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Abstract
Hemorrhagic fever viruses present a high risk to humans, given their associated high fatality rates,
extensive care requirements, and few relevant vaccines. One of the most famous such viruses is
the Ebola virus, which first came to international attention during an outbreak in 1976. Another
is Marburg virus, cases of which are being reported in Equatorial Guinea at the time of writing.
Researchers and governments all over the world share a goal in seeking effective ways to reduce or
prevent the influence or spreading of such diseases. This study introduces a prototype agent-based
model to explore the epidemic infectious progression of a simulated fever virus. More specifically,
this work seeks to recreate the role of human remains in the progression of such an epidemic, and to
help gauge the influence of different environmental conditions on this dynamic.
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1 Introduction

Viral hemorrhagic fevers (VHFs) represent a growing threat to human health, even as
recent events reflect the challenges and costs of widespread pandemics. The 2014-16 Ebola
outbreak occurred primarily in West Africa killed over 11,000 people, with the World Health
Organization reporting new outbreaks every single year; Marburg disease, too, has been
detected with increasing frequency.[2] The main form of transmission for VHFs that spread
from human to human are blood or body fluids from a human infected with Ebola.[5] It
is known that in certain cases, human remains continue to be infectious; through unsafe
handling of human remains or funeral ceremonies, people may infect others even after death.
While well known to practitioners as a pillar of outbreak control, this dynamic has received
less attention than living human-to-human contact in the simulation literature. This is
unfortunate, as funeral customs in some of the areas where these diseases are endemic involve
extensive contact between mourners and the body of the deceased; it is thought that this
may have been a significant driver of certain outbreaks.[1][3] Thus, this paper will explore
how adding corpse-to-human transmission influences an existing human-to-human model,
developing a prototype agent-based model to explore the epidemic infectious progression of a
theoretical hemorrhagic fever virus.
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2 Background

The outbreak of Covid-19 prompted many researchers to turn their hand to the problem of
epidemics, resulting in an explosion in the creation of agent-based models (ABMs) of disease
(see for example [9]; [17]). The popularity of SIR (Susceptible, Infectious, and Recovered)
models and its close cousins (those with states such as exposed, vaccinated, or immune)
meant that researchers could track the development of disease in individual simulated persons.
Agent-based models made it possible for researchers to vary the specific qualities of the
individuals being exposed to disease, to control contact through social networks, and to
impose non-pharmaceutical interventions on the world which had varying impacts on different
groups (eg school closures versus general travel bans). Given the pressure to respond to
the crisis, these simulations were naturally targeted at Covid-19 specifically - and perhaps
therefore tended to deprioritise the role of the deceased in the spread of disease.

To take a more general example, [7] present nosoi, an open-source r package that offers a
agent-based framework for simulating infectious disease events. Agents are removed from the
nosoi model when they die - meaning that their bodies do not remain in the model to infect
others. This appears to be a widespread practice across the discipline. Even when modelling
Ebola specifically, [8] remove bodies upon death. [14] apply an SIR system dynamics model
to Ebola, using Bayesian inference to calculate the flow among compartments representing
different statuses; they add an extra compartment they call ’X’ to allow them to track deaths
more easily and vary the R0 to reflect local care and funeral practices. The deterministic
numerical simulation of [2] does include the role of funerals and the un/safe handling of
infectious human remains. Finally, [11] builds upon the work of [6], with the former expanding
upon the latter’s basic compartmental model to apply the transmission process to a spatial
agent-based model. The model of [11] takes into account the role of contact with the deceased
during unsafe funerals; it is the only simulation we have been able to identify that considers
the impact of human remains on transmission.

This work is focused on exploring the role of the human remains in the growth of an
epidemic. We seek to demonstrate the significance of including or ignoring this process,
investigating how the presence of human remains influences the infectious progression under
different environmental conditions. Thus, this study utilises a simple agent-based model to
present a series of counterfactuals. This method is computationally inexpensive enough to
execute a large number of simulations and for us to pinpoint the exact role of the changing
variables.

3 Methods

As this research aims to explore the impact of traditional burial practices on the spread of
VHFs, we developed a basic simulation framework1 using the Python Mesa module [10]. In
the model, individual humans move randomly around the environment, potentially infecting
those immediately around them with the theoretical VHF. Susceptible individuals may sicken
and die, and their remains will eventually - but not immediately - be removed from the
simulation.

In order to focus on the impact of time to interment - which we considered in the
experiments in the following chapter, we generate an empty, theoretical environment which
allows us to experiment without concern for confounding factors. Agents are randomly
moving and interacting with each other on the grid. The default model parameters are as

1 Available on GitHub at https://github.com/Huixin-coder/Huixin--Giscience-2023
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Table 1 Default Model parameters.

Parameter Default Value Reference/Assumption
Multigrid 150 x 150 —

Step 100 —
Population 5000 See the determination below

Initial infected rate 0.11 Initial infection rate is 1/9 [15]
Transmission probability 0.44 From 0.44 to 0.9 [13]

Progression period mean 8 The incubation period of 2–
21 days (mean 4–10 days) [4]

Recover days mean 7 7-14 days after first symptoms [16]
Eliminated days mean 3 The virus is infectious for 7 days [12]

shown in Table 1. Similarly, the susceptible human population is held constant and will
not be supplemented, as the time period being simulated is not long enough for births or
natural deaths to play a significant role. The model’s step represents the a single day in the
simulation.

Individuals in the population behave as visualised in Figure 1. At the beginning of
the simulation, a small number of human individuals will be selected from the susceptible
population S to be infected based on the initial infection rate I0. Susceptible individuals may
acquire the infection after contact with infectious individuals (with chance β1) or infectious
human remains (with chance β2). Infectious individuals I may recover at rate γ or die at
rate µ. Deceased individuals remain temporarily in the simulation, potentially infecting
others around them as controlled by the β2 parameter. After some number of days defined
by the eliminated days parameter, the human remains are removed from the environment.
The parameters used in this paper are roughly based on the Ebola virus, but can easily be
varied to explore other VHFs.

Figure 1 VHF status flowchart (SIRD): individual agents exposed to the virus may progress from
susceptible (S) to infectious (I) with probability β1. Eventually they will experience either recovery
(R) or death (D), with probabilities γ or the “death rate” respectively. Deceased agents remaining in
the simulation may come into contact with other, living, susceptible agents and transmit the disease
to them (with probability β2).
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Figure 2 Typical sample instances of simulation results for Model 1 (a): human remains are
not infectious, and Model 2 (b): human remains are infectious and can transmit the virus to living
persons. Parameter values are the same in Models 1 and 2.

4 Results

In this section, we will first present a comparison of two versions of the model. In Model 1,
human remains are not infectious. In Model 2, human remains are infectious and can transmit
the virus to living persons. Building on this, we present two further experiments, exploring
the impact of time to interment (called ’eliminated days’) relative to different population
densities (Experiment 1) or virus fatality rates (Experiment 2). All other parameters are
held constant throughout.

4.1 Infectious versus Noninfectious Remains
Models 1 and 2 are run until the 100th timestep, at which point experimentation shows they
usually equilibrate. The results do not show large deviations across either set of simulations.
Figure 2 shows a comparison of the different model outcomes.

In Model 1, the R0 typically stabilises around time 60, levelling out at 0.258, meaning
that the outbreak will gradually disappear and be well controlled. Notably, such an R0 is
far from the R0 of, say, the real-world Ebola virus which lie in the range of 1.56 to 1.9. In
contrast, Model 2 with its infectious remains sees the measurements stabilise around time
70, with many more fatalities. Its R0 value reaches about 1.6, suggesting that the disease
has the potential to create an epidemic. The average final number of deceased persons are
1587.3 in Model 1, and 3161.2 in Model 2, reflecting the increased mortality associated with
infectious remains.

4.2 Experiment 1: Population Density relative to Eliminated Days
As described above, Experiment 1 involves varying the population and eliminated days (2 to
7 days [12]) relative to one another, holding all other parameters as in the default model.
This is meant to explore the sensitivity of the process to population density, and to better
understand how significantly the timely handling of human remains impacts the spread of
disease.

The model tracks the number of agents which are alive at the end of the simulation,
referred to here as the “alive rate”. This is calculated by the following equation:

AliveRate = Susceptible + Recovered

population
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Figure 3 Average measures of the “Alive Rate” across 50 repetitions of (a) Experiment 1: varying
population densities and number of days until human remains are eliminated from the model, and
(b) Experiment 2: varying death rates and number of days until human remains are eliminated from
the model.

Results are taken at the end of the 100th step. The population is set at 1000, 3000,
5000, 7000 and 9000, while the eliminated days range from 2 to 7 days. Each combination of
parameters is repeated 50 times.

Figure 3(a) tracks the average “alive rate” of each combination of parameters as population
and eliminated days are varied. The different population levels are clearly distinguishable,
and as expected the alive rate decreases as either eliminated days or population density
increases. Interestingly, the most extreme population values appear to be less affected by the
speed with which remains are handled. In contrast, the sensitivity of the population of 3000
to the number of eliminated days is related to the size of the population relative to the size of
the grid. The uneven distribution of alive rates relative to population size at any given value
of eliminated days suggests that there may be critical points of inflection in model behaviour.

What the graph suggests is that in situations of medium population density when a
susceptible person might not otherwise encounter an infectious living person, the long-term
presence of infectious remains represents a noticeable peril.

4.3 Experiment 2: Change daily death rate and eliminated days

Experiment 2 holds population constant (size 5000) and instead varies the fatality of the
infection relative to the eliminated days. The daily death rate increases from 0.05 to 0.25
in increments of 0.05, while the eliminated days again range from 2 to 7. Once more, each
parameter combination is run 50 times.

Figure 3 (b) shows the relationship between the daily death rate and eliminated days as
defined by the average alive rate. Again, as expected the alive rate decreases with the increase
in number of eliminated days, regardless of daily death rate level. In certain situations,
infections are known to “burn themselves out” by killing off hosts before a virus has the
opportunity to spread to new hosts. If human remains are infectious, however, the highly
virulent strains of disease are still able to spread, especially when these deceased hosts remain
in the environment.
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5 Discussion and Conclusion

This article demonstrates a simple example of how improperly handled infectious human
remains can propagate and worsen epidemics. Many extant modelling frameworks remove
deceased agents immediately; our goal is to show the impact that such a modelling choice
may have. There are of course often reasons for such coding decisions. For example, in
extremely large-scale models being run on suboptimal hardware setups, recovering memory
may be a priority. However, we would caution against adopting such a framework without
careful consideration. At a minimum, modellers should be aware of the impact such decisions
have on the ultimate course of an epidemic.

Simulation as a tool showed a great deal of promise during the recent Covid-19 pandemic.
It is crucial, however, that researchers ensure that models not sacrifice essential functionality
in the name of parsimony. This paper presents a simple example drawn from a well-known
principle of infectious suppression. It is important that modellers engage proactively with
subject matter experts to ensure that we incorporate such dynamics into our work in the
future.
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