
An Empirical Analysis of Robustness Concepts for
Timetabling∗

Marc Goerigk and Anita Schöbel

Institute for Numerical and Applied Mathematics
University of Göttingen
Lotzestr. 16-18
D-37083 Göttingen, Germany
{m.goerigk,schoebel}@math.uni-goettingen.de

Abstract
Calculating timetables that are insensitive to disturbances has drawn considerable research efforts
due to its practical importance on the one hand and its hard tractability by classical robustness
concepts on the other hand. Many different robustness concepts for timetabling have been
suggested in the literature, some of them very recently. In this paper we compare such concepts
on real-world instances. We also introduce a new approach that is generically applicable to any
robustness problem. Nevertheless it is able to adapt the special characteristics of the respective
problem structure and hence generates solutions that fit to the needs of the respective problem.

1998 ACM Subject Classification G.2.2 Graph Theory - Network problems

Keywords and phrases Timetabling, Robust Optimization, Algorithm Engineering

Digital Object Identifier 10.4230/OASIcs.ATMOS.2010.100

1 Introduction

The aperiodic timetabling problem has received considerable attention in recent robust op-
timization literature (see, e.g., [7, 9, 11]) as one of significant importance in real-world
applications where it is needed to create timetables that stay "good" under the unavoidable
small disturbances of daily railway operations. Robust solutions usually lead to high buffer
times, which in turn yield high traveling times and thus unattractive timetables. Newly
introduced concepts are all in between the extremes of the best nominal timetable, which is
least robust, and the strictly robust timetable, which tends to be too conservative.

In this paper we compare for the first time the most prominent robustness concepts for
timetabling numerically on a real-world instance. We furthermore present a new concept
for finding robust solutions with an easily applicable algorithm, yielding timetables that are
a good compromise between traveling time and robustness. In general, this algorithm can
be used whenever a solver for the nominal problem is at hand, which gives the possibility
to make use of existing, powerful methods with small effort of software rewriting.

We analyze two different types of uncertainty, one that allows small delays on all edges,
and one that allows heavy delays on a restricted set of edges, and show empirically that the
structure of these determine which robustness concept fits best.

The problem we consider is the following: Let an event-activity-network (EAN) be given,
that is, a directed graph G = (E ,A) consisting of departure and arrival events E = Earr∪Edep

∗ This work was partially supported by grant SCHO 1140/3-1 within the DFG programme Algorithm
Engineering.

© Marc Goerigk and Anita Schöbel;
licensed under Creative Commons License NC-ND

10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS ’10).
Editors: Thomas Erlebach, Marco Lübbecke; pp. 100–113

OpenAccess Series in Informatics
Schloss Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Marc Goerigk and Anita Schöbel 101

and waiting, driving, changing and headway activities A = Await ∪Adrive ∪Achange ∪Ahead.
Driving activities Adrive ⊆ Edep×Earr represent traveling from one station to another, while
waiting activitiesAwait ⊆ Earr×Edep represent staying of a train at a station while passengers
board and deboard. Changing activities Achange ⊂ Earr×Edep model passengers who plan to
change from one train to another at the same station, while headways Ahead ⊂ Edep × Edep
are introduced to model safety distances between trains sharing the same infrastructure.
Assigned to each of these activities (i, j) ∈ A is a minimal duration l̂ij ∈ IN representing
the technically possible lower time bound for an activity to take place, and a number wij of
passengers using activity (i, j) ∈ A. The task is to find node potentials πi ∈ IR for all i ∈ E ,
such that the sum of passenger traveling times wij(πj − πi) over all activities (i, j) ∈ A is
minimized for given passenger weights wij under the time restrictions πj − πi ≥ l̂ij for each
activity (i, j) ∈ A. Its well-known mathematical formulation is

(TT) min
∑

(i,j)∈A

wij(πj − πi) (1)

s.t. πj − πi ≥ l̂ij ∀(i, j) ∈ A (2)
πi ≥ 0 ∀i ∈ E . (3)

We will sometimes simply write l̂ = (l̂ij)(i,j)∈A as the vector of all lower bounds, and similary
π = (πi)i∈E as the vector of node potentials, for any given edge- and node order. Note that
the time restrictions form a totally unimodular matrix, i.e. even though real node potentials
might be considered as unrealistic in railway operations, we will always find an integer
optimal solution. Furthermore, (TT) is feasible for all possible activity durations l̂ ≥ 0 if
the network does not contain any directed cycle with positive length, infeasible otherwise.

2 Robustness Concepts

In order to hedge (TT) against delays in operation, we have to model the possible distur-
bances first. Which (source) disturbances occur is in practice not known beforehand, since
this depends on exterior influences like weather conditions or technical failures. Hence the
activity durations are uncertain. In this paper we assume that the passenger distribution
w = (wij)(i,j)∈A, i.e., the number of passengers using each activity, is known.

The first type of uncertainty we consider is one of uniform deviation. Imagine, for
example, bad weather conditions that slightly delay all trains on track equally. We model
this behavior with the following set of scenarios depending on s ∈ IR+, where s controls the
level of uncertainty:

U1(s) := {l : l̂ij ≤ lij ≤ (1 + s)l̂ij ∀(i, j) ∈ Adrive ∪ Await,

lij = l̂ij ∀(i, j) ∈ Achange ∪ Ahead}

The second type of uncertainty we analyze models the situation that only a restricted number
of activities may be delayed at the same time, but heavier. E.g., this may be the case when
good weather conditions hold but single trains are delayed by blocked tracks or technical
failures. For k ≥ 1, we define

U2(k, s) := {l : l̂ij ≤ lij ≤ (1 + s)l̂ij ∀(i, j) ∈ D ⊆ Adrive ∪ Await, |D| = k,

lij = l̂ij ∀(i, j) ∈ A \D}

Using U2 we assume that not all, but at most k lower bounds change to their worst values
in the same scenario, which can be interpreted in the sense of Bertsimas and Sim [3] in the
dual problem.

ATMOS ’10

102 An Empirical Analysis of Robustness Concepts for Timetabling

We now survey recent robustness concepts and show how they can be applied to the
timetabling problem. To this end, let us consider a general optimization problem (P) min{f(x) :
F (x) ≤ 0} with an objective function f : IRn → IR and constraints F : IRn → IRm. Its
uncertain version is given as

(P(ξ)) min f(x, ξ) (4)
s.t. F (x, ξ) ≤ 0 (5)

x ∈ IRn, (6)

depending on the scenario parameter ξ from a given uncertainty set U ⊆ IRM . There may
be a specific element ξ̂ ∈ U that models the problem as it would be without the existence of
disturbances. This element is called the nominal scenario and (P (ξ̂)) is called the nominal
problem. We consider problem (TT) as an uncertain optimization problem w.r.t l, where the
objective function f(π) =

∑
(i,j)∈A wij(πj−πi) does not depend on l and the constraints are

given as F (π, l) = (l−Atπ), where A is the node-arc incident matrix of G, that is, aie = 1,
if e = (j, i) for a j ∈ E , aie = −1, if e = (i, j) for a j ∈ E , and aie = 0 else, and l ∈ IR|A|

contains the minimum activity durations. Note that for U1 and U2, we have M = m.

2.1 Strict Robustness
Strict robustness might be considered as the oldest and most conservative approach to
uncertainty. It was introduced by Soyster [13] and significantly extended by Ben-Tal, Ghaoui
and Nemirovski, see [2, 1] and references therein. The concept requires feasibility of a robust
solution under all possible scenarios, i.e. that F (x, ξ) ≤ 0 for all ξ ∈ U . For (TT) we obtain

(S-TT) min
∑

(i,j)∈A

wij(πj − πi) (7)

s.t. πj − πi ≥ lij ∀(i, j) ∈ A and ∀l ∈ U (8)
π ≥ 0. (9)

(S-TT) is called the strict robust counterpart of (TT). In general, this leads to infinitely many
constraints, depending on the choice of U . It is shown in [2] that if U = conv{ξ1, . . . , ξN},
where conv denotes the convex hull, and F (x, ·), f(x, ·) are quasiconvex in ξ, then the strict
robust counterpart is equivalent to a program where the constraints only have to be satisfied
for ξ1, . . . , ξN . This is evidently the case for (TT) with U1 as defined above. Omitting
redundant constraints we hence gain the following strict robust formulation for U1:

(S-TT) min
∑

(i,j)∈A

wij(πj − πi) (10)

s.t. πj − πi ≥ (1 + s)l̂ij ∀ (i, j) ∈ A (11)
π ≥ 0 (12)

In case of U2, the same result holds due to the fact that all but the listed constraints (11)
become dominated by other scenarios. Remark that the guaranteed feasibility comes at a
high price, as the maximum buffer is put on every edge even though only a few may become
delayed.

2.2 Light Robustness
Fischetti and Monaci introduced in [9] an approach that relaxes the constraints of the strict
robust counterpart to gain more flexibility. As before, let m be the number of constraints.

Marc Goerigk and Anita Schöbel 103

Variables γi are introduced for each constraint i = 1, . . . ,m of the nominal problem that
measure the degree of relaxation needed for strict robustness. The goal is to minimize the
sum of these γi while guaranteeing a certain quality of the solution. Let the nominal scenario
be denoted by ξ̂ ∈ U and let z∗ > 0 be the optimal objective of the nominal problem. Then,
for a given δ, the light robustness approach is

(LR) min
∑

γi (13)

s.t. F (x, ξ̂) ≤ 0 (14)

f(x, ξ̂) ≤ (1 + δ)z∗ (15)
Fi(x, ξ) ≤ γi ∀i = 1, . . . ,m, ∀ξ ∈ U (16)
γ ≥ 0 (17)

Constraint (14) ensures nominal feasibility, while (15) controls the nominal quality by
the parameter δ. Constraints (16) allow infeasibility for the other scenarios ξ ∈ U , which
will be minimized by the objective function.

Applying this scheme to the timetabling problem (TT) with uncertainty U1 and dropping
dominated constraints gives the following program:

(L-TT) min
∑

γij (18)

s.t.
∑

wij(πj − πi) ≤ (1 + δ)z∗ (19)

πj − πi ≥ l̂ij ∀(i, j) ∈ A (20)

πj − πi ≥ (1 + s)l̂ij − γij ∀(i, j) ∈ A (21)
γ, π ≥ 0 (22)

Note that l̂ is used as the nominal scenario. Constraint (16) simplifies to (21), as all
other scenarios l ∈ U become dominated. Also here U2 yields the same formulation as we
can again drop dominated constraints.

2.3 Recoverable Robustness
The concept of Recoverable Robustness was introduced by Liebchen et al. in [11] and by
Cicerone et al. in [4, 8, 5], both groups also proposing applications to timetabling. The
basic idea is to find a robust solution that can be "repaired" (i.e., made feasible by delaying
events) with low costs as soon as the real scenario becomes known. In both papers [11, 6], the
sum of all arrival delays of the passengers and the maximum delay of each arrival event are
restricted by budget parameters λ1 or λ2. As these budget parameters might be difficult to
estimate in advance, they are regarded as variables in [11] and become part of the objective
function with according weights, say g1 and g2. Denoting by w̃i, i ∈ Earr, the number of
passengers de-boarding at event i, and assuming a finite set of scenarios U , [11] suggest the
following program:

(R-TT) min
∑

(i,j)∈A

wij(πj − πi) + g1λ1 + g2λ2 (23)

s.t. πj − πi ≥ l̂ij ∀(i, j) ∈ A (24)
πlj − πli ≥ lij ∀l ∈ U , ∀ (i, j) ∈ A (25)
πli ≥ πi ∀l ∈ U , ∀i ∈ Edep (26)

ATMOS ’10

104 An Empirical Analysis of Robustness Concepts for Timetabling

∑
i∈Earr

w̃i(πli − πi) ≤ λ1 ∀l ∈ U (27)

πli − πi ≤ λ2 ∀l ∈ U , ∀i ∈ Earr (28)
λ1, λ2, π

l, π ≥ 0 (29)

Regarding the number of variables, note that for each scenario a timetabling problem has
to be solved. The concept was originally designed for an uncertainty of type U2, meaning
that

(|A|
k

)
+ |A|+2 variables need to be created. For k > 1 this becomes quickly intractable.

For k = 1 exactly one activity is delayed per scenario and we may write U ∼= Await ∪ Adrive

for short. The authors present a possibility to reformulate the recovery robust timetabling
problem in a more compact way by setting g2 = 0 and introducing a fixed recovery budget
D instead of using λ1. For every scenario e variables ye = πe − π ∈ IR|E| are needed. Using
slack variables f one obtains

(R2-TT) min
π,f

∑
(i,j)∈A

wij(πj − πi) (30)

s.t. πj − πi − fij = l̂ij ∀(i, j) ∈ A (31)
fij + yej − yei ≥ sχij(e) ∀(i, j) ∈ A, ∀e ∈ Await ∪ Adrive (32)
D ≥ ‖ye‖1 ∀e ∈ Await ∪ Adrive (33)
f, ye, π ≥ 0, (34)

where χij(e) = 1 if e = (i, j) and zero else. In this formulation we changed the weights w̃ to
be 1 for all nodes for better comparability with other models; however, also other weights
may be considered.

For the uncertainty U1 we obtain a different formulation. Here it is sufficient to find a
recovery solution πworst for only the worst-case scenario in which all activity durations take
their worst values. Hence, by setting w̃i = 1 for all i ∈ E again, (R-TT) simplifies to

(R1-TT) min
∑

(i,j)∈A

wij(πj − πi) + g1λ1 + g2λ2 (35)

s.t. πj − πi ≥ l̂ij ∀(i, j) ∈ A (36)

πworstj − πworsti ≥ (1 + s)l̂ij ∀(i, j) ∈ A (37)
πworsti ≥ πi ∀ i ∈ E (38)
‖πworst − π‖1 ≤ λ1 (39)
πworsti − πi ≤ λ2 ∀i ∈ E (40)
λ1, λ2, π̂, π ≥ 0. (41)

3 A New Approach: Recover to Optimality

In this section we consider a new type of robust approach that aims to minimize the expected
or the maximum repair costs to an optimal solution of a scenario, measured in terms of a
distance function. The robust counterpart of this setting is in general notation given as

(RecOpt) min
x

sup
ξ∈U

d(x, xξ)

s.t. xξ is an optimal solution to (P(ξ)),

where d(x, xξ) represents the recovery costs needed to update a timetable x to another
timetable xξ. Instead of the supremum also the average recovery costs may be considered.

Marc Goerigk and Anita Schöbel 105

Since we recover not to a feasible, but to an optimal solution xξ, a strictly robust solution
has no recovery costs in (R-TT), but especially in timetabling will usually have high recovery
costs in the sense of (RecOpt). Recovery to optimality may also mean to let events take
place earlier which is reasonable when a timetable needs not be adapted to the scenario
during the operational phase, but the scenario is known some time before (like in the case
of track maintenance or exceptional weather forecasts).

This concept therefore generalizes several well-known approaches of robust optimization
theory. As an example, in min max regret literature (see [10] for an overview, or [14] where
it is called deviation robustness), one considers the problem of minimizing the difference
between the objective value of the current solution and the one that would have been best
for the scenario, that is:

(MinMaxReg) min maxξ∈U f(x, ξ)− f∗(ξ),
where f∗(ξ) denotes the best possible solution for scenario ξ. In contrast to this, our

approach aims at minimizing the distance between the current solution x and the solution
that would have been best for the scenario. Minmax-regret robustness is hence a special
case of (RecOpt) by using the difference in the objectives as a distance measure. Also, the
problem of finding a strict robust solution can be considered as a (RecOpt) problem, where
the objective value is required to be zero. Compared to recoverable robustness, we recover
to optimality, not to feasibility, and allow any distance measure d.

Instead of solving (RecOpt) to optimality we suggest the following heuristic in which
we create a number of scenarios ξ, solve them separately, and find the robust solution by
solving a location problem in which the given facilities are the respective optimal solutions
of the instances (P(ξ)). Thus we apply the following algorithm to the timetabling problem:

Algorithm RecOpt-TT:
→ Input: A robust aperiodic timetabling instance (TT), a sample size ν ∈ IN and a

distance measure d : IR|E| × IR|E| → IR.
1. Choose a subset S ⊆ U of ν elements at random.
2. Create vectors πl ∈ IR|E| by solving TT(l) for each l ∈ S.
3. Find a vector π ∈ IR|E| by minimizing the sum/maximum of distances d(π, πl) for all

l ∈ S.
← Output: A robust solution π.

This algorithm is generically applicable to any other robust problem, but has to be
specified to its respective needs. In particular, we have to determine which distance measure
represents the recovery costs best, how many scenarios should be chosen, and how they
should be created.

Note that this heuristic is easily applicable whenever a method for solving the nominal
problem is available. Only a generic location problem solver has to be used, while existing
algorithms need not be changed.

For our numerical evaluation we used the same recovery costs as in (R1-TT) and (R2-
TT), which is the ‖ · ‖1-distance, either in combination with a sum or a maximum, and we
added the squared Euclidean distance as third alternative. The resulting combinations are
shown in Table 1.

Note that we are free to add further restrictions to the location of π. Since a nominal
infeasible timetable would not be of practical use, we additionally impose nominal feasibility
constraints and solve restricted location problems. We remark that there can be an optimal
d1 center or median for the timetabling problem, that is not feasible for the nominal scenario.
In contrast to this, the centroid is always feasible, as Lemma 1 shows.

ATMOS ’10

106 An Empirical Analysis of Robustness Concepts for Timetabling

Distance (recovery costs) sum/max Name Calculation
d1(x, y) = ‖x− y‖1 sum d1 median argminπ

∑
l∈S

∑
i∈E |πi − π

l
i|

d1(x, y) = ‖x− y‖1 max d1 center argminπ maxl∈S
∑

i∈E |πi − π
l
i|

d2
2(x, y) = ‖x− y‖2

2 sum centroid 1
|S|

∑
l∈S π

l

Table 1 Evaluated distance - sum/max combinations.

I Lemma 1. Let (P (b)) be an uncertain problem with constraints Ax ≥ b only depending on
the right-hand side. Let b̂ ∈ U be the nominal scenario with b̂ ≤ b for all b ∈ U . Let S ⊆ U
be a finite set and let xb be an optimal solution to (P(b)) for all b ∈ S. Then the centroid,
i.e. the solution to minx

∑
b∈S ‖x− xb‖2

2, is nominal feasible.

Proof. Let x ∈ IRn be the centroid. For the kth constraint, we obtain:

n∑
i=1

akixi =
n∑
i=1

aki
1
|S|
∑
b∈S

xbi = 1
|S|
∑
b∈S

n∑
i=1

akix
b
i ≥

1
|S|
∑
b∈S

bk ≥
1
|S|

|S|∑
j=1

b̂k = b̂k

J

I Corollary 2. Let a (TT) instance with an uncertainty set U1 or U2 be given, and let d = d2
2.

Then the robust solution calculated by the sum version of (RecOpt-TT) is nominal feasible
for any finite set S ⊆ U .

This result naturally extends to interval-based uncertainties of the form [b̂− ε, b̂+δ] with
δ > ε, i.e., the nominal scenario does not need to be the smallest one. By the law of large
numbers the centroid is nominal feasible for ν → ∞ and a uniformly distributed choice of
scenarios.

Concerning the amount of scenarios, we tested numerically how many scenarios were
needed for a convergence of solutions. This was already the case for less than 100 instances
on the instances described in Section 4.

Finally, we have to decide how to choose the subset S ⊆ U . For finite U , we may
simply choose the whole set, but this approach is not possible anymore for infinite sets. We
now present a sufficient condition under which the choice of a finite subset solves (RecOpt)
exactly.

I Theorem 3. Let U = conv{ξ1, . . . , ξN} ⊆ IRM and let d(x, ·) be convex in its second
argument. Let x : IRM → IRn assign an optimal solution x(ξ) to any scenario ξ, and
assume that x is affine linear. By writing xi := x(ξi) for short we have
1. For all ξ ∈ U : x(ξ) ∈ conv{x1, . . . , xN}.
2. The center of x1, . . . , xN with respect to the distance measure d solves (RecOpt).

Proof. Let ξ ∈ U , i.e. there exist λi, i = 1, . . . , N with 0 ≤ λi ≤ 1,
∑N
i=1 λi = 1 and

ξ =
∑N
i=1 λiξ

i. Then we obtain

x(ξ) = x

(
N∑
i=1

λiξ
i

)
=

N∑
i=1

λix(ξi) =
N∑
i=1

λix
i,

i.e. x(ξ) ∈ conv{x1, . . . , xN}. Concerning the second part of the theorem, define r∗ :=
maxi=1,...,N d(x∗, xi) as the radius of the center x∗ and let r̄ be the best possible objective
value for (RecOpt). Since r∗ ≤ r̄ it remains to show that the recovery radius of x∗ with
respect to U equals r∗, i.e. that d(x∗, x(ξ)) ≤ r∗ for all ξ ∈ U .

Marc Goerigk and Anita Schöbel 107

To this end, let ξ ∈ U . Then x(ξ) ∈ conv{x1, . . . , xN} and hence there are λi, i =
1, . . . , N , with 0 ≤ λi ≤ 1,

∑N
i=1 λi = 1 and

∑N
i=1 λix

i = x(ξ). Quasi-convexity of d(x∗, ·)
yields

d(x∗, x(ξ)) = d(x∗,
N∑
i=1

λix
i) ≤ Nmax

i=1
d(x∗, xi) = r∗,

hence x∗ is in fact optimal for (RecOpt). J

This raises the question, when the solution mapping x is indeed affine linear. We present
some results on general linear programs with uncertain right-hand side, i.e.

(P (b)) min{ctx : Ax = b, x ≥ 0, x ∈ IRn}, b ∈ U , (42)

where A ∈ IRm×n.

I Lemma 4. Consider (P(b)) with a convex uncertainty set U ⊆ IRM and assume that
int(U) 6= ∅, where int(U) denotes the interior of U . Then x : IRM → IRn as defined in
Theorem 3 is an affine linear function if and only if there exists a basis B ⊆ {1, . . . , n} with
non-negative reduced costs1 and A−1

B b ≥ 0 for all b ∈ U .

Proof. "if": Let B be such a basis. Since the reduced costs ctn − ctBA
−1
B An ≥ 0 are

independent of b and feasibility of the corresponding basic solution is ensured for all
b ∈ U we know from linear programming theory that x(b) := (A−1

B b, 0) is optimal for
(P(b)). Hence, x(b) is an affine linear function.
"only if": Choose any b0 ∈ int(U) and solve the linear program. This yields a basis B
with nonnegative reduced costs and A−1

B b0 ≥ 0, i.e. x(b0) = (A−1
B b0, 0) is an optimal

solution.
As b0 ∈ int(U) we can find for every unit vector ei ∈ IRM an εi and a direction di ∈
{−1,+1} such that

bi := b0 + εidiei ∈ U

and A−1
B bi ≥ 0. Hence, B is an optimal basis for b0, b1, . . . , bM , i.e. we have x(bi) =

(A−1
B bi, 0) for i = 0, 1, . . . ,M . Due to our assumption x(b) is affine linear; hence it is

uniquely determined on the set of {b0, b1, . . . , bM} of M + 1 affinely independent points.
This yields x(b) = (A−1

B b, 0) for all b ∈ U , in particular we have A−1
B b ≥ 0 for all b ∈ U .

J

Note that the uncertainty U1 is a polyhedral set with a finite number of extreme points,
while U2 is not convex for fixed k, s. By introducing slack variables f as in (R2-TT), we
may rewrite the constraints πj − πi ≥ lij of the timetabling problem to πj − πi − fij = bij .
We hence gain the following corollary to Lemma 4:

I Corollary 5. Let a (TT) instance with an uncertainty set U = conv{l1, . . . , lN} be given.
Assume that there is a basis B that is optimal for each scenario l ∈ U . Then the d1 center
with respect to the solutions xl1 , . . . xlN solves (RecOpt) applied to the timetabling problem
optimally, i.e. the choice S = {l1, . . . , lN} in step 1 of (RecOpt-TT) leads to an exact
optimal solution.

1 For the definition of reduced costs, see any introductory textbook on linear optimization, e.g., Linear
Optimization and Extensions: Theory and Algorithms, by Fang and Puthenpura, Prentice Hall, 1993.

ATMOS ’10

108 An Empirical Analysis of Robustness Concepts for Timetabling

In the following we will investigate again (P(b)) but with the additional assumption that
the uncertainty set U ⊆ IRm (in this case, M = m) is symmetric with respect to some
specified vector b∗ ∈ IRm, that is, for all b ∈ U there is a b̂ ∈ U , such that b − b∗ = b∗ − b̂.
We will show that in this case b∗ solves (RecOpt). To this end, we first need the following
lemma about the center of a symmetric location problem.

I Lemma 6. Let C ⊆ IRn be a compact set of points that is symmetric with respect to x∗ ∈
IRn. Let d be a distance measure that has been derived from a norm, i.e. d(x, y) = ‖y − x‖
for some norm ‖ · ‖. Then x∗ is a d-center of C.

Proof. Let maxx∈C d(x, x∗) = r and let y1, y2 ∈ C be a pair of symmetric points (i.e.
y1 − x∗ = x∗ − y2) that maximizes the distance to x∗. Let x′ be any point. Applying the
triangle inequality and using that y1, x

∗, y2 are collinear yields

2r = d(y1, x
∗) + d(x∗, y2) = d(y1, y2) ≤ d(y1, x

′) + d(x′, y2)

and therefore either r ≤ d(y1, x
′) or r ≤ d(x′, y2) holds. We conclude that

max
x∈C

d(x, x′) ≥ max{d(y1, x
′), d(y2, x

′)} ≥ r,

hence x′ cannot be better than x∗. J

I Theorem 7. Let (P(b)), b ∈ U be an uncertain linear program (42) and let U be symmetric
with respect to b∗ ∈ IRm. Let B be an optimal basis for (P(b∗)) and assume that A−1

B b ≥ 0
for all b ∈ U . Then x(b∗) solves (RecOpt).

Proof. B is an optimal basis for every b ∈ U , as A−1
B b ≥ 0. Thus x(b) = A−1

B b.
As U is a symmetric set with respect to b∗ and x an affine linear mapping, the set of optimal
solutions is symmetric with respect to x(b∗) and we can apply Lemma 6. J

This directly gives a result for all interval-based uncertainty sets.

I Corollary 8. Let (P(b)), b ∈ U = {b ∈ IRm : η ≤ b ≤ η} be an uncertain linear program
(42) and let η, η ∈ IRm. Let b ∈ U and let B be an optimal basis for (P(b)). If A−1

B η ≥ 0
and A−1

B η ≥ 0 both hold, then an optimal solution of (RecOpt) can be found by solving
(P (b∗)) with b∗ := η+η

2 .

Applied to the timetabling problem, we may conclude:

I Corollary 9. Let a (TT) instance with uncertainty set U1, be given. Let l∗ := (1 + s/2)l̂
and assume that there is a basis that is optimal for TT(l̂) and TT((1 + s)l). Then any
optimal solution to TT(l∗) solves (RecOpt) for the timetabling problem for every distance d
that stems from a norm.

4 Numerical Studies

4.1 Problem Instance and Parameters
The instance was created using the LinTim toolbox [12] for optimization in public trans-
portation based on an intercity train network with the size of the German IC/ICE railway
system. The time horizon under consideration consists of the eight-hour service period from
8 a.m. to 4 p.m., resulting in an EAN with 379 activities and 377 events. All computations

Marc Goerigk and Anita Schöbel 109

were carried out on a Quad-Core AMD Opteron Processor running at 2.2 GHz using the
C++ - interface of Gurobi v. 3.00.

We set for (R1-TT) g1 = 50, g2 = 10, 000 to gain a solution which is a good compromise
in robustness as well as in objective value. The budget D for (R2-TT) was set to 2000.
The budget δ for light robustness was set to 0.1, meaning that the objective value of the
light robust solution is allowed to deviate up to 10 percent with respect to the nominal
optimality. Furthermore, we tested a simple uniformly buffered solution by multiplying all
node potentials of the nominal optimum with 1.06, which increased all activity durations by
6 percent, a method which is often applied in practice.

Concerning the choice of S ⊆ U for (RecOpt-TT), we tested two versions. In the first, we
restricted the choice to extreme points of U , in the second we chose uniformly over the whole
uncertainty set. Our results showed a better performance of the latter approach regarding
recovery costs to feasibility and optimality for U1, but a slightly better performance for the
extreme points approach for U2. For the following evaluations we present the (RecOpt-TT)
solutions under this respective scenario choice: For U1, the scenarios were chosen uniformly
over the whole uncertainty set, for U2 only from the extreme points.

4.2 Setting
We tested the U1 algorithms for s = 0, . . . , 0.3 and the algorithms for U2 with s = 0, . . . , 1
and k = 1. For each algorithm and iteration the following values were measured:

Objective value:
∑

(i,j)∈A wij(πj − πi)
Average relative buffer: 1/|A|(

∑
(i,j)∈A(πj − πi)/lij)− 1

Average costs, when recovering to feasibility: A large number of scenarios lq, q = 1, . . . , Q,
(in that case Q = 1, 000) chosen randomly from U1 was created, and for each of these
scenarios the recovery costs were calculated by solving

min
∑
i∈E

πqi − πi

s.t. πqj − π
q
i ≥ l

q
ij ∀ (i, j) ∈ A

πqi ≥ πi ∀ i ∈ E ..

Afterwards, the average of these objective values was taken.
Worst-case costs when recovering to optimality: As for the calculation of the recovery
costs, scenarios lq for q = 1, . . . , Q were created. Then the respective timetable problem
TT(lq) was solved and the d1-distance to the given solution measured. The maximum
of these distances is the optimality distance, an approximation to the d1 radius.
Feasibility: A large number of scenarios is chosen at random by an exponential distribu-
tion of average 0.1. We did not choose uniform distribution, as solutions easily tend to
be infeasible and less insight is gained. For every scenario we tested if the robust solution
is feasible or not and averaged the feasibility.
Running times.

4.3 Evaluation
4.3.1 Objective value.
In Figure 1 the objective values of the robustness concepts for U1 and U2 are plotted against
the control parameter s, describing the increasing uncertainty of the input data. The values
of the nominal solution are as expected constant throughout s, just like the buffered and

ATMOS ’10

110 An Empirical Analysis of Robustness Concepts for Timetabling

the light robust solution. The fastest growing costs are those of the strictly robust solution.
They might be still acceptable for the small disturbances of U1, but they are clearly far
too high for U2. The costs of the recovery robust solutions are moderate in both cases.
Concerning the (RecOpt-TT) solutions, the costs grow moderately, though a bit faster than
those of the recovery robust solution, on U1, while they stay extremely low for U2.

 1.55e+09

 1.6e+09

 1.65e+09

 1.7e+09

 1.75e+09

 1.8e+09

 1.85e+09

 1.9e+09

 1.95e+09

 2e+09

 2.05e+09

 0 0.05 0.1 0.15 0.2 0.25 0.3

nominal
strict
light

buffer
recovery 1

l1 center
l1 median

centroid

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 2.2e+09

 2.4e+09

 2.6e+09

 2.8e+09

 3e+09

 3.2e+09

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 2

l1 center
l1 median

centroid

Figure 1 Objective function for U1 (left) and U2 (right) solutions against s.

4.3.2 Average buffer.
The average buffers are shown in Figure 2. Most strikingly, the recovery robust solution for
U1 has even larger buffers than the strictly robust solution, which is due to the fact that less
weighted edges are buffered more. The light robust solution shows an interesting behavior
by being not monotone. The centroid, d1 center and median show a much larger increase in
buffer times for U1 than for U2.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 0.05 0.1 0.15 0.2 0.25 0.3

nominal
strict
light

buffer
recovery 1

l1 center
l1 median

centroid

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 2

l1 center
l1 median

centroid

Figure 2 Average buffer for U1 (left) and U2 (right) against s.

4.3.3 Average recovery costs when recovering to feasibility.
The recovery costs for U1 and U2 algorithms are depicted in Figure 3. Note the larger
scale of the right figure: Recovery costs are generally much higher for U2-type uncertainties.
The nominal solution performs worst for U1, being followed by the buffered solution with a
constant offset stemming from the added 6 percent to activity durations. The recovery costs

Marc Goerigk and Anita Schöbel 111

of the light robust solution stay slightly below those of the recovery robust solution, while
the (RecOpt-TT) solutions show the slightest increase. On the other hand, they perform
similar to the nominal solution for U2. Here the recovery robust solution has slightly lower
costs, being exceeded by the buffered and especially the light solutions still.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 0.05 0.1 0.15 0.2 0.25 0.3

nominal
strict
light

buffer
recovery 1

l1 center
l1 median

centroid

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 2

l1 center
l1 median

centroid

Figure 3 Average recovery costs to feasibility for U1 (left) and U2 (right) against s.

4.3.4 Worst-case recovery costs when recovering to optimality.
Figure 4 shows the approximate maximum d1-distances to the optimal solutions of the
uncertainty set. The (RecOpt-TT) solutions perform very good in this category which
shows that our heuristic approach (RecOpt-TT) can be used to minimize this distance. For
U1 the solutions gained by (RecOpt-TT) clearly outperform the other robust solutions while
they are comparable with some others for U2. Note that the strict robust solution performs
poorly under this measure, as solutions are generally over-buffered.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 0.05 0.1 0.15 0.2 0.25 0.3

nominal
strict
light

buffer
recovery 1

l1 center
l1 median

centroid

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 2

l1 center
l1 median

centroid

Figure 4 Worst-case recovery costs to optimality for U1 (left) and U2 (right) against s.

4.3.5 Feasibility.
Figure 5 shows the average feasibility under exponential scenario distribution. Note that all
solutions except of the strictly robust solution strongly decrease their feasibility for growing
s in U1. The light robust solution becomes infeasible as soon as its budget is completely used,
which is exactly when its objective value equals the strictly robust solution (see Fig. 1).

ATMOS ’10

112 An Empirical Analysis of Robustness Concepts for Timetabling

Only the centroid keeps a small probability of feasibility throughout all values of s. For the
U2 uncertainty, the situation changes completely. The buffered and the light robust solution
keep moderate feasibility even for high values of s, while all other solutions (except of the
strictly robust) stay low. This is exactly the intension of the recovery-robust approaches:
They improve their nominal quality by allowing a repair phase and hence not aiming at
feasibility for all scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

nominal
strict
light

buffer
recovery 1

l1 center
l1 median

centroid

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 2

l1 center
l1 median

centroid

Figure 5 Feasibility exponentially distributed for U1 (left) and U2 (right) against s, µ = 0.1.

4.3.6 Running times.
Figure 6 shows the running times of the algorithms. Most time-consuming were the calcu-
lations of the d1 center followed by the d1 median and (R2-TT). The higher running times
for the d1-median and the centroid are due to the presolving phase in which the optimal
solutions of all scenarios in S needs to be calculated. Improving the running time of the
d1-center will be part of future research.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1

nominal
strict
light

buffer
recovery 1
recovery 2

l1 center
l1 median

centroid

Figure 6 Running times in seconds against s.

5 Conclusion

We applied the most prominent robustness to timetabling and compared them on a real-
world instance. Furthermore, we introduced a new approach, minimizing the recovery dis-
tances to a subset of scenarios, that is easily applicable to any robustness problem, whenever

Marc Goerigk and Anita Schöbel 113

a method for solving the original problem is at hand. We have shown that there are signif-
icant differences in the performance of the concepts depending on the type of uncertainty
under consideration. Strict robustness, as an example, is a considerable concept for U1 un-
certainty, but not an option for U2. Concerning the (RecOpt-TT) solutions, especially the
centroid approach gives good feasibility and recovery properties with average costs on U1,
while the same approach for U2 sticks too closely to the nominal solution for having good
robustness properties. We conclude that it is crucial to choose the robustness concept to
be applied to the specific problem structure and the uncertainty set. Future research will
include investigating improved ways of choosing the scenario subset S ⊆ U and theoretical
results on the quality of the gained solution, as well as applications to PESP models with
applications to periodic timetabling.

References
1 A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University

Press, Princeton and Oxford, 2009.
2 A. Ben-Tal and A. Nemirovski. Robust convex optimization. Mathematics of Operations

Research, 23(4):769–805, 1998.
3 D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.
4 S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Recoverable robust

timetabling: Complexity results and algorithms. Technical Report ARRIVAL-TR-0172,
ARRIVAL project, 2008.

5 S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Recoverable Ro-
bustness for Train Shunting Problems. Algorithmic Operations Research, 2009.

6 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel. Dynamic algorithms for re-
coverable robustness problems. In Matteo Fischetti and Peter Widmayer, editors, ATMOS
2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimiza-
tion, and Systems, Dagstuhl Seminar proceedings, 2008.

7 G. D’Angelo, G. Di Stefano, and A. Navarra. Recoverable robust timetables on trees.
Technical Report ARRIVAL-TR-0163, ARRIVAL project, 2008.

8 G. D’Angelo, G. Di Stefano, A. Navarra, and C. M. Pinotti. Recoverable robust timetables:
An algorithmic approach on trees. IEEE Transactions on Computers, 2010. to appear.

9 M. Fischetti and M. Monaci. Light robustness. In R. K. Ahuja, R.H. Möhring, and C.D.
Zaroliagis, editors, Robust and online large-scale optimization, volume 5868 of Lecture Note
on Computer Science, pages 61–84. Springer, 2009.

10 P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Kluwer Aca-
demic Publishers, 1997.

11 C. Liebchen, M. Lüebbecke, R. H. Möhring, and S. Stiller. The concept of recoverable
robustness, linear programming recovery, and railway applications. In R. K. Ahuja, R.H.
Möhring, and C.D. Zaroliagis, editors, Robust and online large-scale optimization, volume
5868 of Lecture Note on Computer Science. Springer, 2009.

12 M. Schachtebeck and A. Schöbel. Lintim – a toolbox for the experimental evaluation
of the interaction of different planning stages in public transportation. Technical report,
ARRIVAL Report 206, 2009.

13 A.L. Soyster. Convex programming with set-inclusive constraints and applications to inex-
act linear programming. Operations Research, 21:1154–1157, 1973.

14 H. Yaman, O.E. Karasan, and M.C. Pinar. The robust spanning tree problem with interval
data. Operations Research Letters, 29:31–40, 2001.

ATMOS ’10

	Introduction
	Robustness Concepts
	Strict Robustness
	Light Robustness
	Recoverable Robustness

	A New Approach: Recover to Optimality
	Numerical Studies
	Problem Instance and Parameters
	Setting
	Evaluation
	Objective value.
	Average buffer.
	Average recovery costs when recovering to feasibility.
	Worst-case recovery costs when recovering to optimality.
	Feasibility.
	Running times.

	Conclusion

