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Abstract
Twin-width (tww) is a parameter measuring the similarity of an undirected graph to a co-graph [3].
It is useful to analyze the parameterized complexity of various graph problems. This paper presents
two algorithms to compute the twin-width and to provide a contraction sequence as witness. The
two algorithms are motivated by the PACE 2023 challenge, one for the exact track and one for
the heuristic track. Each algorithm produces a contraction sequence witnessing (i) the minimal
twin-width admissible by the graph in the exact track (ii) an upper bound on the twin-width as
tight as possible in the heuristic track.

Our heuristic algorithm relies on several greedy approaches with different performance char-
acteristics to find and improve solutions. For large graphs we use locality sensitive hashing to
approximately identify suitable contraction candidates. The exact solver follows a branch-and-bound
design. It relies on the heuristic algorithm to provide initial upper bounds, and uses lower bounds
via contraction sequences to show the optimality of a heuristic solution found in some branch.
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1 Introduction

Twin-width has been a recent focus of researchers in the field of parameterized complexity. It
was first introduced by Bonnet et al. [3] in the context of model-checking, and further results
by Bonnet et al. followed in a series of publications. Previously, there has been only one
work on exactly computing twin-width in practice, which is based on a SAT-formulation [5].
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Figure 1 Heuristic strategies. The solver always starts with P to quickly upper bound a connected
component’s tww. It then attempts to find better solutions with S or P+LSH based on the best
known tww bound. Hence, the solver may only move to the right in the figure.

To our knowledge, there has been no work on heuristics for obtaining contraction sequences
of low width. It is currently unknown if there exists an FPT-approximation algorithm for
computing the twin-width of a graph, and it is NP-complete to decide whether the twin-width
of a graph is at most four [1]. Graphs of twin-width one can be recognized in polynomial
time [2], for graphs of twin-width two or three the question remains open.1

2 Preliminaries

A tri-graph G = (V, B, R) is an undirected graph (V, B∪R) where the edge set is bi-partitioned
into so-called black edges B and red edges R. Let NB(v), NR(v) and N(v), denote the open
neighborhood of v in the graphs (V, B), (V, R), and (V, B ∪ R), respectively, and N [v] denote
its closed neighborhood in the graph (V, B ∪ R). Furthermore, denote by blkDeg(v) its black
degree |NB(v)| and by redDeg(v) its red degree |NR(v)|. The 2-neighborhood of v is defined
as the set of v’s neighbors and their neighbors (excluding v itself).

Given a tri-graph, the contraction of node v into u removes v and replaces all edges
incident to u by the following new edges: A black edge to any node that had a black edge
to both u and v. A red edge to any node that had a red edge to either u or v or was only
adjacent to either u or v, but not both. Here, self-loops on u are not added. Intuitively, this
can be seen as merging u and v and coloring all differences in their incident edges red.

Given a simple and undirected graph G = (V, E), a contraction sequence for G is a list
of n − 1 contractions transforming the all black tri-graph (V, E, ∅) into a tri-graph with a
single node. The width of such a contraction sequence is the maximal red degree of any node
in any of the intermediate graphs obtained by only applying a prefix of the sequence. The
twin-width of a graph G is the minimal width of any contraction sequence for G.

3 GUTHM: Greedily Unifying Twins with Hashing and More

Our heuristic solver GUTHM is greedy in nature as it repeatedly selects the locally best
contractions to carry out. Based on various heuristics locally suboptimal contractions may
be selected, though. Since there are Θ(|V |2) possible merges to consider at each step, a naive
greedy approach is prohibitively slow on large graphs.

As summarized in Figure 1, we use three strategies based on the information available to
derive a contraction sequence. A strategy is only changed after the input graph has been
fully contracted. Based on the information gathered either a new strategy is employed or the
same strategy is used again with a different seed.

1 Open problems for twin-width: http://perso.ens-lyon.fr/edouard.bonnet/openQuestions.html

http://perso.ens-lyon.fr/edouard.bonnet/openQuestions.html
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(P) Priority based: Quickly constructs a somewhat good initial contraction sequence.
(S) Sweeping based: Primarily used as second stage for low twin-width graphs since
its runtime depends on characteristics exhibited by this kind of graphs.
(P+LSH) Priority with support for locality sensitive hashing: Primarily used
as second stage for high twin-width graphs extending the greedy approach with locality
sensitive hashing.

If the input is disconnected, each connected component (CC) can be processed in isolation.
Then, node contractions within a CC preserve connectivity. We start by processing each
CC using the solver P. After establishing a first trivial contraction sequence, we repeatedly
attempt to improve the partial solution for a CC with the currently largest twin-width bound.
In the following subsections unless otherwise stated a “best” contraction always refers to a
contraction minimizing the score given in Section 3.2.

3.1 P: Priority based solver
The priority based solver P always selects a node v with the smallest red degree. It then
identifies the best contraction partner for this node (see Section 3.2 for the scoring function).
To accelerate the second step, we devised a fast method to find all nodes in the 2-neighborhood
of v and rank each by the similarity between its neighbors and v’s neighbors:

▶ Observation 1. A two-level BFS can be adjusted to calculate the symmetric difference
between v’s neighborhood and the neighborhood of the nodes in its 2-neighborhood.

After calculating the score for all nodes in the 2-neighborhood of v as depicted in Figure 2,
one can calculate the cardinality of the symmetric difference of the neighborhoods of u and v

SD(u, v) =
{

|N [v] ⊕ N [u]| = | deg(v)| + | deg(u)| − 2 · αu, if u and v are adjacent
|N(v) ⊕ N(u)| = | deg(v)| + | deg(u)| − 2 · αu, otherwise,

where αu is the number of visited incoming edges of u during a two-level BFS from v.

▶ Lemma 2. The calculation of all symmetric neighbor set differences in a graph in the
2-neighborhood of an arbitrary node v is possible in time O(|E2-NB(v)|). Here, |E2-NB(v)| is
the total number of edges in the 2-neighborhood.

Proof. Every visited incoming edge of a node u during a two-level BFS traversal directly
corresponds to a shared neighbor with v. The number αu therefore measures the number of
shared neighbors between u and v, which is |N [u]∩N [v]| for direct neighbors and |N(u)∩N(v)|
otherwise. Since a shared neighbor is present in both u’s and v’s neighborhood, a factor of
two is necessary to calculate the symmetric difference of the neighborhoods. The time to
traverse all edges in a 2-neighborhood is bounded by O(|E2-NB(v)|). ◀

▶ Observation 3. This approach can be extended to a tri-graph by executing it twice; once on
the black induced subgraph and once on the red one. Now a single two-level BFS which only
traverses the paths which consist of different colored edges, red-black and black-red, suffices to
correct the overestimation provided by the sum of the first two BFS applications.

The above technique is used to find and rank all possible contraction partners by their
neighbor set similarity. After finding and scoring the top-k partners of v a best one is
selected as the next contraction partner. If the twin-width is increased due to a contraction
involving v, the solver might postpone contracting this node to a later point in time, and,
instead, selects the next best candidate.

IPEC 2023
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Figure 2 Application of BFS to order all neighbors in the 2-neighborhood by their symmetric
neighbor set difference with the source node. Grey edges depict edges from BFS level ≥ 3 while blue
and magenta edges depict edges from BFS level 1 and 2 respectively.

After a successful merge involving v, the solver contracts the newly created leafs in the
direct vicinity of v (if there are multiple). If there are further “good” contractions involving
node v, they are executed as well before selecting a new v. We continue until the intermediate
tri-graph is sufficiently small to run an exhaustive final stage solver. The final stage solver
considers all possible contractions and greedily selects the best contraction at any time.

3.2 Move selection
If the contractions do not increase the twin-width of the current intermediate tri-graph this
heuristic is employed, otherwise the next contraction is greedily chosen as a contraction with
the smallest increase in twin-width. We say the best contractions are those which minimize
the following scoring function:

score(u, v) =
∑

(v,x)∈Rnew

(redDeg(x) + 1) −
∑

(v,y)∈Rrem

redDeg(y),

where Rnew and Rrem denote the sets of red edges the contraction of (u, v) introduces and
removes, respectively.

3.3 S: Sweeping based solver
The solver S sweeps over all nodes in the graph and carries out contractions that do not
increase the twin-width above a certain threshold. On one hand, the threshold helps to
guide the solver. On the other hand, it also speeds up the computation as it reduces the
number of contraction candidates to consider. As such, we only use this strategy on graphs
with a sufficiently low upper bound on the twin-width (previously established by P or
P+LSH). On top, we employ random sampling to establish an estimate of the new threshold
at the beginning of every round further curbing execution speed at the cost of accuracy.
In subsequent calls to this solver the threshold and the random samples are continuously
tweaked to improve accuracy at the cost of execution speed.

3.4 P+LSH: Priority with support for locality sensitive hashing
If the solver P found a contraction sequence witnessing a high twin-width graph, it is unlikely
that the sweeping solver S can process this graph within the time budget. Therefore, we
attempt to improve the solution quality of the fast solver P by adding global information
collected via MinHashing [4].
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Local information: Just as solver P, we initially select the next vertex v based on the
smallest red degree. The local information is now derived from the possible contractions
involving v and node u selected from the 2-neighborhood of v.
Global information: The local perspective, however, fails to identify near-twins with
large red degrees. To overcome this restriction, we use a scheme based on MinHashing to
identify “almost twins” by approximately finding a solution for the closest pair problem.
From all similar pairs obtained, we order the pairs by their number of collisions in all
hash tables and the maximum red degree of the nodes in the pair.

Using MinHashing, we approximately find near twins even in large graphs. Despite the
obvious benefits of using MinHashing, we empirically found it is still important to retain the
initial approach of selecting a vertex with the lowest red degree and considering contractions
involving this vertex. This is because the performance of MinHashing strongly depends on
the choice of tuning parameters, which we cannot efficiently adapt during execution due to
time and memory constraints. From the ordered similar pairs we only consider the top-k pairs
and select a pair that minimizes the score given in Section 3.2. When the graph becomes
sufficiently small, we again switch to an exhaustive final stage solver.

Updates of MinHash-based all-pair nearest-neighbor

After a contraction of v into u, only neighbors of the survivor u need to be updated in
the MinHash table. Observe that at most 2 adjacent edges are changed for any node w in
N(u) = NB(u) ∪ NR(u). Thus, we can preserve the data structure even for large graphs,
since the probability of needing to update a neighbor is inversely proportional to its degree.

3.5 Graph reconstruction
Since the heuristic track requires processing of large graphs with only limited memory, we
devised a data structure allowing fast reversals of previous contractions. It uses O(|V | + |E|)
memory and has a runtime for reverting contractions proportional to the combined degree of
the involved nodes for all practical purposes. As illustrated in Figure 3, any data structure
keeping track of all previously existing edges requires Ω(|V |2) memory in the worst case.
Therefore, any algorithm trying to achieve better memory bounds has to delete previously
existing edges at some point, making the reconstruction considerably harder. Other algorithms
(Contraction tree based reconstruction), which trivially achieve these memory bounds, struggle
to reconstruct the previous state with a good time complexity. We present a data structure
achieving an acceptable memory consumption in addition to a fast reversal time.

Our data structure keeps track of any deleted node using a union-find data structure.
Every red edge keeps track of the node whose removal induced the color switch to red. This
value is transferred alongside the edge when it is transferred to a new node. In case of a
conflict, that is, when the contracted nodes both have a red edge to the same neighbor, the red
edge from the survivor is taken. Furthermore, for every contraction, we use a stack to store
certain tokens that allow us to reconstruct the previous state of the graph. Upon a contraction
of v into u, v and all incident edges are deleted. For every neighbor w ∈ N(v) ∪ N(u), let
(wu, wv) ∈ {∅, r, b}2 describe the relationship of u, v with the corresponding node w with
wx = ∅ if w /∈ N(x), wx = r if w ∈ NR(x), and wx = b otherwise.

From now on the special relationships w+ = (wu, wv) = (∅, r) and w− = (wu, wv) = (r, ∅)
are distinguished from all other possible relationships. For every neighbor in N(u) ∪ N(v)
the following case distinction is made alongside the rules to be able to revert a contraction
in case of a particular relationship:

IPEC 2023
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Figure 3 Depicts the Θ(|V |2) different edges present during the whole lifetime of the graph even
though it never exceeds |E| = Θ(|V |) edges at any point in time.

(wu, wv) = (∅, b) - Put (τ−, w) on the stack. Reverse: NR(u) = NR(u) \ {w}.
(wu, wv) = (b, ∅) - Put (τ+, w) on the stack. Reverse: NR(u) = NR(u) \ {w} and
NB(u) = NB(u) ∪ {w}.
(wu, wv) = (r, b) - Put (τ<, w) on the stack. Reverse: NB(v) = NB(v) ∪ w.
(wu, wv) = (b, r) - Put (τ>, w) on the stack. Reverse: NB(v) = NB(v) \ {w} and
NR(v) = NR(v) ∪ {w}.
(wu, wv) = (r, r) - Put (τ=, w) on the stack. Reverse: NR(v) = NR(v) ∪ {w}.

Without going further into detail, every token on the stack either corresponds to a black
edge turning red (happens at most once for every black edge), or to two edges having a
conflict, which necessarily deletes one edge and can therefore only happen O(|E|) times.

▶ Observation 4. The cases w+, w− correspond to cases where exactly one of the nodes is
connected by a red edge to a neighbor w while the other one is not. Determining the source
of the red edge is equivalent to looking up the node responsible for the edge turning red in the
union-find data structure, which is in the same set as one of the last contraction’s nodes.

By Observation 4 the only potentially memory-wise unbounded cases left can be handled by
querying the union-find data structure. Combining the case distinction and the observation
above, a contraction can be reverted with the stated memory and time bounds.

▶ Lemma 5. There exists a data structure using O(|E| + |V |) memory and supporting the
reversal of the last contraction up to the initial graph in O(α(|V |) ·(deg(v) + deg(u))) expected
time for the reversal of any contraction (u, v) where α(·) is the inverse Ackermann function.

Proof. The union-find data structure needs at most O(|V |) memory for the currently deleted
nodes. Since all edges are removed from the graph upon a contraction and the number of
edges cannot increase by contracting two nodes, the memory needed to store the graph never
exceeds O(|V | + |E|). We only add an item to the stack used to distinguish the different
removals from the graph, if two edges are reduced to a single edge or a black edge turns red.
Therefore, this can happen at most |E| times. This leads to a total memory consumption
dominated by O(|V | + |E|). Since any reinsertion of edges can be done in linear time, the
worst case is having to look up every edge in the union-find data structure. In this case, the
running time is bounded by O(α(|V |) · (deg(v) + deg(u))). ◀

The implementation of the heuristic solver often uses approximations of the described
techniques to stay within the imposed time bounds.

4 GUTHMI: Germanely Unifying Twins with Hashing and Meticulous
Inspection

Our exact solver GUTHMI follows the branch-and-bound paradigm. At each level of the
recursion, the algorithm potentially follows Θ(|V |2) branches which is prohibitively expensive
even for small graphs. We use several heuristics to reduce the search space:
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Safe contraction of twins: Before processing an (intermediate) graph, we search for exact
twins and contract them. For performance reasons, several rules (e.g., for multiple leaves
on the same node, general twins, etc.) are dedicated to this idea.
Upper bounds: Before engaging the exact algorithm, we obtain an upper bound from a
heuristic solution. This bound may be repeatedly improved during the runtime of the
exact solver. It allows us to prune branches that cannot improve the current best solution.
Branching order : We use scoring methods similar to Section 3 to descend into most
promising branches first. Thereby, we often discover improvements quite early in the
process. These improved upper bounds then translate into even more aggressive pruning.
Lower bounds: Given a graph G = (V, E) and an induced subgraph G′ of G, the twin-width
of G is bounded from below by the twin-width of G′. Based on this, we (non-uniformly)
randomly sample subgraphs and attempt to solve them exactly in the first 20 seconds of
the execution. In many cases (esp. for small graphs with low twin-width), this suffices
to prove the optimality of the heuristic solution. Otherwise, we compare any improved
solution to the lower bound, which, upon matching allows us to terminate early.
“Conditional lower bounds” : We pass the maximum red degree of the current contraction
sequence candidate down the recursion. Amongst others, this allows us to quickly prune
subtrees if an improved solution is found.
Infeasibility caching: Since the upper bound is non-increasing during an execution, a
subproblem that cannot improve the upper bound at one point in time, cannot do it later.
For this reason we cache small infeasible subproblems to avoid recomputing them later.

Several implementation details helped to shave-off constant factors.
While descending into the recursion tree, we attempt to reuse as much of the meta-
information (e.g., branch scoring) from the parent as possible.
We compile dedicated solvers for different graph size ranges using meta-programming. For
instance, small graphs are kept in bit matrices on stack, while larger graphs are escalated
on to the heap. This way, most set operation implementations are bit-parallel.

5 Conclusion

We presented two solvers for approximately and exactly finding contraction sequences of
small width. The solvers are able to handle arbitrary graph classes with varying success,
they are generic in that sense. Further research directions might involve using the weighted
Jaccard similarity such that one can directly approximate the score in Section 3.2.
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