
WCET Analysis of a Parallel 3D Multigrid Solver
Executed on the MERASA Multi-Core∗

Christine Rochange1, Armelle Bonenfant1, Pascal Sainrat1, Mike
Gerdes2, Julian Wolf2, Theo Ungerer2, Zlatko Petrov3, and
František Mikulu3

1 IRIT - Université Paul Sabatier
Toulouse, France
{rochange,bonenfant,sainrat}@irit.fr

2 University of Augsburg
Germany
{wolf,gerdes,ungerer}@informatik.uni-augsburg.de

3 Honeywell International s.r.o.
Czech Republic
{Zlatko.Petrov,Frantisek.Mikulu}@Honeywell.com

Abstract
To meet performance requirements as well as constraints on cost and power consumption, future
embedded systems will be designed with multi-core processors. However, the question of timing
analysability is raised with these architectures. In the MERASA project, a WCET-aware multi-
core processor has been designed with the appropriate system software. They both guarantee
that the WCET of tasks running on different cores can be safely analyzed since their possible
interactions can be bounded. Nevertheless, computing the WCET of a parallel application is still
not straightforward and a high-level preliminary analysis of the communication and synchroniz-
ation patterns must be performed. In this paper, we report on our experience in evaluating the
WCET of a parallel 3D multigrid solver code and we propose lines for further research on this
topic.

Digital Object Identifier 10.4230/OASIcs.WCET.2010.90

1 Introduction

The demand for computing power in embedded systems is ever growing as is the demand
for new functionalities that will improve safety, comfort, number and quality of services,
greenness, etc. Multi-core processors are now being considered as first-rate candidates to
achieve high performance with limited chip costs and low power consumption. However,
off-the-shelves components do not exhibit enough timing predictability to be used to design
hard real-time (HRT) systems since the estimation of worst-case execution times (WCETs)
would be infeasible or extremely pessimistic.

The MERASA project focuses on multi-core processors and system-level software for
HRT embedded systems. The main issue is to guarantee the analyzability and predictability
of WCETs. The proposed MERASA architecture features 2 to 16 cores, each one with
simultaneous multithreading (SMT) facilities designed to support one HRT thread and up to
three non real-time (NRT) threads. Private instruction and data scratchpad memories favor

∗ Multi-Core Execution of Hard Real-Time Applications Supporting Analysability. This research is
partially funded by the European Community’s Seventh Framework Programme under Grant Agreement
No. 216415

© John Q. Open and Joan R. Access;
licensed under Creative Commons License NC-ND

10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010).
Editor: Björn Lisper; pp. 90–100

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

C. Rochange et al. 91

local memory accesses for HRTs and the shared memory hierarchy, including the common bus,
features time-predictable arbitration policies. Target workloads are multiprogrammed, mixed-
critical tasks, as well as multithreaded, including control and data parallelism. However,
computing the WCET of a parallel application is not a straightforward process even when
the hardware features timing predictability. As far as we know, this issue has not been
addressed so far and the work that is reported in this paper is to be seen as a first attempt
from which we will get feedback to guide future research.

Within the MERASA project, a collision avoidance application, developed by Honeywell
International and based on the Laplace’equation for a 3D path planning, has been selected as
example of an industrial-relevant application to support investigations on timing analyzability
and predictability. In this paper, we study the core component of this application, a
3D multigrid solver. The parallelized version of this code splits the 3D domain into 3D
compartments and creates one thread to process each compartment. We assume a number of
threads equal to or lower than the number of cores in the target MERASA processor so that
all the threads can run in parallel, each on one core. While the hardware guarantees isolation
between concurrent HRT threads so that their respective WCETs could be analyzed without
any difficulty as if they were independent, software-related dependencies due to shared data
and synchronizations make the WCET analysis of the whole application challenging. In this
paper, we show how we have estimated the WCET of the parallel 3D multigrid solver.

The paper is organized as follows. Section 2 introduces the multi-core processor and
system software designed within the MERASA project. The parallel 3D multigrid solver is
presented in Section 3. How the WCET of this application can be analyzed is discussed in
Section 4 and experimental results are reported in Section 5. Section 6 provides feedback
from this study and Section 8 concludes the paper.

2 The MERASA multi-core architecture and system software

The MERASA processor architecture was developed as a timing predictable and WCET-
analyzable embedded multi-core architecture. Cores must execute HRT threads in isolation,
and the hardware must guarantee a time-bounded access to shared resources by e.g. applying
techniques for a real-time capable bus and memory controller [7]. In order to allow mixed
application execution of HRT and NRT threads each MERASA core is an in-order SMT-core
providing the possibility to run a HRT thread simultaneously in concert with additional NRT
threads. The cores of our multi-core processor feature two pipelines, an address and a data
pipeline, a first level of hardware scheduling to the thread slots, a real-time aware intra-core
arbiter, a data scratchpad (DSP) and a dynamic instruction scratchpad (D-ISP) [5] on core
level. The instruction scratchpad is automatically filled with target functions on call/return
instructions so that (a) the load time only depends on the function size and can be accounted
for when computing the WCET, and (b) every instruction fetch within a function always
hit in the D-ISP. The real-time aware intra-core arbiters are connected to the real-time bus
for accessing the main memory. The real-time bus features different real-time bus policies
inspired from Round-Robin and priority-based schemes [6] for dispatching requests to the
memory. Thus, we are able to execute multi-programmed and multithreaded workloads
on our multi-core processor. A detailed description of the MERASA multi-core and its
implementations as low-level (SystemC) and high-level simulators and also as an FPGA
prototype are available at the website of the MERASA project (www.merasa.org).

The MERASA system software [11] represents an abstraction layer between application
software and embedded hardware. On top of the MERASA multi-core processor it provides

WCET 2010

92 WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MERASAMulti-Core

the basic functionalities of a real-time operating system (RTOS) like synchronization functions
and memory management facilities to be a fundament for application software. Similar
demands as for the processor architecture arise for the RTOS: the challenge is to guarantee
an isolation of memory and I/O resource accesses of various HRT threads running on different
cores to avoid mutual and possibly unpredictable interferences between HRT threads and
therefore also enable WCET analyzability. If common resources are accessed, a time-bounded
handling must be guaranteed. The resulting system software executes HRT threads in parallel
on different cores of the MERASA multi-core processor. To yield thread isolation, we decided
to apply a second level of hardware-based real-time scheduling and devised a thread control
block (TCB) interface for the system software. The TCB interface is used to schedule by
hardware a fixed number of HRT threads (fixed by the number of cores, one per core) and an
arbitrary number of NRT threads into the available hardware thread slots. The commonly
used POSIX-compliant mechanisms for thread synchronization, like mutex, conditional and
barrier variables are implemented in a time-bounded fashion and a fixed WCET of each
function was computed [11]. For the dynamic memory management we chose a flexible
two-layered mechanism with memory pre-allocation in the first and the real-time capable
TLSF [4] memory allocator in the second layer.

3 The multigrid solver application

3.1 General overview

The software considered in this study is part of a larger application for airbone collision
avoidance. Moreover, it is the basic building block that plans a path between the current
vehicle position and the current goal position, using the Laplace’s equation. The Laplacian
algorithm constructs paths through a 3D domain by assigning a potential value of v(r) = 0
for r on any boundaries or obstacles, and a potential value of v(r) = −1 for r on the goal
region. Then Laplace’s equation is solved in the interior of the 3D region, guaranteeing no
local minima in the interior of the domain, leaving a global minimum of v(r) = −1 for r on
the goal region, and maxima of v(r) = 0 for r on any boundaries or obstacle. A path from any
initial point r(0) to the goal is constructed by following the negative gradient of the potential v.

Numerical solutions of Laplace’s equation are obtained by partitioning the domain, then
iteratively setting the potential at each interior point equal to the average of its nearest
neighbors. By varying the grid size (halving the voxel1 size at each step) from the crudest
that still leaves paths between obstacles, to the finest that is required for smooth paths, the
iteration converges in a time proportional to the number of voxels in the finest grid. The
solution on crude grids is cheap, and is used to initialize the solution on finer grids. This
multigrid technique is described in [10].

In the version of the code we considered, the multigrid solver function includes five phases,
each of them breaks down into an interpolation step and an iteration step, shown in Table 1.
There are no data races in the interpolation code, while those are in the iteration step code.

1 A voxel is a volume element, representing a value on a regular grid in a 3D space. It is analogous to a
pixel in a 2D space.

C. Rochange et al. 93

Table 1 Steps in the multigrid solver algorithm

Interpolation Iteration

for (x=0; x<NX; x++)
for (y=0; y<NY; y++)

for (z=0; z<NZ; z++)
v[x][y][z]

= compInterpolate(old_v);

for (i=0; i<NUM_ITE; i++)
for (x=0; x<NX; x++)

for (y=0; y<NY; y++)
for (z=0; z<NZ; z++)

v[x][y][z]
= compIterate(v);

3.2 Parallel version

This code has been parallelized by breaking the 3D domain down into 3D compartments, as
illustrated in Figure 1. The main thread creates as many child threads as compartments and
each of them performs the computations for one compartment. The main thread orchestrates
the phases and steps and enforces the synchronization of the child threads after each step.
During interpolation steps, the child threads run independently from each other. However a
synchronization at the end is required to ensure that the whole 3D matrix has been processed
before starting the iteration step. In the iteration steps, each thread has to synchronize with
the threads that produce the data it depends on and with the threads that consume the
produced data.

Figure 1 3D domain splitting into compartments

4 WCET analysis of the parallel multigrid solver

4.1 General overview

Analyzing the WCET of a parallel application requires two steps. First, it is necessary to
analyze the general structure of the code, and to determine which parts are executed in
parallel. The result of this step is a slicing of the code into units and the specification of how
units are scheduled with respect to each other. This specification allows deriving the list of
code units for which a WCET must be computed and a formula to determine the WCET
of the whole application from the WCETs of code units. Second, the synchronizations and
communications between threads must be carefully analyzed to be able to compute upper
bounds for waiting times due to synchronizations.
In the following, we will illustrate these two steps considering the multigrid solver application
introduced in Section 3.

WCET 2010

94 WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MERASAMulti-Core

4.2 Analysis of the application structure
Figure 2 shows the structure of the parallel code, the synchronization points between the
main thread and the child threads, as well as the synchronizations between child threads (in
this figure, PiSj stands for “Phase i, step j”). From this structure, it is possible to derive
a first breakdown of the overall WCET, as shown in Figure 3. This diagram combines the
WCETs of code parts, some of them are executed by the main thread and the other ones by
the child threads. The question of the synchronizations will be addressed in Section 4.3 but
what is suggested here is that the WCET of a code part executed by the main (resp. a child)
thread does not include the waiting time for other threads: the waiting time is represented
by the WCET of child threads (resp. of the main thread). According to the diagram, the
WCET can be computed as:

WCETglobal =WCET (main) +
5∑
i=1

2∑
j=1
WCET (PiSj)

where WCET (main) is computed without accounting for the waiting times.

Figure 2 Structure of the parallel multigrid solver code

Figure 3 First-level breakdown of the WCET

Now, this application requires a second level of analysis due to the synchronizations
between child threads in the iteration steps. As explained in Section 3.2, the sequential
algorithm enforces data dependencies between successive iterations of the loop nest since the
potential of a voxel is computed from the potential of its neighbors (some of them have been
updated before it, other ones will be updated after it). Once the 3D domain is split into
compartments, each one has dependencies with the borders of its neighbor compartments.
Moreover, the grid is processed several times in a loop.

Fortunately, data sharing patterns are regular and it is possible to compute the WCET of
a whole interpolation step as illustrated in Figure 4. The interesting point here is the absence
of data races requiring synchronizations between the first compartments and the last ones
which allows the first threads starting a new iteration of the outer loop before the last threads
have finished the current iteration. This is demonstrated in Figure 4 by the overlapping of i0
threads with i1 threads in the 4-, respectively 8-threaded cases. The examples show that a

C. Rochange et al. 95

computation speed-up of at most 2 in the 4-threaded and 4 in the 8-threaded cases can be
achieved (not taking the main thread and the synchronization overheads into account).

As a result, if the WCET of each computation part is noted Wi and NUM_ITE is the
number of iterations, the WCET of an iteration step can be computed as:

WCET (PiS2) =


2.Wi × NUM_ITE with 2 threads
3.Wi + 2.Wi × (NUM_ITE− 1) with 4 threads
4.Wi + 2.Wi × (NUM_ITE− 1) with 8 threads

Figure 4 Second-level breakdown of the WCET

4.3 Analysis of the synchronizations
In the application under analysis, the inter-thread synchronizations are implemented using
POSIX-compliant mutex and conditional variables. In this Section, we focus on the mutex
variable acquisition (mutex_lock) but the approach that we propose to analyze the waiting
time within this function is also valid for other synchronization primitives.
A simplified version of the mutex_lock() function is shown in Figure 5. There are four different
cases for a thread trying to acquire the mutex lock. If the mutex lock is free, the thread will
acquire the guard lock (1), the mutex lock, and release the guard lock (4). If the mutex lock
is hold by another thread, the thread will, after acquiring the guard lock (1), suspend on the
mutex lock (2). If the other thread releases the mutex lock, all suspended threads will try to
get the mutex lock (3). Now, there are two possibilities: either a thread acquires the mutex
lock (4) or it is suspended again (2) if an other thread acquired the mutex lock successfully.
The worst-case waiting time for the guard lock is then the maximum WCET of all these
four paths and of the similar paths in the other primitives that manipulate the guard lock,
multiplied by the number of active threads.
In general, the WCET of a synchronization primitive can be broken down into four terms:

Term depends on...
threads application

Te Execution time when the synchronization variable is free no no
Tw1 Overhead execution time when the thread has to wait for

the variable
no no

Tw2 Waiting time related to system-level variables yes no
Tw3 Waiting time related to application-level variables yes yes

WCET 2010

96 WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MERASAMulti-Core

As far as mutex_lock() is concerned, these times can be computed as follows:
Te is the WCET computed with flow facts indicating that the loops (the one that
implements the wait for the mutex lock, but also the one that stands for the wait for the
guard lock in spinlock_lock()) have zero iteration, which corresponds to the situation
where both the guard lock and the mutex lock are free. This is a constant time.
Tw1 is the overhead time of waits (both for the guard lock and the mutex lock), i.e.
the time to enter and then leave the loop, considering the lock is released right after
the unsuccessful try. In practice, this time is the difference between Te and the WCET
computed considering each loop iterates once (ignoring the waiting time). This time is
also constant.
Tw2 stands for the waiting times that relate to variables that are manipulated by system-
level code only. This is the case for the guard lock. The knowledge of the system software
code makes it possible to determine all the possible executions where a thread holds
the guard lock. The time Tw2 then depends on the number of threads but not on the
application code, i.e. once the system software has been analyzed, this time is known for
any application.
Finally, Tw3 includes the waiting times that relate to variables used at the application
level. Here, the mutex lock is concerned. How long a thread will have to wait to get
the mutex lock depends on the application code and more specifically on possible paths
from any call to mutex_lock() to any call to mutex_unlock(). This time also depends on
the number of threads that are likely to use the variable.

int mutex_lock(mutex_t mutex) {
(1) spinlock_lock(&mutex->guard);

...
while (spinlock_trylock(&mutex->the_lock)) {
... // insert thread into queue

(2) spinlock_unlock_and_set_suspended(&mutex->guard);
(3) spinlock_lock(&mutex->guard); // on wakeup

}
...

(4) spinlock_unlock(&mutex->guard);
}

Figure 5 Code of the mutex_lock primitive

Three kind of synchronizations have to be considered when analyzing the WCET of the
parallel multigrid solver. Synchronizations from the main thread to the child threads rely
on a shared variable that indicates the next step to execute. It includes a mutex lock (to
protect accesses to the shared variable) and a condition to wait on when the variable is not
in the expected state. With N child threads, the number of threads that manipulate the
lock and the condition is N + 1. The paths on which the lock can be hold can be identified
in the main thread and child thread codes: the maximum WCET of these paths, multiplied
by N + 1, makes the Tw3 term for the lock. Synchronizations from the child threads to the
main thread (it must wait that they all have performed the current step before initiating the
next one) are similar except for each thread has its own state variable (which is shared only
with the main thread). Synchronizations between two child threads (when one produces data
used by the other one, on compartment borders) are implemented through state variables
related to each child thread. As above, state variables include mutex lock and conditions.
Each state variable is shared with the producers and consumers of its owner.

C. Rochange et al. 97

5 Experimental results

In this Section, we provide experimental results obtained considering the following configura-
tion for the MERASA multi-core processor: 2 to 8 cores available for computation threads
(an additional core is considered for the main thread), perfect ISP (all the instructions can be
fetched from the instruction scratchpad memory), DSP (scratchpad for stack data), round-
robin bus, 5-cycle DRAM latency. Due to the round-robin policy and to intra-core arbitration
between real-time and non-real-time threads, the worst-case latency of an access to the main
memory is 5 ·n+ 12 for an n-core configuration. In addition, we have considered a single-core
configuration to calculate the WCET of a single-threaded version of the application. The
application was compiled to the TriCore ISA [13].

WCETs have been computed using OTAWA, a toolset based on static WCET analysis
techniques [2]. A specific model of the MERASA architecture has been implemented within
this framework. To control the WCET analysis, we have written a script that initiates
all the required computations. First, it gets all the WCET terms needed for system-level
synchronization functions; then, it requests the WCET analysis of application-level code
parts (main function, computation steps); finally, it combines all these times to compute the
overall WCET.

Table 2 Estimated WCETs (# cycles)

1 thread 2+1 threads 4+1 threads 8+1 threads
1 core 53,990,765 - - -
3 cores 58,297,375 66,849,369 - -
5 cores 62,603,985 73,372,109 40,389,428 -
9 cores 71,217,205 86,417,589 47,678,968 28,105,761

Table 2 shows our WCET estimates for several configurations (from 1 to 9 cores) and
for several versions of the application (from 1 to 8+1 threads). We considered small grid
sizes so that only three phases (instead of five) are executed. As expected, the WCET of
a t-threaded version of the application increases with the number of cores: this is due to
the round-robin bus policy under which, in the worst case, a given core has to wait for all
the other cores to be served before being served itself. Then the worst-case memory latency
increases linearly with the number of cores.

On the other hand, the WCET is noticeably improved when the application is parallelized
to 4 threads and more. We define the WCET-speedup as the WCET of the single-threaded
code executed on one core over the WCET of the n-threaded code executed on n cores. On
a 9-core architecture, the WCET-speedup is 1.13 with 4 computation threads and 1.9 with 8
computation threads.

Table 3 indicates how the WCET breaks down into "active" execution time (ignoring
all waits), waiting time due to synchronizations and waiting time for producing threads
(in iteration steps, a computation thread has to wait until all the previous compartments
have been updated by other threads before starting to update its own compartment). The
provided numbers are for a 9-threaded version of the code and a 9-core configuration, but
other combinations exhibit similar breakdowns. It appears that the part of the execution
time due to the main thread is small (6%): it mainly includes the time to read the grid.

WCET 2010

98 WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MERASAMulti-Core

Moreover the synchronizations have little impact on the overall WCET: they account for
less than 2%. This is due to limited interactions between concurrent threads. The largest
part of the total WCET (more than 92%) comes from the computation threads. About
one half of this time is spent in performing the computations assigned to a thread (three
interpolation steps and three iteration steps for the map size selected for this study) while the
other half is spent in waiting for producing threads within iteration steps. This is coherent
with Figure 4 that shows that the length of loop body in an iteration step should be twice
the length of computing one compartment. Predominance of the iteration steps duration in
the total WCET explains why the dual-threaded version of the code does not improve the
WCET but instead degrades it: since parallelism is not exploited in the iteration steps (both
compartments must be processed in sequence), the gain due to parallelized interpolation
steps is not sufficient to counterbalance the cost of synchronizations.

Table 3 WCET breakdown (8 computation threads, 9 cores)

WCET for the main thread without waits 6.0%
WCET for a computation thread without waits 45.0%
Time to wait for producers in iteration steps 47.2%
Total waiting time for synchronizations 1.8%

6 Lessons learnt from this case study

While research on WCET computation of sequential programs has received much attention
the last fifteen years, resulting in a set of techniques that can handle not too complex software
and hardware, the arrival of multi-cores on the embedded systems market raises the need
of investigating strategies to analyze the WCET of parallel applications. In this paper, we
have reported a study that has been carried out as part of the MERASA project. This
first experience in the domain has inspired new lines of research that we will outline in this
Section.

The first need for the WCET analysis of a parallel program that appeared during this
study is to get an overview of the structure of the application. It is necessary to determine
which parts of the code execute in parallel and where the dependencies are. This knowledge
is required to build the first-level breakdown of the overall WCET and to schedule the
analysis of each piece of code that must be taken into account. Automatically extracting
this kind of information from the source or executable code seems infeasible and it is likely
that the user/programmer will be asked to provide them. However, this might be a source of
errors and it may be desirable to favor well-known parallelization patterns. In addition, an
appropriate formalism to express the software parallel architecture would be helpful.

The second need concerns synchronizations: to compute worst-case waiting times, it is
necessary to know where synchronizations occur and which threads share synchronization
variables. Moreover, the paths on which locks are hold by threads must be carefully identified.
Again, specific support should be provided (e.g. in the form of an annotation language) so
that the user can specify these information.

In addition, the considered WCET analysis tool must be enhanced to be able to process
the specifications of the parallelized code (structure and synchronizations). In particular, we
have identified as a must functionality the ability to compute the WCET of a given path
(from address a to address b) taking into account its possible contexts of execution. For

C. Rochange et al. 99

example, the cache behavior should be preliminary analyzed considering the whole program
instead of performing the cache analysis on the path only. So far, the OTAWA toolset does
not support global context analysis for path WCET estimation. This is the reason why we
have considered a perfect instruction scratchpad in this paper.

Finally, we would like to point out that WCET analysis might not be feasible for any
parallel code. As future work, we plan to provide a set of parallelization recommendations
that will serve as guidelines to split the computations into parallel threads so that both the
code structure and the communication and synchronization patterns match the requirements
for timing analyzability.

7 Related work

As we have mentioned it, we are not aware of any paper dealing with the WCET analysis
of data-parallel applications and in particular with the analysis of synchronization delays.
However, several recent works have studied the impact of interactions between concurrent
threads on the WCET.

Some papers focus on the delays introduced by the other threads in the interconnection
structure (mainly at the bus level). Solutions reside in predictable arbitration schemes
like Round-Robin (considered in the MERASA architecture) [6] or TDMA schemes [1]. A
different approach integrates task- and system-level analyses to derive upper bounds for
memory latencies [8].

Other contributions concern the analysis of interactions in the level-2 shared cache [12]
or solutions to make this analysis more accurate [3][9]. They all focus on spatial conflicts
(when two concurrent threads may access the same cache line in a shared cache), not on
temporal interferences (i.e. their cache analysis does not take into account the times at which
conflicting accesses to the cache will occur but considers instead the worst case).

8 Conclusion

Multi-core processors seem to be key components for the design of future embedded systems
because of their ability to provide high performance with low cost and low power consumption.
However, existing designs are often not compatible with worst-case execution time analysis
since the dynamic sharing of resources (bus, memory hierarchy, etc.) makes it complex if
not impossible to determine upper bounds on the delays experienced by a thread running
on one of the cores that are due to other threads running on other cores (or on the same
core if simultaneous multithreading is supported). The MERASA project fills in this gap by
developing a hard-real-time-aware multi-core processor and the appropriate system software.
Both levels (hardware and software) have been designed keeping in mind the need of being
able to determine upper bounds on pipeline, bus and memory latencies as well as on delays
related to dynamic memory management and inter-thread synchronization. As a result, the
MERASA multi-core can be used to run mixed multiprogrammed workloads with critical
and non critical tasks as well as parallel programs subject to timing constraints.

However, even with WCET-friendly hardware, the WCET analysis of a parallel application
is still challenging because it requires having a clear view on the code parallel structure and
on the communication and synchronization patterns. We have investigated this field and this
paper reports our first experiment in computing the WCET of a parallel 3D multigrid solver
code. The process described here is completely guided by the user who must provide insight
into how the complete code breaks down into units that can be analyzed separately before

WCET 2010

100 WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MERASAMulti-Core

their respective WCET estimates are combined to produce the total WCET. As future work,
we plan to work on automating the analysis as much as possible.

References
1 Andrei A., Eles P., Peng Z., Rosen J.: Predictable Implementation of Real-Time Applic-

ations on Multiprocessor Systems-on-Chip. In: 21st International Conference on VLSI
Design, 2008.

2 Casse H., Sainrat P.: OTAWA, a Framework for Experimenting WCET Computations. In:
3rd European Congress on Embedded Real-Time Software, 2006.

3 Hardy D., Piquet T., Puaut I.: Using Bypass to Tighten WCET Estimates for Multi-
Core Processors with Shared Instruction Caches. In: IEEE Real-Time Systems Symposium
(RTSS), 2009.

4 Masmano M., Ripoll I., Crespo A., Real J.: TLSF: A New Dynamic Memory Allocator for
Real-Time Systems. In: 16th Euromicro Conf. on Real-Time Systems (ECRTS), 2004.

5 Metzlaff S., Uhrig S., Mische J., Ungerer T.: Predictable Dynamic Instruction Scratchpad
for Simultaneous Multithreaded Processors. In: 9th workshop on MEmory performance
(MEDEA), 2008.

6 Paolieri M., Quiñones E., Cazorla F., Valero M.: Hardware Support for WCET Analysis
of Hard Real-Time Multicore Systems. In: 36th Int’l Symp. on Computer Architecture
(ISCA), 2009.

7 Paolieri M., Quiñones E., Cazorla F., Valero M.: An Analyzable Memory Controller for
Hard Real-Time CMPs. In: IEEE Embedded Systems Letters, 1(4), 2009.

8 Stachulat J., Schliecker S., Ivers M., Ernst R.: Analysis of Memory Latencies in Multi-
Processor Systems. In: 5th Intl. Workshop on Worst-Case Execution Time (WCET) Ana-
lysis, 2007.

9 Suhendra V., Mitra T.: Exploring Locking and Partitioning for Predictable Shared Caches
on Multi-cores. In: 45th Conf. on Design Automation (DAC), 2008.

10 Valavinis K.P., Herbert T., Kollura R.,Tsourveloudis N.: Mobile Robot Navigation in 2-D
Dynamic Environments Using an Electrostatic Potential Field. In: IEEE Trans. on Systems,
Man, and Cybernetics-PART A: Systems and Humans, 30(2), 2000.

11 Wolf J., Gerdes M., Kluge F., Uhrig S., Mische J., Metzlaff S., Rochange C., Casse
H., Sainrat P., Ungerer T.: RTOS Support for Parallel Execution of Hard Real-Time
Applications on the MERASA Multi-Core Processor. In: 13th IEEE Int’l Symp. on
Object/component/service-oriented Real-time Distributed Computing (ISORC), 2010.

12 Yan J., Zhang W.: WCET Analysis for Multi-Core Processors with Shared L2 Instruction
Caches. In: IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2008.

13 Infineon Technologies AG, TriCore 1 User’s Manual (v1.3.8), Jan., 2008.

	Introduction
	The MERASA multi-core architecture and system software
	The multigrid solver application
	General overview
	Parallel version

	WCET analysis of the parallel multigrid solver
	General overview
	Analysis of the application structure
	Analysis of the synchronizations

	Experimental results
	Lessons learnt from this case study
	Related work
	Conclusion

