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—— Abstract

We study a graph reordering problem motivated by compressing massive graphs such as social

networks and inverted indexes. Given a graph, G = (V, E), the Minimum Logarithmic Arrangement
problem is to find a permutation, 7, of the vertices that minimizes

>+ lglr(w) = 7)) -

(u0)EE

This objective has been shown to be a good measure of how many bits are needed to encode
the graph if the adjacency list of each vertex is encoded using relative positions of two consecutive
neighbors under the 7 order in the list rather than using absolute indices or node identifiers, which
requires at least lgn bits per edge.

We show the first non-trivial approximation factor for this problem by giving a polynomial time
O(log k)-approximation algorithm for graphs with treewidth k.
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1 Introduction

We study theoretical aspects of a graph reordering problem that has applications to com-
pressing social networks and inverted indexes. The formal model of the problem has been
suggested by Chierichetti et al. [6], who proposed a simple heuristic for reordering web-scale
graphs. Later Dhulipala et al. [11] extended the model and described a practical approach for
graph reordering based on recursive bisection. The algorithm of [11] is widely used in practice
producing the most “compression-friendly” vertex orders for a large variety of real-world
datasets and is considered the state-of-the-art in the field [31].

A linear layout (an order or an arrangement) of a graph G = (V, E) with n = |V| vertices
and m = |E| edges is a bijection 7 : V' — {1,...,n}. Most graph encoding schemes are based
on performing a delta-encoding of the adjacency lists using a linear layout. The basic idea is
to sort each adjacency list according to the layout 7, store the index of the first neighbor
in the list, followed by the the gaps between two consecutive neighbors using a variable
length encoding. As such, it is desirable that the neighborhood of each vertex is laid out
close together, since that translates into smaller gaps and higher compression rates. This
motivates two problems that we define next.

The minimum linear arrangement (MLA) problem is to find a layout 7 so that

LA/(G)i= 3 [a(uw) — (o)
(u,v)EE
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is minimized. This is a classical NP-hard problem [23], even when restricted to certain
graph classes. The problem is APX-hard under Unique Games Conjecture [10] but admits
an O(y/lognloglogn) approximation [5,19]. Notice that the objective measures the total
length of the gaps across all edges.

A closely related problem is minimum logarithmic arrangement (MLOGA) in which the
goal is to minimize

LGAA(G) == Y (1+ [lg|m(u) — x(v)])),

(u,v)EE

where lg 2 denotes the logarithm base 2 of 2. Note that for an integer x, 1+ |lgz]| is the
number of bits needed to represent . We write LGA(G) = min, LGA,(G), where the
minimum is taken over all permutations of vertices V. Seen from this perspective, LGA(G)
is a measure of the compressed size of G. It is worth noting that in practice, the size of an
encoded integer and the total size of a graph depends on the utilized encoding scheme; we
refer to [2] for a survey of modern graph compression techniques.

1.1 Qur Contributions

In this paper we study MLOGA from a theoretical perspective. First, in Section 2, we
investigate basic properties of the problem: analyze the performance of two natural heuristics,
provide explicit optimal and near-optimal layouts for several graph classes, and describe a
lower bound for the LGA cost of a graph.

Section 3 describes our main result, an O(log k)-approximation for graphs with treewidth k.
It is worth noting that the optimal ordering has cost at least m and that every ordering has cost
O(mlogn). Therefore outputting an arbitrary order is, technically speaking, a logarithmic
approximation for MLOGA. The challenge is to design an approximation algorithm with
approximation factor o(logn). Our result is the first such approximation for the natural and
broad class of graphs with low treewidth. The algorithm works by recursively splitting the
input graph using small balanced separators. It is worth noting that our algorithm can be
implemented to run in polynomial time regardless of the value of k. While the algorithm is
fairly straightforward, its analysis is highly non-trivial.

Regarding the applicability of our approach, we point to the recent work of Maniu et al. [32]
who experimentally estimated the treewidth of graphs arising from a variety of domains.
They found that real-world instances usually have treewidth values that are very small
compared the number of vertices in the graph. Therefore, we can reasonably expect our
O(log k) approximation to yield much better results in real-world instances over the trivial
O(log n) approximation.

We conclude the paper in Section 4 with some interesting open problems.

1.2 Related Work

Not many results on MLOGA are known. Chierichetti et al. [6] show that the problem is
NP-hard on multi-graphs and present lower bounds on expander-like graphs. More specifically,
they show that if a graph G has constant conductance then the cost of MLOGA is Q(mlogn),
and that if G has constant node or edge expansion then the cost of MLOGA is Q(nlogn).
The minimum logarithmic gap arrangement (MLOGGAPA) problem [6,11] is a related
objective that captures more faithfully the information-theoretic space needed to represent
a graph using a delta-encoding representation for its adjacency lists. For a vertex v € V
of degree k and an order =, consider the neighbors out(v) = (v1,...,vr) of v such that
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w(v1) < --- < 7w(vk). Then the cost compressing the list out(v) under = is related to
fr(v,out(v)) = Zf;ll log |m(vit1) — m(v;)|. MLOGGAPA consists in finding an order m,
which minimizes

Z fr (v, 0ut(v)).

veV
Similarly to MLOGA, the MLOGGAPA is known to be NP-hard [11]. Furthermore, Dhuli-
pala et al. [11] experimentally verify that the cost of MLOGGAPA accurately predicts the
compressed size of real-world instances for various modern encoding schemes.

For some applications, such as index compression, it is convenient to study a generalization
of MLOGA and MLOGGAPA by considering a bipartite graph with query and data vertices.
To this end, let G = (QU D, E) be an undirected unweighted bipartite graph with disjoint
sets of vertices Q and D. The goal is to find a permutation, 7, of data vertices, D, so that
the following objective is minimized:

deg, —1
> log(m(uigr) — m(us),
qeQ i=1
where deg, is the degree of query vertex ¢ € Q, and ¢’s neighbors are {u1, ..., Ugeg, } With

m(u1) < -+ < T(Ugeg,). The optimization problem is called bipartite minimum logarithmic
arrangement (BIMLOGA). Notice that BIMLOGA is different from MLOGGAPA in that the
latter does not differentiate between data and query vertices. It is easy to see that the new
problem generalizes both MLOGA and MLOGGAPA: to model MLOGA, add a query vertex
for every edge of the input graph; to model MLOGGAPA, add a query for every vertex of
the input graph.

While according to Chierichetti et al. [6] and Dhulipala et al. [11] MLoGGAPA and
BIMLOGA are arguably more relevant for compression than MLOGA, we find that the latter
problem interesting on its own from a theoretical point of view, and we regard our main
contribution as a first toward obtaining approximation algorithms for these more general
variants.

Also closely related to our objective is the minimum linear arrangement problem, which
has been studied under various names [12], such as optimal linear ordering, minimum-1-sum,
or the edge sum problem. MLA was originally proposed in [26]. It was proven to be strongly
NP-hard [22] and this was later shown to hold even for bipartite graphs [16] and interval
graphs [9]. For general graphs, the fastest known exact algorithm is based on dynamic
programming and runs in O(2" - m) time [30]. The best approximation factor known for
general graphs is O(y/log nloglogn) [5,19]; however, better approximations are known for
special graph classes such as interval graphs [9], planar graphs [35], and series-parallel
graphs [15]. On the positive side, MLA is known to be solvable in polynomial time on
trees [1,8,24]. Furthermore, for some restricted classes of graphs, optimal layouts are known
explicitly [7,26, 28].

There is vast literature on the problem of computing an ordering of a graph vertex
set to minimize or maximize a given objective function. Here we only mention a few
notable examples. The minimum bandwidth problem [13,17,20,25,37] is to find an ordering
minimizing the maximum distance between any two vertices connected with an edge; that
is, min, max |7 (u) — 7(v)|. Finding a tree (path) decomposition with minimum treewidth
(pathwidth) can be cast as the problem of finding a elimination order of the vertices [29].
Finally, we mention the traveling salesman problem [27] and its many variants [3, 33, 34],
which have inspired ground breaking algorithmic research for over five decades.
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(a) MLA. (b) MLoGA.

Figure 1 Layouts of the 8 x 8 grid graph optimizing for (a) MLA and (b) MLOGA. The layout
for MLA is constructed by an algorithm of Fishburn et al. [21] and contains Q(h) consecutively
numbered rows (shaded). The layout for MLOGA is constructed following a space-filling curve as
described in Lemma 7.

2 Preliminaries

In this section we first discuss natural heuristics for MLOGA and their (worst-case) approxi-
mation factors. Then we derive optimal arrangements for several graph classes.

2.1 Heuristics
Greedy

Arguably the easiest approach for MLOGA is a greedy one. Start with a vertex, and iteratively
add the next vertex that yields the lowest increase of the objective. There are several greedy
criteria that we could use.

The simplest version of this approach that does not constrain in any way how we pick
our vertices does not yield anything useful even in very simple instances: If the input is a
path, the algorithm might pick every other vertex along the path and then the remaining
vertices for a total cost of (nlogn), whereas an optimal solution has cost n — 1.

One can refine the greedy criterion by asking that a newly added vertex is connected to
one of the vertices already processed, and subject to this that the increase of the objective is
minimized. Unfortunately, this also fails: If the input is a 2 x n grid, the algorithm might
pick the upper path of the grid followed by the lower path (in opposite direction) for a total
cost of Q(nlogn) whereas an optimal solution, which interleaves nodes from the top and
bottom paths, has cost O(n).

Minimum Linear Arrangement

It is tempting to apply an algorithm designed for MLA to solve the related objective of
MLOGA, given that MLA admit an o(logn)-approximation. Here we show that such an
approach may result in an Q(logn) approximation for MLOGA even if we have an exact
algorithm for MLA. Consider the square grid graph; that is, the graph whose vertices
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correspond to the points in the plane with integer coordinates in the range 1,...,h and two
vertices connected by an edge whenever the corresponding points are at distance 1. The
h x h grid is denoted by G, and contains n = h? vertices and m = 2h(h — 1) edges.

Fishburn et al. [21] describe the optimal arrangement, 7, of the square grid; it contains
t consecutively numbered rows with t/h — 1 — 1/y/2 as h — oo; see Figure la. The
corresponding vertical edges between the rows in the grid have length h and there are
t x h such edges. Summing up the contribution of the edges for MLOGA, we get LGA,; >
t x h x1gh=Q(h? x logh) = Q(m x logn). However, as we show in Lemma 7, there is an
O(m) solution for MLOGA; see Figure 1b.

2.2 Lower bounds

Before proving a lower bound for the objective of MLOGA, we show a simple fact about
sums of logarithmic values.

» Lemma 1. For any integer £ > 1 we have

4
(C=1)-1g(l+1) <> (14 [Igi]) < (€+1)-1g(£ +1).

i=1
Proof. We can use integrals to prove the upper bound:

V4 {+1

Z(1+ngij)§/ 1+lgede < (£+1)-1g(£+1).
i=1 !

And the lower bound:

V4 {+1
Z(1+ngij)2/ leadz > (0 —1)-lg(+ 1). <

i=1

It is clear that LGA(G) > m for every graph G, since the contribution of each edge to the
objective is at least 1. The next lemma improves upon this trivial bound for dense graphs.

» Lemma 2. Let G = (V, E) be a graph with n vertices and m edges, then
LGA(G) > (m —n) - 1g %

Proof. Consider a vertex, v € V, and all incident edges. The optimal layout of the star
subgraph is achieved when v is placed in the middle of the order and the neighbors occupy
consecutive intervals to the left and to the right of v. Thus the edges incident on v contribute
to the objective at least

[deg(u)/2] [deg(u)/2] deg(u)
Y. A+lgih+ Y (1+[lgi)) > (deg(u) —2) lg—
i=1 =1

where the inequality follows from applying Lemma 1 to each sum.
Summing over all vertices and observing that every edge is counted twice, gives a global
lower bound of

LGA(G) > Y deg(;) —2 g deg2<“) > (m—n)-lg %

ueV

where the last inequality follows from Jensen’s inequality and the fact f(x) = (x — 2) -lgz is
a concave function, which means that the sum is minimized when all n terms are equal. <
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(a) A complete binary tree with 4 levels num- (b) Two ways of embedding a binary tree, side-
bered according to Lemma 6. based (top) and center-based (bottom).

Figure 2 Embedding a complete binary tree with LGA < gn.

2.3 Specific Graph Classes
» Lemma 3. Let K, denote the complete graph with n vertices. Then

2
LGA(K,) < ;g”.

Proof. The bound follows the observation that all layouts of a complete graph are equivalent,
and applying Lemma 1 to each node and accounting for double counting:

n n—1 2
LGA(K,) = 5 303 (1 + ey < 27 <

i=1 j=1

» Lemma 4. Let P, and C,, denote the path and cycle with n vertices, respectively. Then
LGA(P,)=n—1=m and LGA(C,)=n+|lg(n—-1)] =m+ |lg(n—1)].

Proof. The bound for the path is trivial. For the cycle, denote the lengths of the edges of
C, by e1,...,e,. Observe that for every ordering of C,,, there exist two edge-dis int paths
connecting the first and the last vertices in the order. Hence, e; +e3 + -+ + e, > 2n — 2
and e; > 1. Using an exchange argument, it is straightforward to show that given those
constraints Y (1 + [lge;|) is minimized when e; =--- =e€,_1 =1 and e, =n — 1, which
yields the claim. <

» Lemma 5. Let K, 4 denote a star with £ leaves. Then

J4 {+1
(-2)- (1+1g5) SLGA(K ) < (€+2) lg——.

Proof. The equality follows from the observation that the optimal layout is achieved when
the central vertex of the star is placed in the middle of the order. The inequalities are the
result of applying Lemma 1 to this sum. <

» Lemma 6. Let T, denote the k-level complete binary tree with n = 28 — 1 vertices. Then
LGA(T,) < [3(2F - 1)] - k—-1< in.

Proof. Consider a complete binary tree, T},, with k levels such that n = 2¥ — 1. Let r be the
root of the tree connected to two copies of a complete tree with k& — 1 levels; see Figure 2a.
In order to prove the claim, we consider two ways of embedding T;,: a side-based layout in
which r is the rightmost (or leftmost) in the order, and a center-based layout in which r is
positioned between the two copies of the subtrees, T;,_1. See Figure 2b for an illustration
and observe that the vertices of each of the subtrees do not overlap in the resulting order.
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Define the cost of embedding a complete binary tree with k levels using the side-based
and center-based approaches by S(k) and C(k), respectively. It follows directly from the
construction that

Ck)y=2+25k-1) and
S(k) =2+ [lg@" ' +2"2 - 1)+ S(k - 1)+ C(k —1)

=1+k+Sk-1)+Ck-1) for k > 2 and
C(1) = S(1) = 0.

We claim that C(k) = [3(2¥ —1)] —k — 1 and S(k) = C(k) + |£|. By induction, the two
bounds clearly hold for k = 1. For k > 2, we have

Clk)=2+28(0—1) =2+2(Clk - D)+ [552]) =2+ 2([3" ' - D] =k + | 552]).

Observe that for even k, we have 2 mod 3 = 1, while for odd k, it holds 2 mod 3 = 2. Thus,
when k = 2t is even, 2[2(2871 —1)] = [3(2¥ — 1)] — 1; therefore,

Clk)y=2+[302"-1)] —1-dt+2[ 22| =[22"-1)] -2t - L.
Similarly, when k = 2t + 1, we have 2[5 (2871 —1)] = [3(2¥ — 1)] — 2; therefore,
C(k)=2+[52" -] —2-22t+ 1) +2[ %] = [32* -] - (2t + 1) - L.

The inductive step for S(k) is verified analogously.
Finally, observe that LGA(T},) < min(C(k), S(k)), which proves the desired bound. <«

We conjecture that the bound given by Lemma 6 is optimal for complete binary trees; it
has been verified computationally for trees with up to 15 vertices.

Next we explore MLOGA on the h x h grid graph, Gy, 5, and suggest using a space-filling
curve to layout the vertices. A space filling curve is a continuous mapping from the unit
interval [0, 1] to the unit square [0, 1]%. The idea is to overlay the grid over the unit square
and then use the curve order to sort the vertices of the grid. We show that the layout
obtained from the well-known Hilbert curve [38] yields a constant factor approximation for
MLoOGA.

» Lemma 7. Let Gy, denote the h x h grid graph with h being a power of two. Then
LGA(Gh’h) S 4h2 = O(m)

Proof. At a very high level, the Hilbert curve orders the points in the unit square by
recursively dividing it into four smaller squares, visiting each of smaller square in turn and
concatenating the partial traversals. This construction yields a hierarchical decomposition of
the grid. At the top level of the hierarchy we have a single square holding all h? points. One
level down, at level 1, we have 4 smaller squares of h/2 x h/2 each holding h?/4 points. In
general, level i has 4° squares each holding h?/4% points; see Figure 1b.

We say that an edge (u,v) is cut at level i if u and v belong to the same square at level
i but different squares at level i + 1. Notice that this means that the distance between u
and v is no larger than the size of the the squares at level i, namely, |r(u) — m(v)| < h%/4%.
Furthermore, notice that there are 2h edges cut at level 0, 4h edges at level 1, and in general,
2+1h edges cut at level 1.

ISAAC 2022
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[70(3) [m(C)[ma(Co) | -+ [me(Co)]

(a) A balanced separator X and the connected (b) Partial layouts of each component are se-
components of G[V '\ X]. quenced in an arbitrary order.

Figure 3 Algorithm BALANCED finds a small balanced separator X, recursively computes a
partial layout m; for each connected component C; of G[V \ X], and builds a full layout of G by
concatenating these partial layouts and an arbitrary sequencing of X.

Therefore, the objective value of the layout is upper bounded by

lgh—1 X B2
LGA(Ghn) < ; 2% h - (1+ [lg ZD
lgh=1 o
< 2h% +2h ; 2g
lgh 2

< 2h? +2h/ 2% 1g =

1=1
2

< 2K 4+ A2

<2+

< 4h?

Finally, we note that the grid contains 2h% — 2k edges, so the layout is at least 2-approximate.
<

3 Balanced Separator

In this section we explore the performance of a divide-and-conquer algorithm based on
balanced separators. Recall that a set of vertices X C V is a balanced vertex separator for
G = (V, E) if every connected component of G[V \ X| has at most %
separation number of G is the minimum integer k£ such that every subgraph of G has a
balanced separator of order at most k. It is known that the separation number of a graph is
linearly related to its treewidth [14,36].

Our algorithm, which we call BALANCED, recursively finds a small balanced separator X,
arbitrarily sequences X to get a partial layout mo(X), identifies the connected components
Cy,Cy,. .., Cp of GIV\ X], recursively finds a layout m;(C;) for each subgraph G[C;], and then
concatenates all these layouts in arbitrary order, say (mo(X), 71 (C1), m2(C2), ..., me(Cp)).

-‘ vertices. The

For each problem G’ = (V' E’) we find along the way, we assign a level value to
the problem based on its size; more precisely, we say that the subproblem is in level ¢ if
57 < |V'| < 5%5. Note that because of the balanced nature of the separators, a problem can
only generate subproblems in lower levels. Thus, it follows that the collection of subproblems
at level i forms a partition of a vertex subset of the input instance. Furthermore, since each
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n

subproblem at level i has cardinality at least g, it follows that we can have at most 21

subproblems at level .. We extend the level assignment of subproblems to vertices as follows.

If u belongs to the separator chosen for a subproblem at level ¢, then we say that u belongs
to level 7. Notice that once a vertex is chosen into a separator, it never again shows up in
subproblems.

Now consider a separator X of a subproblem G’ = (V', E’'). We assign every edge in E’

incident on X towards an endpoint in X (edges in E'[X] can pick an endpoint arbitrarily).

For each u € X, let u, be the number of edges assigned to w in this way; note that u, > 0

since every u must be connected to V' \ X, otherwise X — u is also a balanced separator.
Lastly, let L; denote the set of nodes in level ¢ and ¢ — 1 be the deepest non-empty level.

Since every edge in the input instance is assigned in this way, it follows that > ., = |E|
and that 1 < p, < n.
On one hand, the cost of the layout is upper bounded by

-1

UB() =Y > - (1+Ig%)

i=0 uel;

On the other hand, every node u with p, edges assigned to it needs at least as many bits
to encode the edges as a star with u, leaves does. Using Lemma 5 we can infer that we need
at least (u, —2) - lg (1 + “7“) bits. Together with the fact that we always need at least u,
bits, we get that & - (1 4 1gu,) bits are always needed. Therefore, by ignoring the constant
factor, we can use the following as the lower bound:

£—1
LB(u) = Z Z fo - (1418 pa) -

=0 ueL;

Define p(u) = EBB((L‘ )) . The approximation ratio of the algorithm is bounded up to constant
factors by p(u). The rest of this section is devoted to showing that if the graph has small
balanced separators, this ratio is small.

Consider the auxiliary problem of finding an assignment p and levels L; that maximizes
p(p) subject to the following constraints:

Yo tu =>n, and 1 < p,, < n for all u,

|L;] < k2%, where k is an absolute upper bound on the cardinality of the balanced

separators we find along the way.

Strictly speaking the first constraint should be ), ., = m, but as we shall soon see, the
worst bound of p(u) occurs when m = n. The second constraint follows from the fact that
there are at most 2° sub-problems at level 4 and that each of these has a separator of size at
most k.

» Lemma 8. For any assignment p and levels L; subject to the above constraints, p(u) is
upper bounded by O(logk).

Proof. First we identify further constraints that we can assume without loss of generality:
> u Hu = n. Otherwise, we can multiply p by v =, /n, which cause UB(u) to scale
down by a factor of v, while LB(u) decreases by a factor strictly greater than v (due to
its super-linear terms).

Yu,v € L;, we have p, = p,. Otherwise, average their values, which does not change
UB(p) but decreases LB(u).

Yu € Li,v € Ly, if i < j then p,, > p,,. Otherwise, we can swap their values, increasing
UB(p) without changing LB(u).

7:9
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|L;| = 2¢ for all i < £ — 1. Otherwise, if a level is not full we can promote a node for a

lower level, which increases UB(u) but does not change LB(u).

In every case, the change increases p(u), so we can assume all these properties without loss
of generality.

We also assume that |L,_;| = 271, Otherwise, if the level is not full we get rid of it
altogether and scale up other values to add up to m. This can decrease the value of the
solution a single time by a constant multiplicative amount; that is, at most 2.

Furthermore, we can assume that if we have two nodes u € L; and v € L; 1 in consecutive
layers and we increase/decrease p, and decrease/increase i, the change should not improve
the ratio p(u), which we denote for brevity with p from now on. Out of this requirement we
get the following property.

> Claim 9. The worst ratio p(u) = EBB((;;))

v € Ly in consecutive layers we have

is attained when for any two nodes u € L; and

1
& = 20 ,

o
Proof. Consider the operation of deviating slightly from the give vector p to another vector

increasing p, by a small § amount while decreasing ., by the same amount. Let us denote

with p|d this new vector. And let f(§) = EBB((Z“;S))

Assuming that p is the vector maximizing the ratio, we expect that f’(0) = 0; for
otherwise, we can deviate from p and improve the ratio (either with 6 > 0 or ¢ < 0 depending
on the sign of f/(0)).

In order to derive the equation f/(0) = 0, we first compute the derivatives of the numerator

g(6) = UB(p|d) and the denominator h(d) = LB(u|d):
n n

R(0) = (2 +1g(p+9)) — (2 +1g(py —9)) =1g

P + 6
o — 6

We can write the constraint f/(0) = 0 in terms of these functions as follows
9'(0)LB(p) — UB(u)A'(0) = 0,

which we can re-write as

1 UB(p)
= = p(n),
lg = LB(u)
which in turn is equivalent to the relation shown in the lemma statement. <

Thus, for the purposes of finding a bad assignment for our analysis, we can focus our
attention on those obeying the above properties. To that end, we define y; to be the value
of those nodes in level i. Therefore, without loss of generality, we focus on the following
quantities

-1

— . n
UB(y) = k2, lg
(n) =n+ ; nilg o
and
-1

LB(n) =n+ Y k2'pilg i
=0
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Furthermore, using Claim 9 we infer that
Ho
2%p
Let o = 2'7%. Note that since p > 1, it follows that 1 < a < 2. Plugging (1) into the
upper and lower bounds we get

{—1

— on
UB(p) =n+ kuogal lg o

and
LB(u) = n + kpuo ZO/ lg 5—2
i=0 °

Approximating the value of the upper bound using integrals to get:

¢
UB(p) <n-+ kMo/ a®lg %dx
1

L

x x

ok [ S g Ny
= Ho Ino gzm 2 al,

<t (gt L
- Molna g2£ Ina

Approximating the value of the lower bound yields:

—1
_ @1y MO
LB(M)Zn+kNO/1 o"lg 5o de
a” 12 |
_ k 71 (o] -
n + Kl Lna ggx/p pln oy
1 Ig 110 1
i _
n + NO[ ( 2([ 1)/ plna) <lna +pln2a)]
ol
Ho 1
>c[n+kuo na <lg (e— 1)/p+p1na)]

where the last inequality holds for a constant ¢ > 1/2 assuming that p > 2 and ¢ > 1. Both
of these assumptions are safe to make for otherwise p = O(1).
4
Finally, note that n = ZZ 0 kuoga®, which yields n < kpo-=. Therefore,
—lgla—1)<lgk+]1g

lg—<1gk+lg2£ +1,

__Ho
/p 20=1)/p
where the last inequality holds for p > 2. Also, using the same assumption we note that
1/lgar = 227 <2, and so 7 = O(1).

Using the fact that pu; > 1 for all i, we get lg 2([ 0577 > 0. Therefore, the ratio UB(”)

LB(p

UB(#)

maximized when the previous inequality is tight, which yields that =<** = O(log k).

<

» Theorem 10. For a graph with separation number at most k, algorithm BALANCED is an
O(log k)-approximation for MLOGA.

Proof. The claim follows readily from Lemma 8. |
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3.1 Implementation Details

In this section we discuss implementation details of BALANCED. While the guarantee in
Theorem 10 is expressed in terms of the separation number of the input graph, we observe
that finding a minimum balanced separator is an NP-hard problem [4]. However, we can get
the same asymptotic guarantee by applying an approximation algorithm instead.

» Lemma 11. Algorithm BALANCED can be implemented to run in polynomial time while
maintaining an approrimation factor of O(logk), where k is the separation number of the
input graph.

Proof. Feige [18] provides a polynomial time algorithm finding a balanced separator of
size O(kv'k) provided the input graph has a balanced separator of size k. Using the
approximation algorithm for finding our balanced separators and Lemma 8, we get an
approximation guarantee of O(log(kv'k)) = O(logk).

Each node of the divide-and-conquer recursion tree performs a polynomial amount of
work, therefore the overall running time is polynomial. |

We close this section by noting that once a balanced separator X of G is found, it is
not important how the recursively-computed layouts of each component of G[V \ X| and
X itself are sequenced — this sequencing order does not affect the analysis. An optimized
implementation, would benefit from engineering a good heuristic for ordering the components:
Ideally, want to place components C' close to the X that have large |E[C, X]| and small |C|;
however, these two metrics may be at odds with one another, so the heuristic would have to
balance those two objectives.

3.2 Related Algorithms

Let us discuss the consequences of the analysis of Section 3 to other algorithms.

Bisection

The state-of-the-art approach for MLOGA uses recursive graph bisection [11,31]. Start with
a given graph, G, and find a small almost balanced edge-cut, that is, a collection of edges
whose removal yields two almost-equal-sized subgraphs. Then recursively layout each of the
two subgraphs, and then concatenate the resulting orders.

It is natural to wonder if this is a good heuristic provided the balanced cuts found by the
algorithm are relatively small. This is indeed the case, since the endpoints of the edges in an
almost-balanced cut form an almost-balanced separator. Using a similar analysis technique
to Theorem 10, one can show that if the bisection algorithm always finds almost-balanced
cuts whose size is at most k then the solution found is O(log k)-approximate.

Centroid decomposition

Chung [8] proposed an optimal algorithm for MLA on trees that is based on the idea of
removing the centroid of the tree, recursively finding a layout of each subtree and carefully
concatenating these subtrees.

A similar algorithm (but without the need to be careful about how the subproblems
are combined) is an O(1)-approximation for MLOGA on trees since the centroid is an
almost-balanced separator.
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4 Conclusions and Open Problems

In this paper we tackled a practical problem arising in graph compression. We studied
approximation algorithms for MLOGA, which was posed as an open question by Chierichetti
et al. [6] and Dhulipala et al. [11]. Our main result, an approximation based on balanced
separators, partially explains why the state-of-the-art heuristic (that uses a similar scheme)
works well in practice.

There are several interesting open questions related to the problem. First, the complexity
of MLOGA on simple graphs and graphs of bounded treewidth is open. We emphasize
that the related problem, MLA, can be solved on trees in polynomial time [1,8,24]. These
algorithms rely on certain properties of optimally embedded trees for the linear objective, and
it is unclear whether similar properties hold for the logarithmic objective. The complexity
status of MLA on 2-trees (series-parallel graphs) is unsettled [15].

Another natural question is to design a constant-factor approximation algorithm for
general graphs. We stress that Theorem 10 provides such an algorithm for graphs with a
constant separation number. At the same time, graphs without small separators (e.g., with a
constant conductance) have cost Q(mlogn); thus, any order of the vertices yields a cost that
is within a constant factor of the optimum. The challenge is to analyze the scenario between
the two extremes.

Finally, we would like to see some progress on designing practical exact approaches for
MLOGA. To the best of our knowledge, there is no algorithm that works faster than the
naive exhaustive search of n! combinations. Can we solve the problem (exactly) in O(c")
time for some constant ¢ > 07 Is there an efficient integer programming formulation of the
problem? We emphasize that the two questions are interesting even when the input graph is
a tree.
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