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Abstract
Every language recognized by a non-deterministic finite automaton can be recognized by a determin-
istic automaton, at the cost of a potential increase of the number of states, which in the worst case
can go from n states to 2n states. In this article, we investigate this classical result in a probabilistic
setting where we take a deterministic automaton with n states uniformly at random and add just
one random transition. These automata are almost deterministic in the sense that only one state
has a non-deterministic choice when reading an input letter. In our model each state has a fixed
probability to be final. We prove that for any d ≥ 1, with non-negligible probability the minimal
(deterministic) automaton of the language recognized by such an automaton has more than nd states;
as a byproduct, the expected size of its minimal automaton grows faster than any polynomial. Our
result also holds when each state is final with some probability that depends on n, as long as it is
not too close to 0 and 1, at distance at least Ω( 1√

n
) to be precise, therefore allowing models with a

sublinear number of final states in expectation.
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1 Introduction

A fundamental result in automata theory is that deterministic complete finite state automata
recognize the same languages as non-deterministic finite state automata. This result can
be established using the classical (accessible) subset construction [17, 14]: starting with a
non-deterministic automaton with n states, one can build a deterministic automaton with
at most 2n states that recognizes the same language. This upper bound is tight; there are
regular languages recognized by an n-state non-deterministic automaton whose minimal
automaton (the smallest deterministic and complete automaton that recognizes the language)
has 2n states. The number of states of the minimal automaton of a regular language is called
its state complexity. Figure 1 shows two n-state non-deterministic automata with somewhat
similar shape, and whose languages have very different state complexities. In both automata,
there is only one non-deterministic choice, when reading the letter a at the initial state.

In this article, we address the following (informal) question: if we take a random n-state
deterministic automaton and add just one random transition, what can be said about the
state complexity of the resulting recognized language? Does it hugely increase as for Lℓ, or
does it remain small as for Lr?
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19:2 One Drop of Non-Determinism in a Random DFA
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Figure 1 On the left, a non-deterministic automaton with n states recognizing the language
Lℓ = Σ∗aΣn−2. On the right, a non-deterministic automaton with n states recognizing the language
Lr = Σ∗an−1. The minimal automaton of Lℓ has 2n−1 states, whereas the one of Lr has n states.

From [3], we know that with high probability, the state complexity of the language
recognized by a size-n deterministic automaton taken uniformly at random is linear. This
is important as it implies that the corresponding distribution on regular languages is not
degenerated: this contrasts with the case of random regular expressions where the expected
state complexity of the described regular languages is constant [15] which means that the
induced distribution on regular languages is concentrated on a finite number of languages.

To be more precise, our formal setting in this article is the following. Let Σ = {a, b, . . .}
be a finite alphabet with k ≥ 2 letters. For any n ≥ 1, we consider the uniform distribution
on deterministic and complete automata on Σ, with {1, . . . , n} as their set of states and with
no final states (for now); the initial state is picked uniformly at random, and the action of
the letters on the stateset are k uniform and independent random mappings. We also pick
uniformly at random and independently two states p and q, and add a transition p

a−→ q, if
it is not already there. Finally each state is final with a given fixed probability f ∈ (0, 1),
independently. Hence in this model an almost deterministic automaton has an expected
number of final states of f n. Our results still hold if we allow the probability f of being
final to depend on the size n of the automaton, provided that fn has a distance to 0 and 1
in Ω( 1√

n
). This allows us to consider a probabilistic model in which random automata have

an expected number of final states that is as low as Θ(
√

n).
Our main result is that for any d ≥ 1 there exists a constant cd > 0 such that the state

complexity of the language of such a random almost deterministic automaton is greater than
nd with probability at least cd, for n sufficiently large. That is, for any polynomial P , there is
a non-negligible probability that the state complexity of the language of a random automaton
is greater than P (n): we will say that the state complexity is super-polynomial with visible
probability. As a direct consequence, the expected state complexity is super-polynomial.

It should be noted that with the same random models for deterministic automata, one
cannot hope to replace visible probability in our results with a probability that converges
to 1 (high probability). Indeed random automata have, with high probability, a constant
fraction of states that are not accessible from the initial state; if the source of the added
transition is not accessible from the initial state, the added transition does not impact the
recognized language, whose state complexity is therefore at most equal to n. Thus, we make
no effort in the present paper to optimize our probabilistic lower bounds. See the conclusion
for a more advanced discussion on this topic.

Related work. The study of random deterministic automata can be traced back to the work
of Grusho on the size of the accessible part [13]: he established that, with high probability,
a constant proportion of the states are accessible from the initial state. He also shows
that with high probability there is a unique terminal strongly connected component of
size approximately νkn, for some νk > 1

2 that only depends on the size k of the alphabet.
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More structural results on the underlying graph of a random deterministic automaton were
established in the work of Carayol and Nicaud [6], with a local limit law for the size of the
accessible part and an application to random generation of accessible determistic automata,
and more recently in the work of Cai and Devroye [5], with, in particular, a fine grained
analysis of what is happening outside the large strongly connected component. In [1],
Addario-Berry, Balle and Perarnau gave a precise analysis of the diameter of a random
deterministic automaton, showing in particular that it is logarithmic. We will use some of
these results in this paper, namely one on the size of the largest terminal strongly connected
component. We will deal with the restriction to states accessible from the initial state in the
powerset construction using the result of [5] that with high probability the cycles outside the
accessible part are small: for any ε > 0, with probability at least 1 − ε all the non-accessible
cycles have length smaller than some constant Cε. In particular, for any ω(n) → ∞, all the
cycles outside the accessible part have length at most ω(n) with high probability.

All these results on random automata focus on the underlying graph of the transition
structures, without saying much about the recognized languages, and on the average com-
plexity of textbook algorithms on automata. Some results were established in this direction:
the probability that a random accessible automaton is minimal was studied by Bassino,
David and Sportiello [3], the analysis of minimization algorithms by Bassino, David and
Nicaud [2, 8], etc. More recently, several papers studied the synchronization of random
automata [4, 19], until the very recent work of Chapuy and Perarnau [7], establishing that
most deterministic automata are synchronizing, with a word of length O(

√
n log n). We refer

the interested reader to the survey of Nicaud [18] for an overview on random deterministic
automata.

To our knowledge, there is no well-established random model for non-deterministic
automata (e.g., for the uniform distribution they recognize almost all words with high
probability). Applying the powerset construction to the mirror of a random deterministic
automaton was studied by De Felice and Nicaud [10, 11], in order to analyze the average
case complexity of Brzozowski’s state minimization algorithm. As in the present article, they
studied the determinization procedure of random automata, but for a model that is very
different from ours: they consider the mirror of a uniform random deterministic automaton. In
particular, with high probability, there is a linear number of states having a non-deterministic
choice in their setting. Another natural model would be to use a critical Erdős-Rényi [9]
digraph for each letter, which would also result in a linear number of states having a non-
deterministic choice. In this article, we choose a random model with the minimum amount
of non-determinism by adding just one transition to a uniform deterministic automaton, and
establish that we likely have a combinatorial explosion already in this case.

2 Definitions and notations

For any n ≥ 1, let [n] = {1, . . . , n}. If x, y ∈ R with x ≤ y, let [[x, y]] = [x, y] ∩Z be the set of
integers that are between x and y. Let E be a set equipped with a size function s from E to
Z≥0, and let En denote the elements of E having size n. A property X on E (that is, a subset
of E viewed as the set of elements for which the property holds) holds with visible probability
if there exists some constant c > 0 such that, for n sufficiently large, En is non-empty and
P(X) ≥ c for the uniform distribution on En. By a slight abuse of notation, if X is a random
variable E → Z≥0 we say that for the uniform distribution on E , X is super-polynomial
with visible probability when for any d ≥ 1, there exists a constant cd > 0, such that for n

sufficiently large, En ̸= ∅ and P(X ≥ nd) ≥ cd for the uniform distribution on En.

STACS 2023



19:4 One Drop of Non-Determinism in a Random DFA

Recall that if u and v are two words on an ordered alphabet Σ, u is smaller than v for
the length-lexicographic order if |u| < |v| or they have same length and u <lex v for the
lexicographic order.

Throughout the article, the stateset of an automaton with n states will always be [n],
with the exception of the powerset construction recalled just below. The alphabet will
always be Σ = {a, b}, except in the statement of our main theorem, where we allow larger
alphabets as it is trivially generalized to this case. Hence, in our setting, a deterministic
(and complete) automaton is just a tuple (n, δ, F ), where F ⊆ [n] is the set of final states
and δ is the transition function, a mapping from [n] × Σ to [n]. We will often write δα(s) = t

or s
α−→ t instead of δ(s, α) = t, for s, t ∈ [n] and α ∈ Σ, and call this an α-transition

or a transition. The transition function is classically extended to sets of states by setting
δ(X, α) = {δ(s, α) : s ∈ X}, for X ⊆ [n], and to words by setting inductively δ(s, w) = s if
w is the empty word ε and δ(s, wα) = δ(δ(s, w), α). We will not need to specify the initial
state until the end of the proof; when we finally do, it will be generated uniformly at random
and independently in [n]. Final states are only used in the last part of our proof, so to ease
the presentation, we define a deterministic (and complete) transition structure as being an
automaton with neither initial nor final states: they are given by a pair (n, δ) where n is the
number of states and δ is the transition function.

An almost deterministic automaton (n, δ, F, p
a−→ q) is a deterministic automaton (n, δ, F )

in which we add the additional a-transition p
a−→ q. Similarly, an almost deterministic

transition structure (n, δ, p
a−→ q) is a deterministic transition structure (n, δ) in which we

add the additional a-transition p
a−→ q. For any α ∈ Σ and any r ∈ [n], the transition

function γ of an almost deterministic automaton (n, δ, F, s
a−→ t) (or almost deterministic

transition structure) is therefore defined by γ(r, α) = {δ(r, α)} if (r, α) ̸= (p, a) and γ(p, a) =
{δ(p, a), q}. These automata or transition structures can be deterministic, when we already
have δ(p, a) = q.

The classical powerset automaton B of a possibly non-deterministic automaton A =
(n, δ, F, p

a−→ q), with a transition function γ, is a deterministic automaton B with states in
2[n] and transition function γ extended to sets, as defined above. If we add an initial state i0
to A, the initial state of B is {i0} and it recognizes the same language as A when a state X

of B is final if and only if at least one of its element is final in A, i.e. X ∩ F ̸= ∅. We can
restrict this construction to the accessible part of B only (from its initial state {i0}, where i0
is the initial state of A) while still recognizing the same language; we call this automaton
the accessible powerset automaton of A.

Recall that two states r and s in a deterministic automaton A are equivalent if the
languages recognized by moving the initial state to r or to s are equal. The minimal
automaton of a regular language L is the deterministic complete automaton with the smallest
number of states that recognizes L. The number of states of the minimal automaton of L is
called the state complexity of L. We will use the following classical property [14]:

▶ Proposition 1. If there is a set of accessible states X in a deterministic automaton A such
that the states of X are pairwise non-equivalent, then A has state complexity at least |X|.

The following remark allows us to focus on the case of a two-letter alphabet:

▶ Remark 2. Let Γ ⊆ Σ be two non-empty alphabets. If L is a regular language on Σ, the
state complexity of L is at least the state complexity of L ∩ Γ∗.
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Figure 2 Illustration of the proof sketch. On the left, the backward tree from p that is detailed
in Section 4.1, it has size O(

√
n) and contains between

√
n and 3

√
n extremal leaves (i.e. leaves in

its last level τ) to be valid. On its right, the forward tree from r, described in Section 4.2; it is a
breadth-first traversal that is valid if it hits an extremal leaf of the backward tree before O(

√
n)

states are examined. On the right the b-threads introduced in Section 4.3, obtained by reading b’s
from the pi’s; they are valid if they are made of previously unseen states and do not intersect.

3 Main statement and proof outline

Our main result is that the state complexity of the language recognized by a random almost
deterministic automaton is super-polynomial with visible probability, when for each n, each
state is final, independently, with some probability fn that is not too close to either 0 or 1,
as precised in the statement:

▶ Theorem 3. Let Σ be an alphabet with at least two letters. Let fn be a map from Z≥1
to (0, 1) such that there exists a constant α > 0 such that fn ≥ α√

n
and 1 − fn ≥ α√

n
for

n sufficiently large. Consider an almost deterministic n-state transition structure A on Σ
taken uniformly at random. Each state of A is then taken to be final with probability fn,
independently of everything else. Then, with visible probability, the language recognized by A
has super-polynomial state complexity.

▶ Corollary 4. Under the conditions of Theorem 3, the expected state complexity of the
language recognized by A growths faster than any polynomial in n.

The proof of Theorem 3 consists in identifying a structure and several constraints (see
Figure 2) that guarantee that when performing the accessible powerset construction and
adding a random set of final states, we have sufficiently many pairwise non-equivalent states.
At each step, we add a new constraint on top of those we already have, and we have to ensure
that these constraints are still satisfied by sufficiently many almost deterministic transition
structures. A convenient way to sketch the proof is to consider that we start with n states
and no transitions, and add random transitions when needed, on the fly. More precisely,
our proofs can be seen as the description of an algorithm that tries to expose the required
structure by performing two types of queries on the set of still unknown transitions: either
we ask what the destination of a given transition is, or we ask for all the transitions that
have a given state as their destination. Thus, at any point in the algorithm, conditioned
on the results of all previous queries, the destinations of all still unexposed transitions are

STACS 2023



19:6 One Drop of Non-Determinism in a Random DFA

independent and uniform among the set of states for which we have not performed the second
type of query. We use this to prove that our algorithm has a non-negligible probability
of success. We also have two random states p and q and will add the transition p

a−→ q at
some point. We fix d ≥ 1 and describe the main steps of the proof below. In this high
level description, recall that δ refers to the transition function of the deterministic base of
the almost deterministic automaton being generated, whereas the γ refers to its transition
function when adding the transition p

a−→ q during step 2. Except during this step, all
transitions are added to both δ and γ simultaneously.

1. Generate r = δa(p), the target of the a-transition starting from p in the deterministic
transition structure. With visible probability, r ≠ q and there is a word w of length
Θ(log n) such that δw(r) = p, which can be found by generating O(

√
n) random transitions.

We also assume that the b-transition starting at p is still unset. This step is the most
technical, we explore backward from p and forward from r until we reach a common state.

2. Assuming such a w is found, we add the transition p
a−→ q to γ, which makes the

automaton non-deterministic. We then iteratively generate the transitions starting from
q and following the word w(aw)d−1, and ask that the target of each such transition be
a state that was not previously seen in the whole process. This happens with visible
probability.

3. Let p0 = p and pi = δw(aw)i−1(q) for i ∈ [d]. If the two previous steps are successful,
then γ(aw)d({p}) = {p0, p1, . . . , pd}, and the outgoing b-transition of each pi is still unset.
Then, for each pi, we iteratively generate the b-transitions δb(pi), δbb(pi), . . . until we
cycle after λi steps. This process is considered successful if we do not use an already set
b-transition and if the d + 1 cycles are pairwise disjoint. We furthermore ask that the λi

are all in Θ(
√

n). All these properties happen with visible probability.
4. At this stage, we have γ(aw)d({p}) = {p0, . . . , pd}; this set is composed of d + 1 different

states, and reading b’s from each pi eventually ends in a b-cycle of length ℓi. Given the
λi’s, each ℓi is a uniform element of [λi], and they are independent. We now ask that
the ℓi’s are pairwise coprime, and that each of them is in Ω(

√
n). This also happens

with visible probability [20]. Our precise requirements ensure that once met, the ℓi are
uniform and independent elements of [[ 1

2
√

n,
√

n]].
5. If everything worked so far, in the powerset construction applied to the almost determin-

istic transition structure there is a b-cycle of length
∏d

i=0 ℓi = Ω(n d+1
2 ). We now randomly

determine which states are final. If we consider a b-cycle alone in the automaton, of
length Ω(

√
n), its states are pairwise non-equivalent with visible probability as soon as the

probability fn that a state is final is not too close to either 0 or 1, which we assumed in
our model. This property happens to be preserved when building the product automaton
for the union of two one-letter cycles, provided their lengths are coprime. Consequently,
the large b-cycles in the powerset construction are made of pairwise non-equivalent states
with visible probability.

6. It just remains to guarantee that {p} is accessible in the subset construction. We use
the fact that with high probability, all cycles with length in Ω(log(n)) are accessible in
a random deterministic automaton [5]. By construction the cycle around p labelled aw

built at step 1 has length Θ(log n), hence p is accessible with high probability.

The first steps of the proof sketch are depicted in Figure 2, with more details and notations
that will be introduced in the next section.
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4 Random almost deterministic transition structures

As indicated in the presentation of the proof in Section 3, a convenient way to see a uniform
random transition structure is to start with no known transition at all, and generate them
on the fly, when needed: we use the fact that the targets of the 2n transitions in a size-n
uniform transition structure are independent uniform random elements of [n].

Consider for instance that we take a random state s and iteratively follow b-transitions
starting from s: we generate the path s

b−→ δ(s, b) b−→ δ(s, bb) b−→ . . . until we cycle back on a
previously seen state. In this process, we keep picking uniformly at random and independently
integers in [n] until we have a collision: this is exactly the setting of the classical Birthday
Problem (see for instance [12, p.114]). Straightforward computations show that the expected
length ℓs of this b-path Ps is in Θ(

√
n), and that it is between

√
n and 2

√
n with visible

probability.
Now suppose that we want to add the condition that the target of every a-transition

outgoing from a state of Ps is not in Ps. We can proceed as follows: for a given fixed path
Ps of length ℓs, the Birthday Problem analysis tells us that with visible probability the
outgoing a-transitions do not reach Ps. As long as

√
n ≤ ℓs ≤ 2

√
n, we can lower bound

this probability by a constant that does not depend on ℓs. Moreover, a given transition
structure can have only one b-path from s, so we can partition the set of size-n transition
structures according to their b-path, for a given s. Hence a simple computation using the law
of total probabilities (or direct counting) shows that we can combine the two “with visible
probability” and that, with visible probability there is a b-path Ps from s of length between√

n and 2
√

n such that every outgoing a-transition ends outside Ps.
We detailed this reasoning because it is the main technique we will use in the sequel to

build on the previous results and add new constraints, until we exhibit a shape that ensures
that applying the accessible powerset construction will produce a large (super-polynomial)
number of states. Also, we will rely much on properties derived from the Birthday Problem,
such as:

If we generate O(
√

n) elements of [n], there is no collision with visible probability, even if
there is a set of forbidden states of size O(

√
n) which make the process fail.

If we generate Ω(
√

n) elements of [n], there is a collision with visible probability, even if
there is a set of forbidden states of size O(

√
n) which make the process fail.

If we generate random elements of [n], with visible probability we hit a fixed set of states
of size Ω(

√
n) before a collision occurs.

4.1 Backward tree
We first look at the shape of a typical backward tree1 from a state p in a random transition
structure T = (n, δ). We define d(x, y) as the smallest length of a word w such that δw(x) = y

(and ∞ if y is not accessible from x). For a given state p, we consider the backward exploration
of T starting from p: we iteratively build the sets of states Ri(p) = {x : d(x, p) = i}. For
τ ≥ 1, the nodes of the backward tree of depth τ from p are Bτ (p) = ∪τ

i=0Ri(p) and the edges
are the transitions x

α−→ y that go from a state x ∈ Ri(p) to a state y ∈ Ri−1(p), for i ∈ [τ ].
We keep building the backward tree until the first time τ where |Rτ (p)| ≥

√
n. If such a τ

exists, the tree is called the
√

n-backward tree. If the transition structure is taken uniformly
at random, there is a visible probability that Rτ (p) exists and has size at most 3

√
n, that

τ = Ω(log n) and that the whole
√

n-backward tree contains at most O(
√

n) nodes.

1 The backward tree is not a tree in the graph theoretical sense as a node at depth ℓ can have two
out-going edges to two different nodes at depth ℓ − 1.

STACS 2023



19:8 One Drop of Non-Determinism in a Random DFA

To see that, first consider R1(p). Each state x ̸= p can be in R1(p), if there is a transition
x

a−→ p or x
b−→ p (or both) in T . This happens with probability π

(1)
n = 2

n − 1
n2 ≈ 2

n . The
cardinality of R1(p) thus follows a binomial law of parameters n − 1 and π

(1)
n . In particular,

in expectation it contains around 2 states.
Assume now that we know all the Rj(p) for j ≤ i and want to compute Ri+1(p); we

suppose that Ri(p) ̸= ∅. Recall that Bi(p) = ∪i
j=0Rj(p) and let ki = |Bi(p)|. By definition of

d, none of the states of Bi(p) can be in Ri+1(p). On the other hand, any state x of [n] \ Bi(p)
can be in Ri+1(p), and the condition that a state is not in Bi(p) is exactly that its outgoing
transitions are not in Bi−1(p). All other target states are equally likely under this conditioning,
for both transitions. Hence there are n − ki−1 possible targets for δ(x, a) and δ(x, b): the
probability that at least one of them is in Ri(p) is π

(i)
n = 2|Ri(p)|

(n−ki−1) − |Ri(p)|2

(n−ki−1)2 ≈ 2|Ri(p)|
n if

|Ri(p)| and ki−1 are both o(n). Hence the number of elements in Ri+1(p) follows a binomial
law of parameters n − ki and π

(i)
n . In particular, in expectation, Ri+1(p) is roughly twice

as large as Ri(p), as long as they are not too big. Since binomial laws are concentrated
around their means, the presentation above can be turned into a formal proof, establishing
the following result.

▶ Lemma 5. Let p be a random state of a random n-state deterministic transition structure.
With visible probability, the

√
n-backward tree from p exists, has depth τ ∈ Θ(log n), contains

between
√

n and 3
√

n extremal leaves, i.e. states in Rτ (p), and has a total number of nodes
in Θ(

√
n).

In [5], Cai and Devroye also consider backward trees, with a precise analysis for fixed
depth (that does not depend on n) conditionally on p being in the large strongly connected
component; they use approximation by a Galton-Watson branching process. This allows
them to give a more precise analysis on the existence of the circuit we are building in this
paper: they prove that conditioned on the fact that p is accessible, there is such a circuit with
high probability. However we cannot reuse their result directly, since we need to quantify the
amount of randomness used to discover the circuit: we need unset transitions to continue our
construction. It is not obvious to describe the distribution of the transitions if we condition
on the existence of the circuit (in particular, there can be several such circuits).

In our setting, we have a direct access to the distribution of most unseen transitions.
Indeed, if we fix the

√
n-backward tree Tp from p and consider a state x that is not in the

tree, its outgoing transitions can end either in [n]\Tp or at an extremal leaf, a leaf of maximal
depth, of Tp (otherwise x would be in Tp); and every possible state has the same probability.
It is a bit more complicated for transitions outgoing from a state of Tp that are not already
part of the tree, but we will not use them in our construction; except for p itself, but if
we condition on having Tp, its outgoing transitions ends in uniform elements of [n]. So as
long as we do not consider a transition outgoing from a node of Tp, except p, we can easily
perform our probabilistic computations given the

√
n-backward tree of p being Tp. Since the√

n-backward tree of p of a transition structure is unique if it exists, we can use the law of
total probabilities at the end to complete the proof.

Also observe that we cannot hope for a result with high probability in our setting: the
probability that p has no incoming transition is (1 − 1

n )2(n−1) ≈ e−2 and is therefore visible.

4.2 Forward tree and existence of a small circuit
We fix the

√
n-backward tree Tp of p that satisfies the conditions of Lemma 5. Then, we

generate the a-transition p
a−→ r outgoing from p: as explained in the previous section, this is

a uniform random element of [n]. We then begin a process consisting in doing a breadth-first
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traversal of the transition structure starting from r0 := r. We discover the states r0 = δ(r, ε),
r1 = δ(r, a), r2 = δ(r, b), r3 = δ(r, aa), r4 = δ(r, ab), . . . , where the words are taken in
length-lexicographic order. We continue this process until we reach either some ri that
belongs to Tp, or an already seen ri (ri = rj for some j < i). The process is successful if we
halt because we hit an extremal leaf of Tp after at most

√
n steps, otherwise it fails.

Let Lp be the set of extremal leaves of Tp. As mentioned above, since we only discover
new states before the last step of the process, the transition considered at time i ≥ 1 ends in
a uniform random state of [n] \ (Tp \ Lp): the fact that Tp is the

√
n-backward tree from p

prevents transitions from ending at a node of Tp \ Lp (the case of time 0 is easily handled
separately). Hence we are in a variant of the Birthday Problem: we have a target set Lp

of size Θ(
√

n) and we iteratively draw random numbers of [n] \ (Tp \ Lp) until we hit Lp

(success) or we see an element twice (failure). All the computations are classical even if we
ask that the process halts before

√
n steps. In particular |[n] \ (Tp \ Lp)| = n − O(

√
n) so we

do not differ much from the standard case with parameter n. This yields:

▶ Lemma 6. For the uniform distribution on size-n transition structures having Tp as
√

n-
backward tree from p, with visible probability the breadth-first traversal starting at r := δa(p)
hits an extremal leaf of Tp before it discovers the same state twice, and it does this in at most√

n steps.

If the conclusions of Lemma 6 hold then there is a word w of length Θ(log n) such that
δw(r) = p, and aw labels a circuit around p: starting from p, we read a to reach r, then we
follow the path that hits an extremal leaf of Tp, discovered during the breadth-first traversal;
then finally go back to p using the transitions of Tp. Observe that there can be several
paths that work in the last part: it is possible that both transitions outgoing from a state at
distance i + 1 from p end in states at distance i. To uniquely determine w, we choose, in this
last part, the smallest for the lexicographic order. Doing this still preserves uniqueness in
the following sense: for a given transition structure, there is at most one triplet (Tp, r, Fr)
such that Tp is the

√
n-backward tree from p, r = δa(p), and Fr is the forward tree from r,

and all the properties of Lemma 5 and Lemma 6 are satisfied. The choice of w is then fixed
by (Tp, r, Fr), and the uniqueness of the triplet, which exists when all the requirement are
fulfilled, allows the use of the law of total probabilities.

Let p ∈ [n]. An n-state transition structure is p-compatible if its
√

n-backward tree from
p exists and satisfies the conclusions of Lemma 5, and if the breadth-first traversal from r

discovers different states that are not in Tp for all labels smaller than z, and δ(r, z) ∈ Lp, with
|z| ≤ 1

2 log2 n. When the transition structure T is p-compatible, we define its p-substructure
as being the incomplete automaton whose states are the states in Tp together with r and all
the other states discovered during the breadth-first traversal until label z. Its transitions
are the transitions of Tp, and all the transitions of the breadth-first search until label z

(included). We have:

▶ Proposition 7. With visible probability, an n-state transition structure taken uniformly
at random is p-compatible, where p is also taken uniformly at random and independently in
[n]. In this case, the p-substructure is uniquely determined, has O(

√
n) states, and contains

a circuit around p labelled aw, where w is uniquely determined using the transitions of the
p-structure only and we have |w| ∈ Θ(log n).

4.3 Discovering the b-threads
Fix a p-substructure Xp and consider the uniform distribution over n-state transition
structures that are p-compatible with Xp. For this distribution, if we take a state s /∈ Xp, its
outgoing transitions end in an element of [n]\(Tp\Lp), uniformly at random and independently
from the others transitions. Otherwise, the state s would be in the

√
n-backward-tree of p.

STACS 2023
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We now add a random a-transition p
a−→ q to form a random almost deterministic transition

structure that has Xp as p-substructure, by picking uniformly at random q ∈ [n]. Since
|Xp| ∈ O(

√
n), with high probability q /∈ Xp. We fix some d ≥ 1 from now on, and read,

letter by letter, the word w(aw)d−1 starting from q, where aw labels the circuit around p in
Xp given in Proposition 7. Since w has length Θ(log n), the word w(aw)d−1 has logarithmic
length, and, using the Birthday Problem once again, with high probability we only discover
new states that are not in Xp while reading the whole word. In this case, we name p0 = p

and pi = δ(q, w(aw)i−1) for i ∈ [d]. Observe that in the whole process, we never considered
b-transitions starting from one of the pi, with 0 ≤ i ≤ d. Since p0 = p is the root of Xp, there
are no constraints on its out-going transitions, thus δ(p0, b) is a uniform random element of
[n]. Moreover, for i ≥ 1 each pi /∈ Xp and, under our conditioning, its outgoing transitions
are uniform random elements of [n] \ (Tp \ Lp).

Let us define the b-thread of pi as the set of all states reached from pi using words of
the form bj . Discovering state by state such a b-thread consists in iteratively generating the
outgoing b-transition of the previous state, which is done by taking a uniform element of
[n] \ (Tp \ Lp). Let us start with the b-thread of p0. By the Birthday Problem again, with
visible probability it cycles back after discovering between

√
n and 2

√
n states while never

discovering a state of Xp, since |Xp| ∈ O(
√

n). If this happens, we consider the b-thread
from p1. With visible probability, it also cycles back after discovering between

√
n and 2

√
n

states while never discovering a state of Xp or of the b-thread from p0, as they both have
size in O(

√
n). Since d is fixed, doing this for the b-thread starting at each pi we obtain:

▶ Lemma 8. Let d ≥ 1. Let Xp be a p-substructure of size-n transition structures. For the
uniform distribution on size-n transition structures that are p-compatible and that have Xp as
p-substructure, if we add a random transition p

a−→ q by choosing q uniformly at random and
independently in [n], then with visible probability (i) the states discovered while following the
path labeled by w(aw)d−1 are all different and do not belong to Xp (ii) the b-threads starting
at the pi’s, where p0 = p and pi = δ(q, w(aw)i−1), have length between

√
n and 2

√
n, are

pairwise disjoint and do not intersect Xp.

4.4 Cycle lengths and accessibility
An almost deterministic transition structure that satisfies the conditions of Lemma 8 is called
(p, b)-compatible, and we say that it has b-thread lengths λ⃗ = (λ0, . . . , λd) if the b-thread
from each pi has length λi. We also define its (p, b)-substructure as its p-substructure where
we add the states along the path labeled by w(aw)d−1 from q and the b-threads from each pi.

Consider an almost deterministic transition structure T of given (p, b)-substructure Xp,b

with b-thread lengths λ⃗ = (λ0, . . . , λd) and cycle lengths ℓ⃗ = (ℓ0, . . . , ℓd). If ℓ⃗′ = (ℓ′
0, . . . , ℓ′

d)
is another vector where each ℓ′

i ∈ [λi], we can re-target the last b-transition of each b-thread
so that the cycle lengths are now ℓ⃗′. Thus, conditioned on λ⃗, each cycle length ℓi is a uniform
random element of [λi]. Since

√
n ≤ λi ≤ 2

√
n, and since each ℓi ∈ [[ 1

2
√

n,
√

n ]], with visible
probability the ℓi’s are uniform and independent random elements of [[ 1

2
√

n,
√

n ]].
To conclude this part, we generate the initial state i0 uniformly at random. All our

constraints so far hold with visible probability, and one of them implies the existence of a
circuit of length Ω(log n) around p. Cai and Devroye [5] established that with high probability
such a cycle is accessible; the conjunction of a high-probability event with a visible event is
still visible. This yields:

▶ Theorem 9. Let d ≥ 1. There exists a set Tn of almost deterministic transition structures
with n states and one initial state such that with visible probability for the uniform distribution
over size-n almost deterministic transition structure with an initial state, the state p (source
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of the additional a-transition) is accessible from the initial state and there exists a word w

of length Θ(log n) such that γ(p, w(aw)d−1) = {p0, . . . , pd} is a set of d + 1 states, and the
b-threads starting from the pi’s have lengths λi in [[

√
n, 2

√
n ]] and their cycle length is in

[[ 1
2
√

n,
√

n ]]. Moreover, this set Tn can be built so that for the uniform distribution on Tn,
the cycle lengths are uniform and independent random elements of [[ 1

2
√

n,
√

n ]].

If T is in the set Tn and we read b’s from P = {p0, . . . , pd}, we eventually reach the b-cycle
of P in the accessible powerset transition structure of T , and its length is lcm(ℓ0, . . . , ℓd). As
the ℓi’s are uniform and independent random elements of [[ 1

2
√

n,
√

n]], their lcm is Ω(n d+1
2 )

with visible probability [11], yielding our first main consequence (before adding final states):

▶ Corollary 10. For the uniform distribution on size-n almost deterministic transition
structures, the accessible powerset transition structure has a super-polynomial number of
states with visible probability.

5 Adding final states

We are now ready to randomly select which states are final. In our model, for every n, each
state is final with fixed probability fn, which may depend on n as long as it is not too close
to either 0 or 1: we require that a set of Θ(

√
n) states contains both final and non-final

states with visible probability. This holds under our condition that fn and 1 − fn are in
Ω( 1√

n
), as a variant of the Birthday Problem again.

Previously, we exhibited the existence with visible probability of d + 1 occurrences of
b-cycles in a random almost deterministic transition structure, yielding a large b-cycle when
applying the powerset construction. We will focus on b-cycles in the sequel, as it turns out
to be sufficient to prove our main result. It relies on the notion of primitive words, which we
now recall.

Let Γ be a nonempty finite alphabet. If w ∈ Γℓ is a word of length ℓ, we write
w = w0 · · · wℓ−1 and use the convention that all indices are taken modulo ℓ: for instance wℓ

is the letter w0. A nonempty word w is primitive if it is not a non-trivial power of another
word: it cannot be written w = zk for some word z and some k ≥ 2. If w is primitive, it is
easily seen that every circular permutation of w is also primitive. See [16] for a more detailed
account on primitive words.

Primitive words appear in our proof with the following observation. If C = (c0, . . . , cℓ−1)
is a b-cycle of states starting at c0, its associated word is the size-ℓ word v = v0 . . . vℓ−1
of {0, 1}ℓ where vi = 1 if and only if ci is a final state. Recall that if we start the same
cycle elsewhere, at ci, the associated word v′ = vi · · · vℓv0 · · · vi−1 is primitive if and only
if v is primitive: reading the associated word from any starting state preserves primitivity.
A b-cycle is said to be primitive if one (equivalently, all) of its associated words is (are)
primitive. Our study is based on the following statement.

▶ Lemma 11. Let A be a deterministic automaton on Σ and α ∈ Σ. If C is a primitive
α-cycle of A, then the states of C are pairwise non-equivalent: the state complexity of the
language recognized by A is at least |C|.

So we reduced our problem to studying the primitivity of the b-cycles we built in Section 4,
and to how it exports to the associated b-cycle in the powerset construction.

5.1 Some properties of primitive words
If w(1) and w(2) are two non-empty words of respective lengths ℓ1 and ℓ2 on the binary
alphabet {0, 1}, we denote by w(1) ⊙ w(2) the word w of length ℓ = lcm(ℓ1, ℓ2) given by
wi = 1 if and only if w

(1)
i = 1 or w

(2)
i = 1 (recall that the indices are taken modulo the

STACS 2023
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0 1 2 3
b b b

b

α β γ
b b

b

0, α 1, β 2, γ 3, α 0, β 1, γ

3, γ 2, β 1, α 0, γ 3, β 2, α

b b b b b

b

bbbbb

b

Figure 3 On the left, two primitive b-cycles (accepting states are denoted by double circles)
whose associated words are 0011 (top) and 001 (bottom), starting at 0 and α, respectively. On the
right, the b-cycle of {0, α} of associated word 0011 ⊙ 001 = 001101111011, which is primitive by
Lemma 12.

length of the word). We will see in the sequel that this operation naturally happens when
extending the notion of state equivalence from each b-cycle to the corresponding b-cycle in
the powerset construction.

▶ Lemma 12. Let w(1) and w(2) be two primitive words on {0, 1} of lengths at least 2 that
are coprime. Then, the word w(1) ⊙ w(2) is primitive.

▶ Remark 13. Lemma 12 does not hold if the lengths are not coprime. For instance, if
w(1) = 011111 and w(2) = 1011, then w(1) ⊙ w(2) = 1 . . . 1︸ ︷︷ ︸

12 times

, which is not primitive.

From a probabilistic point of view, it is well known [16] that a uniform random word is
primitive with very high probability. We rely on the following finer result.

▶ Lemma 14 (De Felice, Nicaud [11]). Let µ be a probability measure on {0, 1}n such that
µ(0n) = µ(1n) = 0 and such that two words with the same number of 0’s have same probability.
Then, the probability that a word is not primitive under µ is at most 2

n .

We adapt it to our needs as follows:

▶ Corollary 15. Let fn be a sequence of real numbers in (0, 1) such that fn = Ω( 1√
n

) and
1 − fn = Ω( 1√

n
). Let ℓ be an integer greater than α

√
n, for a fixed α, and let w be a random

binary word of length ℓ whose letters are 1’s with probability fn and 0 with probability 1 − fn,
independently. Then, w is primitive with visible probability.

5.2 Finalizing the proof of Theorem 3

By Lemma 12, primitivity is preserved by the product ⊙ when the lengths are coprime, so we
restrict the cycle lengths built in Section 4 so that they are pairwise coprime. By Theorem 9,
these lengths are uniform random elements of [[ 1

2
√

n,
√

n ]], we therefore adapt a known result
of probabilistic number theory to prove that it still happens with visible probability.

More precisely, Tóth established [20] that the probability that d+1 integer taken uniformly
at random and independently in [n] are pairwise coprime tends to some positive constant
Ad+1, generalizing the folklore result that two independent random numbers in [n] are
coprime with probability that tends to 6

π2 . This can be used to derive the following variant:

▶ Corollary 16. Let ℓ0, ℓ1, . . . , ℓd be d + 1 integers taken uniformly at random and
independently in [[ 1

2
√

n,
√

n ]]. With visible probability, the ℓi’s are pairwise coprime.
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Combining Corollary 15 and Corollary 16, we can extend Theorem 9 to also require that
the b-cycles are primitive and their lengths are pairwise coprime. And this still happens with
visible probability.

We can then conclude as follows: if all these requirements are met, the state p is accessible
and there is a word z such that δ(p, z) = {p0, . . . , pd}, the b-threads of the pi’s are pairwise
disjoint and eventually form cycles of respective pairwise coprime lengths ℓi, and each such
cycle is primitive. Moreover, all the ℓi are in Θ(

√
n). By a direct induction on Lemma 12, this

yields that the b-cycle of {p0, . . . , pd} in the powerset automaton is primitive and has length
Θ(

√
n

d+1). By Lemma 11, the language recognized by this almost deterministic automaton
has state complexity at least Θ(n d+1

2 ). This concludes the proof, as it holds for every fixed d.

6 Conclusion and discussion

Our main theorem states that the state complexity of a random almost deterministic
automaton is greater than nd with probability at least cd > 0 for n sufficiently large. One
can wonder how small the constant cd is and for which sizes the lower-bound holds. As we
said in the introduction, we did not try to estimate cd nor did we try to optimize its value in
this article. Since the powerset construction quickly generates very large automata which
would need to be minimized, a proper experimental study does not seem feasible. However,
we did generate 1000 almost deterministic transition structures with n = 100 states and
apply the accessible powerset construction: in 78.6% of the 1000 cases the output had more
than n3 states. This would lead us to guess that even if the constant c3 that can be derived
from our proof is very small, combinatorial explosion does occur frequently in practice.

Also, as noticed above, in our setting it is certain that the property does not hold with
high probability, as there is an asymptotically constant probability that the source of the
added transition is not accessible. However, this probability is roughly 20.4%, not too far
from what we obtained in our experiment on size-100 structures: it is very possible that if
we condition the source of the added transition to be accessible, then our result holds with
high probability. However, our proof techniques, based on an intensive use of the Birthday
Problem cannot prove this: completely new ideas are necessary to establish such a result.

Another natural direction is to consider the case when there are few final states, as Θ(
√

n)
final states may be considered too large for a random deterministic automaton. The extreme
case is to allow exactly one final state by choosing it uniformly at random. If we do so, our
analysis using primitive words fails: with high probability the b-cycles we built have no final
state at all, and neither has the associated b-cycle C in the powerset construction. However,
we are confident that our techniques can be used to capture this distribution: by studying
the paths ending in this final state, we should be able to find for each b-cycle Ci a word wi

that maps exactly one state to the final state, and such that the wi are all different. This
would be enough to establish that the states of C are pairwise non-equivalent and prove the
conjecture. Completely formalizing and proving this idea is an ongoing work.
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