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Abstract. We present a game-theoretic model for the line planning
problem in public transportation, in which each line acts as player and
aims to minimize a cost function which is related to the traffic along
its edges. We analyze the model and in particular show that a potential
function exists. Based on this result, we present a method for calculating
equilibria and present first numerical results using the railway network
of Deutsche Bahn.
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1 Introduction

In line planning, a public transportation network (PTN) is modeled by vertices
for each stop (or train station) and edges for each direct connection between
stops (or tracks between stations). A line is given as a path in the PTN and
the frequency indicates, how often the bus or train goes within a certain time
interval. The goal is to choose lines from a given line pool that satisfy certain
criteria and minimize an objective function. The usual restrictions consider that
the demand of the passengers is satisfied, i.e. that enough resources are provided
to transport the customers that want to travel in the PTN. Furthermore, the
amount of traffic may be limited e.g. by safety regulations. Problems of this
kind have been treated with different objective functions: In [1] the lines are
chosen with respect to the cost of operating the lines, but also customer-oriented
objectives have been considered (see [2] for maximizing the number of direct
travelers and [3,4,5,6] for recent approaches minimizing traveling times).

In our approach, we present a new model for line planning, namely from a game
theoretic point of view. The lines act as players, the strategies of the players
correspond to the frequencies of the lines. The payoff of the game represents the
objective of the players which is to minimize the expected delay. This delay is
dependent on the overall traffic and hence on the frequencies of all lines in the
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network. The remainder of the paper is structured as follows. In order to keep the
notation clear, we first present the model for lines between only a single origin
and a single destination (see Section 2) and show in Section 3 that this model is a
special case of generalized Nash equilibrium games with a polyhedron as feasible
set. In particular this allows us to prove the existence of an exact potential
function. In Section 4 we extend our results to multiple origin-destination pairs.
First numerical results within a real-world application are presented in Section 5.
The paper is concluded by suggestions for further research.

2 The Line Planning Game Model

We consider a network G = (V, E) with vertices v ∈ V and edges e ∈ E, where
V and E are nonempty and finite. A line P in G is given by a finite path of
edges e ∈ E: P = (e1, ...., ek). We denote the line pool P as a set of lines P in G

from a single origin s to a single destination t. Multiple origin-destination pairs
will be considered in Section 4.

The frequency of a line P is denoted by fP . The frequencies in the complete

network are represented by the frequency vector, given by f ∈ R
|P|
+ . Furthermore,

the frequency (or load) on an edge e ∈ E is given by the sum of the frequencies
on lines that are containing e,

fe =
∑

P :e∈P

fP . (1)

As common in the literature about line planning, we consider the following two
restrictions. First, a minimal frequency fmin ≥ 0 from s to t has to be covered
to meet the demand of the customers, i.e. we require

∑

P∈P

fP ≥ fmin . (2)

If this condition is not satisfied all lines receive a payoff M , with M being a
large number working as a penalty. The second bound is the real-valued maximal
frequency 0 ≤ fmax

e < ∞ that is assigned to each edge e ∈ E, i.e. it has to hold

fe ≤ fmax
e ∀ e ∈ E . (3)

The maximal frequency establishes a capacity constraint usually given by secu-
rity issues. If fe > fmax

e for an edge e, all lines that contain e receive a payoff
of N < M . We allow N to be any real value smaller than M , nevertheless in
the line planning problem it makes sense to choose N being a large number to
punish if constraints (3 are exceeded.
Further, we will call a frequency vector f feasible if the both the constraints (2)
and (3) are satisfied, i.e. if both bounds fmin and fmax

e , e ∈ E, are respected.
The set of feasible frequency vectors is given by

F
LPG =

{

f ∈ R
|P|
+ :

∑

P∈P

fP ≥ fmin ∧
∑

P :e∈P

fP ≤ fmax
e ∀ e ∈ E

}

.
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Finally, we have to specify the payoff function of the game. To this end, we first
define the cost of a line P as the sum of costs on the edges belonging to that
line,

cP (f) =
∑

e∈P

ce(fe) ,

where the cost functions ce(·) describe the expected average delay on edge e,
which depends on the frequency or load on e. We assume the cost functions ce

to be continuous and nonnegative for nonnegative loads, i.e. ce(x) ≥ 0 for x ≥ 0.
We need no further assumption on the cost functions, although in line planning
the costs are usually nondecreasing.
The payoff function (or benefit) of a line P is for nonnegative frequency vectors
f given by

bP (f) =















cP (f) if
∑

Pk∈P fPk
≥ fmin ∧ ∀ e ∈ P : fe ≤ fmax

e

N if
∑

Pk∈P fPk
≥ fmin ∧ ∃ e ∈ P : fe > fmax

e

M if
∑

Pk∈P fPk
< fmin

.

Summarizing, the line planning game Γ is given by the tuple

Γ = (G,P , fmin, fmax, c, N, M) .

To illustrate the payoff function of one single player (or line) P , we fix the
frequencies fPk

of all other players Pk 6= P . We obtain the frequency vector f−P ,
by deleting the P th component in the frequency vector f . The payoff function
depending just on fP is illustrated in Figure 1. The payoff consists of three

bP (f−P , fP )

fP

d2
Pd1

P

N

M

Fig. 1. Payoff of line P for a fixed frequency vector f−P

continuous intervals. The left part is described by the (penalty) payment M in
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case of not satisfying the minimal frequency fmin, the right part by the (penalty)
payment N in case of exceeding a maximal frequency. The middle part is given
by the sum of costs on the edges belonging to P . It is nondecreasing, if we have
nondecreasing cost functions ce(fe) on the respective edges of the path. The
values that mark the boundaries of the intervals will be important later:
The lower decision limit of player P is given by

d1
P (f−P ) = fmin −

∑

Pk∈P\{P}

fPk
. (4)

The upper decision limit of player P is denoted by

d2
P (f−P ) = min

e∈P
{fmax

e −
∑

Pk∈P\{P}

fPk
} . (5)

If no confusion regarding the strategies f−P of the other players arises, we
denote the lower and the upper decision limit by d1

P and d2
P , respectively. We

obtain that
bp(f) = cP (f) if and only if d1

P ≤ fP ≤ d2
P ,

i.e. whenever fP ∈ [d1
P , d2

P ], the constraints (2) and (3) are satisfied. In this case,
f is feasible, if it is nonnegative. Note that it may happen that [d1

P , d2
P ] ∩ R+ is

empty for a player P , even if F
LPG is nonempty.

As usual in game theory, we are interested in finding the equilibria of the game,
which in our case represent line plans with equally distributed probability for
delays. In a line planning game, a frequency vector f ∗ is an equilibrium if and
only if for all lines P ∈ P and for all fP ≥ 0 it holds that

bP (f∗
−P , f∗

P ) ≤ bP (f∗
−P , fP ) ,

i.e. no player P ∈ P is able to improve its payoff by changing only his strat-
egy. Equilibria in line planning games may be feasible or infeasible, which can
be observed in the following example. As we are interested in implementable
solutions, we analyze feasible frequencies in the following.

Example 1. We consider a line planning game with a line pool containing two
lines. Let f1 and f2 be the frequencies of these lines. The minimal frequency
fmin = 1 has to be covered from s to t. The game network consists of three
edges, as illustrated in Figure 2. The maximal frequencies of the edges are given
by fmax

e1
= fmax

e2
= 2 and fmax

e3
= 3. Furthermore, the following costs are

assigned to the edges: ce1(x) = x, ce2(x) = 2x and ce3(x) = x2. Thus, we obtain
payoffs: c1(f) = f1+(f1+f2)

2 for the first player and c2(f) = 2f2+(f1+f2)
2 for

the second player. See Figure 3 for an illustration of the set of feasible frequencies
F

LPG. This line planning game provides multiple equilibria. Feasible equilibria
are e.g. f1 = (1, 0) and f2 = (0, 1), with payoffs b(f1) = (2, 1) and b(f2) = (1, 3).
There are also infeasible equilibria, e.g. f 3 = (4, 4), where no player is able
to receive a smaller payoff than N . The frequency vector f 4 = (3, 3) is no
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equilibrium, although no player is able to reach the set of feasible frequencies
within one step. It is a property of line planning games that outside the feasible
region not necessarily each player gets punished. Here, e.g. player 1 could change
his frequency to zero. The resulting frequency vector f̄4 = (0, 3) is still infeasible,
but player 1 is able to improve his payoff from b1(f

4) = N to b1(f̄
4) = 9.

s t

ce2
(x) = 2x

ce1
(x) = x

ce3
(x) = x2

Fig. 2. Game network of Ex.1

f2

f1

3

3

1

1

Fig. 3. Set of feasible frequencies F
LPG

The above example illustrates that in line planning games, there may be areas of
infeasible frequency vectors, where some players violate constraints and others
do not. See Figure 4, the illustration of the two players game of Example 1 and
consider the four infeasible regions A, B, C, and D. For frequency vectors that

f2

f1

3

3

1

1

D

CB

A

Fig. 4. Infeasible regions A, B, C, and D
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lie in region A, both players get punished with payoff N , while in region B,
both receive the payoff M . In region C, only player 1 gets punished with payoff
N , while player 2 receives a payoff c2(f), as player 2 is satisfying the maximal
frequencies fmax

e on his edges e2 and e3, but player 1 is violating fmax
e1

= 2. In
region D the reverse situation occurs: player 2 gets punished and player 1 does
not. Situations like in regions C and D happen since the players are not sharing
the same set of constraints. A systematic investigation of such areas is a topic
of future research (e.g. for for standard networks G(n), see [7], which are a basic
concept to represent all networks of a line planning game with n players, such
that the set of equilibria remain unchanged).

3 Line Planning Games as Games on Polyhedra

Since we are not interested in solutions not satisfying the constraints (2) and (3)
we now concentrate on feasible strategies f . First of all, note that the feasible
region F LPG of an LPG (see (2)) is a polyhedron. It can be represented as
S(A, b) = {f : Af ≤ b} where the (1 + |E| + |P|) × |P|-matrix A and the
right-hand side vector b ∈ R

(1+|E|+|P|) are given as

A =













−
�

|P|

H

−I|P|













b =













−fmin

fmax

�
|P|













.

In this formula, the |E| × |P| matrix H is the edge-path incidence matrix of the
underlying network with entries

he,P =

{

1 if e ∈ P

0 else
, (6)

�
n = (1, . . . , 1) is the vector containing n-times the entry 1, and

�
n = (0, . . . , 0)T

is the vector containing n-times the entry 0. Note that the polyhedron S(A, b)
is compact.

Example 2. In the line planning game of Example 1 the corresponding matrix
H is given by

H =





1 0
0 1
1 1



 .

The polyhedron S(A, b) is described by

A =

















−1 −1
1 0
0 1
1 1

−1 0
0 −1

















, b =

















−1
2
2
3
0
0

















.
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Hence we can model LPG as a game on a polyhedron, as defined in [8]: In a game
on a polyhedron with n players, each player chooses a coordinate xn such that
(x1, . . . , xn) lies within a given feasible set P , which is a polyhedron. Each of
the players i = 1, . . . , n has a payoff function c̃i : P → R where the payoff c̃i(x)
of player i depends on the complete vector x and hence also on the strategies of
the other players. Since not only the payoff but also the feasibility of a strategy
of player i depends on the decisions of the other players, games on polyhedra
belong to the class of generalized Nash equilibrium (GNE) games (see [9]).
Consequently, if we are only looking for feasible solutions f ∈ F

LPG, we will call
the line planning game generalized line planning game to stress that the feasible
strategy set of each player depends on the strategies the other players. As usual
for GNE games, we now require that the equilibria are feasible, i.e. in generalized
line planning games, a feasible frequency vector f ∗ is a generalized equilibrium
if and only if for all lines P ∈ P and for all

fP ∈ [d1
P (f∗

−P ), d2
P (f∗

−P )] ∩ R+ ,

it holds that
bP (f∗

−P , f∗
P ) ≤ bP (f∗

−P , fP ) .

Since only feasible solutions are considered, the payoff in the generalized line
planning game is hence given by bP (f) = cP (f). Furthermore, since the line
planning game is a game on a polyhedron, we can transfer results from this type
of games. One important property is the existence of a potential function.

A function Π : f → R is an exact restricted potential function for a generalized
line planning game Γ if for every P ∈ P , for every f−P with a nonempty set
[d1

P (f−P ), d2
P (f−P )] ∩ R+ and for every x, z ∈ [d1

P (f−P ), d2
P (f−P )] it holds:

bP (f−P , x) − bP (f−P , z) = Π(f−P , x) − Π(f−P , z) . (7)

A line planning game Γ is called an exact restricted potential game if it admits
an exact restricted potential.

Exact potential functions have been introduced in [10]. The modification to a
restricted version enables the investigation of GNE games and has been intro-
duced in [7]. Although exact restricted potential functions do not exist in general
for games on polyhedra, it can be shown that they exist if the cost structure of
the game originates from a network. This property is called path player game
property and has been introduced in [7]. To satisfy this property, it has to be
possible to define for each subset of the set of players P a standard function that
is dependent on the subset such that any player’s payoff can be decomposed into
these standard functions. In [7,8] it was shown that games on polyhedra have
an exact restricted potential function whenever the path player game property
holds. Fortunately, the line planning game has this property (see again [7]) such
that the following holds:

Theorem 1. A generalized line planning game is a game on a polyhedron with
PPG-property. Hence, it has an exact restricted potential function.
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An exact restricted potential function is given as

Π(f) =
∑

e∈E

[ce(fe) − ce(0)].

To alternatively prove this result, consider the two feasible frequency vectors
fx = (f−P , x) and fz = (f−P , z) and verify that equation (7) does hold.

Π(fx) − Π(fz) =
∑

e∈E

[ce(f
x
e ) − ce(0)] −

∑

e∈E

[ce(f
z
e ) − ce(0)]

=
∑

e∈E

[ce(f
x
e ) − ce(f

z
e )] =

∑

e∈P

[ce(f
x
e ) − ce(f

z
e )] (8)

= cP (fx) − cP (fz) = bP (fx) − bP (fz) .

Equation (8) is true as fx and fz are different only with respect to line P . Since
it is a general result that for infinite potential games with continuous payoffs on
compact feasible strategy sets, equilibria exist (see [10]) we directly obtain the
following corollary.

Corollary 1. In the line planning game, equilibria exist.

Using the shape of the potential function, we furthermore obtain:

Theorem 2. For a generalized line planning game with feasible region F
LPG, a

generalized equilibrium is given by an optimal solution of the following problem:

min
∑

e∈E

ce(fe) subject to f ∈ F
LPG .

Theorem 2 provides a method for calculating equilibria in the line planning
game, namely by solving the optimization problem mentioned. This method is
valid for all types of continuous cost functions ce(fe), which is the strength of this
approach. On the other hand, not necessarily all equilibria are found by using
Theorem 2. Other approaches which determine all equilibria for line planning
games with linear costs or strictly increasing costs are presented in [7].

Example 3. Consider the line planning game analyzed in Example 1. By Theo-
rem 2 an equilibrium can be found by solving the following problem:

min f1 + 2f2 + (f1 + f2)
2 subject to f ∈ F

LPG . (9)

The solution of the optimization problem, and thus an equilibrium is given by
f∗ = (1, 0) with b(f∗) = (2, 1). Note that f∗ is the unique solution of (9), but
not the unique equilibrium.



A Game-Theoretic Approach to Line Planning 9

4 Multiple Origin-Destination-Pairs

In this section we consider a network G = (V, E) with Q multiple origin-
destination(OD)-pairs {sq, tq}, q = 1, . . . , Q. For the qth OD-pair, the pool of
lines connecting sq and tq is given by Pq . The paths are given as pairwise disjoint
sets:

Pq1 ∩ Pq2 = ∅ ∀ q1, q2 = 1, . . . , Q, q1 6= q2 .

With q(P ) we denote the index of the OD-pair {sq, tq} such that P ∈ Pq . Since
each line P is assigned to exactly one OD-pair, q(P ) is well-defined. Furthermore,
the minimal frequency for the qth OD-pair is given by fmin

q . We denote:

P =
⋃

q=1,...,Q

Pq and fmin =
(

fmin
q

)

q=1,...,Q
.

The maximal frequencies on edges fmax
e and the cost ce(fe) assigned to the

edges are defined as in the single origin-destination case. We call such a game
line planning game with multiple OD-pairs.

The payoff for player P ∈ Pq and a nonnegative frequency vector f in an LPG
with multiple OD-pairs is given by

bP (f) =















cP (f) if
∑

Pk∈Pq(P )
fPk

≥ fmin
q(P ) ∧ ∀ e ∈ P : fe ≤ fmax

e

N if
∑

Pk∈Pq(P )
fPk

≥ fmin
q(P ) ∧ ∃ e ∈ P : fe > fmax

e

M if
∑

Pk∈Pq(P )
fPk

< fmin
q(P )

.

Like in the single OD-pair case a frequency vector f is called feasible if the
bounds fmin

q , q = 1, . . .Q and fmax
e , e ∈ E are satisfied. The set of feasible

frequencies for line planning games with multiple OD-pairs is given by

F
LPGMOD =







f ∈ R
|P|
+ :

∑

P∈Pq

fP ≥ fmin
q ∀ q ∈ Q ∧

∑

P :e∈P

fP ≤ fmax
e ∀ e ∈ E







.

Finally, for a player P ∈ Pq we have to adjust the definition of the lower decision
limit presented in (4):

d1
P (f−P ) = fmin

q(P ) −
∑

Pk∈Pq
Pk 6=P

fPk
,

while the upper decision limit stays the same as in (5). If we just consider
feasible frequencies f ∈ F

LPGMOD, we obtain a generalized line planning game
with multiple OD-pairs. Generalized equilibria are defined in such games similar
to the single OD-pair case.

Recall the definition of the edge path incidence matrix H . A line planning game
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with multiple OD-pairs is represented by a game on a polyhedron S(A,b) with:

A =































−
�

|P1| 0 . . . 0 0
0 −

�

|P2| . . . 0 0
...

...
. . .

...
...

0 0 . . . −
�

|Pm−1| 0
0 0 . . . 0 −

�

|Pm|

H

−I|P|































b =



























−fmin
1

−fmin
2
...

−fmin
m

fmax

�
|P|



























.

Example 4. We consider a line planning game with four OD-pairs as illustrated
in Figure 5. Let fmin

q = 1 ∀ q = 1, . . . , Q and fmax
e = 4 ∀ e ∈ E. We denote the

e = 1 2 3

4

5

6

7
8 9 10

11

12

13

14
15 16 17

18

19

20

21

22 23 24

s1

s3

s4

s2

t1

t3

t4

t2

Fig. 5. Game network of Example 4

edges e = 1, . . . , 24 and the lines with P 1, . . . , P 10. The frequency of the lines is
given by f1, . . . , f10. The line pools are given by

P1 = {P 1, P 2} = {(1, 2, 3), (4, 9, 7)} ,

P2 = {P 3, P 4, P 5} = {(5, 2, 6), (8, 9, 10), (11, 16, 14)} ,

P3 = {P 6, P 7, P 8} = {(12, 9, 13), (15, 16, 17), (18, 23, 21)} ,

P4 = {P 9, P 10} = {(19, 16, 20), (22, 23, 24)} .
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We introduce cost functions ce(fe) = fe for all edges e in E. We apply Theorem 2
and solve

min
∑

e∈E

ce(fe) = min
∑

e∈E

ce

(

∑

P∈P

he,P fP

)

= min (3f1 + 3f2 + 3f3 + 3f4 + 3f5 + 3f6 + 3f7 + 3f8 + 3f9 + 3f10)

subject to f ∈ S(A, b) .

As each frequency fP has exactly the same coefficient in the objective function,
each frequency that satisfies

∑

P∈Pq
fP = fmin

q = 1, e.g. f1 = (1, 0, 1, 0, 0, 1, 0, 0, 1, 0),
is an optimal solution and thus also an equilibrium. The objective value is 4 for
all these solutions. The payoff for f 1 is given by b(f1) = (4, 1, 4, 1, 1, 3, 1, 0, 3, 0),
while for f2 = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1)we have a payoff b(f 2) = (3, 1, 1, 3, 1, 1, 3, 1, 1, 3).

We can use this approach also for nonlinear cost functions. Set e.g. ce(fe) = f2
e

for all edges e in E. The objective function min
∑

e∈E ce(fe) yields the optimal
solution

f3 = (0.538, 0.462, 0.385, 0.308, 0.308, 0.308, 0.308, 0.385, 0.462, 0.538)

with an objective value of 7.385. Solving this problem as an integer problem
yields f4 = (0, 1, 1, 0, 0, 0, 0, 1, 1, 0), with objective value 12.

5 Line Planning for Interregional Trains in Germany

We implemented our approach of Theorem 2 using real-world data, related to
the German railway system of Deutsche Bahn AG. In particular we consider
train stations connected by interregional trains, such as InterCityExpress (ICE),
InterCity (IC), and EuroCity (EC). The following studies are meant to test
the possibility of implementing our method with realistic data and to obtain
equilibria based on larger databases. Our numerical study is interesting due to
the following two reasons:

– Although the investigation of line planning games is still in an early stadium,
and the results are hence not ready for practical use yet, the study illustrates
that further research in this field is worthwhile.

– Second, the numerical behavior of the method for finding equilibria in the
line planning game is demonstrated.

The following data is at our disposal:

– OD-matrix describing 319 train stations and the minimal frequency fmin
q

given for the OD-pairs.
– Three line databases of different size, containing 132 (S - small), 688 (M -

medium) and 2770 (L - large) lines.
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The line databases are not in a form suitable for our model. We will discuss later
how line pools are created from this data. From theoretically 319×318 = 101 442
OD-pairs, still 56 646 have a positive minimal frequency fmin

q and have to be
considered. Thus, we have a line planning game with multiple OD-pairs. For
those OD-pairs, fmin

q ∈ [1, 4831] hold. Note that the values of fmin are to
be interpreted as weights dependent on the number of passengers. From these
weights, frequencies are obtained by a linear transformation.

2 4 6 8 10 12 14 16 18 20 22
44

46

48

50

52

54

56

Warsaw
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Munich

Goettingen

Hamburg

Cologne

Frankfurt

Paris

Amsterdam

Kaiserslautern

Dresden

Vienna

Zurich

Verona

Bruxelles

Fig. 6. Train stations under consideration

The train stations under consideration are located in Germany and neighboring
countries. Figure 6 illustrates the locations of all 319 stations. The following in-
formation are needed for the line planning game, but are not given in the data.
We do not have available the maximal frequency fmax

e on the edges, as well as
we do not know the costs ce(fe) assigned to the edges. Thus, we have to make
assumptions for the implementation of our model. As there is no maximal fre-
quency on the edges, we choose the value sufficiently large for each edge, such
that the maximal frequency is satisfied for our problems. In particular, we set
fmax

e = 100 000. Regarding the cost function ce(fe), Theorem 2 allows to use any
continuous function. We implement the strictly increasing function ce(fe) = fe
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on all edges e ∈ E.

As the line planning game model considers only direct connections between sta-
tions, we neglect all OD-pairs where no direct connection exists in the line pool.
For the future design of line databases, this should be taken into consideration.
Furthermore, we introduce the bound Uq and consider only OD-pairs where
fmin

q > Uq does hold. This bound is used to consider just “important” OD-pairs
with high minimal frequencies for our computations and it is a tool to control
the size of the problem.

Furthermore, we have to construct a line pool from the line databases according
to the definitions in our model. As we reduced the number of OD-pairs, we have
to analyze only lines that are relevant for the OD-pairs under consideration.
Thus, we generate the line pool by using these lines. On the other hand, one
line may offer a direct connection for more than one OD-pair. In our model, we
assume disjoint line pools, i.e. one line has to be assigned to exactly one OD-pair.
According to this, we duplicate lines that provide a direct connection for more
than one OD-pair. The lines have to be given such that we obtain a line pool
P =

⋃

q=1,...,Q Pq consisting of disjoint subsets Pq . Note that the frequencies of
the original lines from the databases S, M and L are then given by the sum over
the frequencies of its duplicates.

We study five scenarios with a different number of OD-pairs and use different line
databases. In Studies 1,2 and 3, we consider the same set of OD-pairs, namely
for fmin

q > 599, but we change the size of the line database. In Studies 2,4 and
5, the line database is invariant (we choose the medium sized one), but the set
of OD-pairs is changed.

fmin
q > 999 fmin

q > 599 fmin
q > 399

small Study 1
medium Study 4 Study 2 Study 5
large Study 3

Table 1 contains the computational results. We present a short explanation of
the content in the following list:

Column 3 Number of OD-pairs which satisfy fmin
q > Uq

Column 5 Size of line databases
Column 6 Number of OD-pairs with direct connections and which satisfy fmin

q > Uq

Column 7 Size of line pool constructed from line database, including duplicates of
lines

Column 8 Number of lines with positive frequency, i.e. that are established for the
PTN (including duplicates)

Column 9 Objective function value of the optimization problem solved with Method 1
Column 10 Reference to Figure of PTN
Columns 12 – 14 Copied from the first part of the table, for easier reading
Columns 15 – 19 Statistical information about length of each line (number of sta-

tions)
Columns 20 – 24 Statistical information about number of lines (including dupli-

cates) serving each train station

It can be observed from Studies 1 – 3 that for a larger database, more direct
connections are available and thus more OD-pairs can be served. The number



14 A. Schöbel, S. Schwarze

Table 1. Computational results

1 2 3 4 5 6 7 8 9

Study Uq # Line Size # OD-pairs Size Lines with c × x

OD-pairs data- data with direct line positive
base base connections pool frequency

1 599 251 S 132 87 262 88 1 402 494.001

2 599 251 M 688 117 1287 156 2 151 352.000

3 599 251 L 2770 157 5544 244 2 636 404.000

4 999 113 M 688 53 493 68 1 456 873, 000

5 399 499 M 688 132 2610 299 2 971 507.012

11 12 13 14 15 16 17 18 19 20 21 22 23

# of stations per line # of lines per station

Study Line # OD-pairs # of min max mean var histogram min max mean var
data- with direct chosen Figure
base connections lines

1 S 87 88 6 33 15.15 25.94 7 1 43 4.18 52.76

2 M 117 156 9 20 15.06 10.87 8 1 73 7.36 131.97

3 L 157 244 6 37 14.18 23.83 9 1 121 10.84 323.17

4 M 53 68 9 20 15.21 11.66 10 1 34 3.24 30.59

5 M 132 299 9 20 15.34 10.44 11 1 129 14.38 435.38

of chosen lines hence also increases. Nevertheless, it is not growing in the same
speed as the line pool, but about the same speed as the number of considered
OD-pairs. Thus, in our examples, the number of established lines is not so much
influenced by the size, but by the structure of the line pool, i.e. how much OD-
pairs are served by the line pool. This should be taken into consideration for the
design of line pools that are to be used for line planning games. In Studies 2,4
and 5, the lower bound Uq on minimal frequencies is small, hence we obtain a
larger number of OD-pairs. It can also be observed that with increasing number
of OD-pairs, the number of established lines is increasing, although the line data
base is unchanged.

Considering the number of stations contained in the established lines, this exam-
ple shows a relation to the chosen line database S, M or L. It can be observed
that the results in the three scenarios using database M are similar.

In terms of lines per station, the station served by the highest number of lines
in each study is Frankfurt(Main) Süd.
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Histogram: Number of Stations per Line
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Fig. 11. Uq = 399, M

6 Conclusion and further research

The line planning game is a new model for analyzing line planning problems
with game theoretical means. In particular it is a special case of a game on
polyhedra in which an exact potential function exists. This result is the basis for
an algorithm to calculate equilibria of the game. Numerical results have been
presented.

Other methods for finding all equilibria in the path player games for linear or
strictly increasing functions have been developed in [7]. The implementation of
the second of these approaches, which seems to be realistic in line planning, is
under research.

Although the resulting line plans seem to be suitable for practical applications,
other aspects of line planning have been neglected and are topics for future
research. Among these are setup costs for installing the lines (or fixed costs for
operating a line) which can be approximated by bounding the maximal number
of lines which may be installed. From the passengers’ point of view, the travel
time of their journeys should be considered; a first measure can be the length
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of the lines. Another drawback of the basic model presented in this work is that
frequencies fP are real numbers, while in practice, only fP ∈ N0 make sense.
A first extension to an integer LPG has been considered in [7], where also an
algorithmic approach has been developed to find integer equilibria. Finally, it
will be a reasonable extension of the current model to take into account that
passengers may want to change lines. More results and an implementation of
this topic is under research.
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8. Schöbel, A., Schwarze, S.: Games on polyhedra. Working Paper (2006)
9. Harker, P.: Generalized Nash games and quasi-variational inequalities. European

Journal of Operational Research 54 (1991) 81–94
10. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14

(1996) 124–143


	Anita Schöbel, Silvia Schwarze, 



