a software development context we wouldn’t want for example
fork, which can have many different meanings depending on context, representing a piece of
cutlery, but a process (or similar concept). The second thing is the certainty level implied
in PTD, that will be used to calculate the degree of confidence in the ProbSynSet.

A PTD can de defined as a finite function that given a term returns a list of possible
translations for term and the degree of confidence that this translation is correct. More
formally:

PTD = term ⇀ PTDEntry

PTDEntry = t ⇀ t× p

where,
t is a possible translation of term;
p is the degree of confidence that t is a correct translation, p ∈ [0, 1];

This set ends up being a list of quasi-synonym, a list of terms that can represent the
same concept. Besides, probability p gives a fine tuning capability to broad or short the
scope of term gathering in this list. Typically a cut line, a way of saying that below this
degree of confidence terms are to be ignored.

Figure 2 illustrates the ProbSynSet calculated for term username. And Algorithm 2
describes how they can be calculated. In this algorithm a WebService is being used to

N. R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 245

username

nome {T} (22%)

utilizador {T} (61%)

user {S} (50%)

name {S} (73%)

username {S} (43%)

choose {S} (54%)

Figure 2 P robSynSet for term username.

provide the required PTDEntrys. These resources were calculated and made available in
the Per-Fide Project 2 environment.

Algorithm 2 Create a ProbSynSet for a given term.
Require: term : String

pss← ∅ // start with empty hash
ptdentry ←WebService.PTD(term)
for all ki ∈ keys(ptdentry) do

(t1, p1)← ptdentry[ki]
pss[t1]← (t1, {T}, p1) // add element to hash
ptd−1

entry ←WebService.PTD(t1)
for all kj ∈ keys(ptd−1

entry) do
(t2, p2)← ptd−1

entry[kj]
pss[t2]← (t2, {S}, min(p1, p2)) // add element

end for
end for
return pss

A more complete description of how PTDs are calculated and made available is out of
scope for this article, please refer to references [18] [17] [16] for more details.

4 Relational Algebra

After calculating an OntOSymbolTable many information is available, including ProbSynSets
which are the base construct for creating semantic bridges between concepts. This section
describes a set of algorithms that implement relational functions between ProbSynSets.
These functions are the minimal operations required to implement algorithms for relating
terms and concepts. Figure 3 illustrates an example of comparing two terms: username and
user, to determine if their ProbSynSets are related, this could imply a semantic relation
between these terms.

The first operation, that defines this relation, is the intersection (∩) between ProbSynSets.
Although a ProbSynSet is a list, that can be seen as a set as defined by mathematics, in-
tersection has to take in account probabilities and relation sets. This function is defined
as:

∩ : ProbSynSetA × ProbSynSetB −→ ProbSynSet∩

2 http://per-fide.di.uminho.pt/

SLATE’12

246 Probabilistic SynSet Based Concept Location

username

nome {T} (22%)

utilizador {T} (61%)

user {S} (50%)

name {S} (73%)

username {S} (43%)

choose {S} (54%)

utilizador {T} (80%)

levels {T} (59%)

password {S} (44%)

query {S} (55%)

user {S} (55%)

users {S} (72%)

user

61%

50%

Figure 3 Relating P robSynSets for different terms.

Algorithm 3 describes how to calculate ProbSynSetn∩.

Algorithm 3 ProbSynSet intersection (∩).
Require: pssA : ProbSynSet

Require: pssB : ProbSynSet

pss∩ ← ∅ // start with empty hash
for all k ∈ keys(pssA) do

(tA, rA, pA)← pssA[k]
if tA ∈ terms(PSSB) then

(tB , rB , pB)← pssB [tA])
r ← rA ∪ rB

p← min(pA, pB)
pss∩[tA]← (tA, r, p) // add element to hash

end if
end for
return pss∩

This operation can be used to claim that a non-empty intersection of ProbSynSets
implies that the terms are related.

ProbSynSet(tA) ∩ ProbSynSet(tB) 6= ∅

⇒ tA is related to tB

This relations can mean that tA and tB are conceptually equivalent, if the degree of con-
fidence in this relation is high enough. In order to be able to build ranks a similarity level
function between two ProbSynSets was defined (simil):

simil : ProbSynSetA × ProbSynSetB −→ Float

Algorithm 4 shows how this function is implemented. This degree of similarity will be used
in the next section to create ranks of conceptually equivalent suggestions.

Another operation required is the union of ProbSynSets (∪), defined as:

∪ : ProbSynSetA × ProbSynSetB −→ ProbSynSet∪

This operation is used to join different ProbSynSets in a single ProbSynSet. Algorithm 5
defines how this operation is implemented.

The next section shows how these operations can be used to implement algorithms for
locating concepts in programs.

N. R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 247

Algorithm 4 Similarity between two ProbSynSets (simil).
Require: pssA : ProbSynSet

Require: pssB : ProbSynSet

pss∩ ← pssA ∩ pssB

similarity ← 0
for all k ∈ keys(pss∩) do

(t, r, p)← pss∩[k]
similarity ← similatiry + p

end for
return similarity

Algorithm 5 ProbSynSet union (∪).
Require: pssA : ProbSynSet

Require: pssB : ProbSynSet

pss∪ ← pssA // start with pssA hash
for all k ∈ keys(pssB) do

(tB , rB , pB)← pssB [k]
if tB ∈ terms(pssU) then

(tA, rA, pA)← pssA[tB]
pB ← max(pA, pB)
rB ← rA ∪ rB

end if
PSS∪[tB],← (tB , rB , pB) // set element in hash

end for
return pss∪

SLATE’12

248 Probabilistic SynSet Based Concept Location

5 Concept Location

Having defined basic operations to relate ProbSynSets it is now possible to implement
functions that make use of these basic operations to implement concept location oriented
techniques. The most simple simple interesting function that can be implemented consists
in a plain search of a concept in source code. Most of the times this is already possible,
especially in modern development environments (Eclipse or Visual Studio for example).
Commonly what these environments do is a previous collection of program constructs, and
later when the programmer is trying to find a variable or function they do a simple pattern
match between the term the programmer provides and the list of collected identifiers. This
of course will not work if the programmer is using a term to look up a concept completely
different from the one used by the original developer of the code. The advantage of this
approach is that it tries to look up for conceptually equivalent terms, even if they were wrote
using completely different words.

locate : OntOSymbolTable× term −→ Rank

The Rank data structure is very simple, its’ a list of pairs containing the program construct
unique identifier PCid, and a positive real number representing the degree of similarity
between the ProbSynSets compared.

Rank = (PCid× simil)∗

Where,
P Cid is the unique identifier for the program construct that matched as possible concep-

tually equivalent;
simil is the degree of similarity.
Algorithm 6 illustrates how the locate function can be defined.

Algorithm 6 Locate a concept.
Require: oost : OntOSymbolTable

Require: term : String

pssC ← ProbSynSet(concept)
rank ← ∅ // start with empty set
for all pcid ∈ keys(oost) do

(id, type, prt, src, pss)← oost[pcid]
pss∩ ← pssC ∩ pss

if pss∩ 6= ∅ then
push(rank, (pcid, simil(pss∩)) // add element to set

end if
end for
return rank

This locate function is very simple, but more complex operations can be devised. For
example, a ProbSynSet can be calculated by joining all the ProbSynSets for all the program
constructs found in a function, or code block. A real case scenario is for example having a
function named f , that contains a variable named username and another named password.
Although the identifier f by itself does not say much about what the function is dealing with,
the variables username and password inside the function give a clue that is possible that
this function is related with authentication or authorization. This means that joining the

N. R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 249

Source
Code

Concepts
Expander

per-fide
Resources

Pseudo
SymbolTable

PTDs

List of
ProbSinSets

Identifiers
Collector

PLrPiDL

Programming Language
Ontology

Resources Tools

OntO
SymbolTable

Parallel
Corpora

Figure 4 Web application architectural overview.

ProbSynSets for the identifiers found inside the function could probably suggest this, even
that the name of the function by itself does not provide any significant semantic information.
The required functions for ProbSynSets required to implement this algorithm were described
in the previous sections: ∪ and simil. Similar reasoning functions could be implemented for
code blocks, objects or even files.

6 Experimental Validation

In order to validate the approach described in this paper a set of tools were written to
implement all the algorithms and functions described in the previous sections. This set of
tools where then used to implement a web application prototype that using a browser would
provide programmers an environment for locating concepts in programs.

The prototype application architectural overview is illustrated in Figure 4. The dark
gray boxes represent tools that consume and create resources (which are represented in the
light gray boxes), and the arrows represent the data flow of data between tools to produce
the final OntOSymbolTable.

The Identifiers Collector is a tool that analyses source code and builds a PseudoSymbol

Table that includes all the required information to create a OntOSymbolTable. This tool
was implemented using Exuberant Ctags 3, that is normally used to create tag files that are
used by editors or integrated development environments to implement features like auto-
complete. This tool already provides support for a broad range of programming languages,
this way it would be easier for our prototype to support all of those programming languages.

The Concepts Expander is a tool that can create ProbSynSets. It makes use of the
PTDs created in the Per-Fide Project environment. These are built from parallel corpora
automatically, and software related texts were used to try to constrain the vocabulary do-
main to the context of software development. Around 700 MB of software related texts, for
example documentation and user interface messages, in several languages were used to build
the parallel corpora. This would help ensuring that the translation memories calculated
terms were inside the software domain. The languages used were mainly portuguese and
english, this means that the bag of conceptually equivalent terms in a ProbSynSet includes

3 http://ctags.sourceforge.net/

SLATE’12

250 Probabilistic SynSet Based Concept Location

Figure 5 Web application screenshot.

portuguese and english terms. This is helpful if identifiers were not written in english, and
the program maintainer is an english native speaker. A multilingual aware concept search
is another advantage of this implementation. The more languages used to build the parallel
corpora, the more languages can be supported.

Finally PLrPidL is a tool that creates a OntOSymbolTable for a given program, using
the resources created by other tools. Figure 5 illustrates the application when searching
source code for a term that was not in the original list of identifiers, but was found in a
ProbSynSet, and therefor the application can highlight in the source code the terms that
have high probability of representing the same concept the user was searching. The searched
term utilizador, is a possible portuguese translation for username, which in addition to not
being in the identifiers list is not even written in the same language.

These tools can also be used independently or composed in other workflows. Table 1
illustrates an initial study done with identifiers using these tools. The initial question that
motivated this study was if the list of program identifiers is actually composed by words
that a program maintainer would try to search for. The object of this study was TTH 4 a
program that creates a HTML file from a LATEX file.

Typically the first job of a programmer when acting as a maintainer for a given program
is to actually find the source code responsible for implementing a part of the specification.

4 http://hutchinson.belmont.ma.us/tth/

N. R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 251

Table 1 Comparing Terms Found.

Identifiers Found # P robSynSet Created
TTH 925 925

Strings Words %
Identifiers 476 55 12%
P robSynSet 1659 1039 63%

Normally the maintainer needs to verify several areas of the code manually until the correct
zone (or zones) that need update are found. The search usually starts with words that are
related with the concept that needs to change, for example terms like date, username or
create are common search keywords if for example trying to fix a bug in the creation date
function. Most of the times this means that the programmer is using keywords in his natural
language that in his domain are suitable candidates to represent the concepts that require
changes. But, most of the times program identifiers are not so explicitly and many different
names and versions of the same name can be used. For example looking at Table 1 the
identifiers collector tool found 476 unique strings that identify program elements (variables,
functions, etc). If this list of strings is checked in a typical dictionary, since the author of
the code used english to write comments and the documentation the english dictionary of
words was used, and we verified that only 55 of these strings were actually found. Well, if a
programmer looking for source code zones to edit normally uses words in his domain language
it will have a very low chance of success locating program elements that are related with
the search key words. The ProbSynSet list of related terms was then used. A ProbSynSet

is calculated for every identifier found in the program, this means that a total of 925 were
calculated. Every ProbSynSet has a bag of terms that are conceptually equivalent to the
original term found as identifier. This means that the scope of terms, linguistic speaking,
was broaden. A total of 1659 strings are now available for the programmer to search for.
And since 1039 of these strings are present in the dictionary the chances that the maintainer
finds a word was greatly increased. This does not necessarily implies that the programmer
will find the important zones of code to change, but will greatly improve the chances that
a zone of code will be suggested based on key words search. In an information retrieval
context we could say that the recall was greatly increased. An experiment that would verify
if the precision is also increased is currently being devised.

7 Conclusion and Future Work

Several program comprehension techniques often rely on a mapping between program ele-
ments and more natural language terms that represent human oriented concepts. Program
identifiers are a possible source of information about which specific source code areas are
responsible for implementing these concepts. The meaningfulness of program identifiers dir-
ectly influence the quality of the required mapping, and also future accuracy of concept
locating tools.

The adoption of an ontology oriented table to represent identifiers, which describes not
only the identifiers but also a set of more discovered information about them, provides
an artifact that can be object of a systematic reasoning. Using this reasoning approach
views of programs can be built that provide useful insight for locating code responsible for
implementing concepts. Probabilistic SynSets are an important element of this table that

SLATE’12

252 Probabilistic SynSet Based Concept Location

provides anchors that can increase the recall concept location based on keywords search and
similar approaches.

The implemented tools and current prototype help showing that concept location tasks
recall and precision can be greatly increased by taking advantage of OntOSymbolTable.
This ontology oriented constructs enriched table, can also be object of other processing
functions using very simple and elegant basic operations to implement different analysis
tasks.

Interesting tasks for further development of this work:

combination of techniques described in the related work section, for example expand
known abbreviations before calculating ProbSynSets:

one example is using the work described in Section 2 to expand terms often written
using abbreviations, or other shortening styles like camel case, this would allow the
use of more accurate terms to build ProbSynSets;
another example is adapting the algorithms described in this paper to allow the use
of multi word terms, this would allow using identifiers that contain several words
(sometimes joined with _ , for example get_data);

experimental verification of the precision of recall of suggested areas of source code,
similar studies like the one introduced in Section 6.

References
1 S.L. Abebe and P. Tonella. Natural language parsing of program element names for concept

extraction. In Program Comprehension (ICPC), 2010 IEEE 18th International Conference
on, pages 156–159. IEEE, 2010.

2 A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: principles, techniques, and
tools. Pearson/Addison Wesley, 2007.

3 N. Anquetil and T. Lethbridge. Assessing the relevance of identifier names in a legacy
software system. In Proceedings of the 1998 conference of the Centre for Advanced Studies
on Collaborative Research, page 4. IBM Press, 1998.

4 A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes. Benchmarking lightweight tech-
niques to link e-mails and source code. In Reverse Engineering, 2009. WCRE’09. 16th
Working Conference on, pages 205–214. IEEE, 2009.

5 T.J. Biggerstaff, B.G. Mitbander, and D. Webster. The concept assignment problem in
program understanding. In Proceedings of the 15th international conference on Software
Engineering, pages 482–498. IEEE Computer Society Press, 1993.

6 B. Caprile and P. Tonella. Restructuring program identifier names. In Software Mainten-
ance, 2000. Proceedings. International Conference on, pages 97–107. IEEE, 2000.

7 F. Deissenboeck and M. Pizka. Concise and consistent naming. Software Quality Journal,
14(3):261–282, 2006.

8 B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in source code:
a taxonomy and survey. Journal of Software Maintenance and Evolution: Research and
Practice, 2011.

9 E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker. Mining source code to automatically
split identifiers for software analysis. In Mining Software Repositories, 2009. MSR’09. 6th
IEEE International Working Conference on, pages 71–80. IEEE, 2009.

10 J.R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and M. Dao. Automatic
extraction of a wordnet-like identifier network from software. In Program Comprehension
(ICPC), 2010 IEEE 18th International Conference on, pages 4–13. IEEE, 2010.

N. R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 253

11 C. Fellbaum. Wordnet. Theory and Applications of Ontology: Computer Applications,
pages 231–243, 2010.

12 J.J. Jiang and D.W. Conrath. Semantic similarity based on corpus statistics and lexical
taxonomy. Arxiv preprint cmp-lg/9709008, 1997.

13 D. Lawrie and D. Binkley. Expanding identifiers to normalize source code vocabulary. In
Software Maintenance (ICSM), 2011 27th IEEE International Conference on, pages 113–
122. IEEE, 2011.

14 D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? a study of identifiers.
In In 14th International Conference on Program Comprehension. Citeseer, 2006.

15 V. Rajlich and N. Wilde. The role of concepts in program comprehension. In Program
Comprehension, 2002. Proceedings. 10th International Workshop on, pages 271–278. IEEE,
2002.

16 A. Simoes, X.G. Guinovart, J.J. Almeida, and P. Natura. Distributed translation memories
implementation using webservices. Procesamiento del lenguaje natural, 33:89–94, 2004.

17 Alberto Simões and José João Almeida. Parallel corpora based translation resources ex-
traction. Procesamiento del Lenguaje Natural, (39):265–272, September 2007.

18 Alberto M. Simões and J. João Almeida. NATools – a statistical word aligner workbench.
Procesamiento del Lenguaje Natural, 31:217–224, September 2003.

19 Alberto Manuel Brandão Simões. Parallel corpora word alignment and applications. Mas-
ter’s thesis, Escola de Engenharia - Universidade do Minho, 2004.

20 Armstrong A. Takang, Penny A. Grubb, and Robert D. Macredie. The effects of comments
and identifier names on program comprehensibility: an experimental investigation. J. Prog.
Lang., 4(3):143–167, 1996.

21 D.A. Watt, W. Findlay, and J. Hughes. Programming language concepts and paradigms,
volume 234. Prentice Hall, 1990.

SLATE’12

	probsynsets
	Introduction
	Related Work
	Definitions and Concepts
	Ontology Oriented Symbol Table
	Probabilistic Synonym Set

	Relational Algebra
	Concept Location
	Experimental Validation
	Conclusion and Future Work

	blank-page

