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—— Abstract

Matching is a procedure aimed at reducing the impact of observational data bias in causal analysis.
Designing matching methods for spatial data reflecting static spatial or dynamic spatio-temporal
processes is complex because of the effects of spatial dependence and spatial heterogeneity. Both may
be compounded with temporal lag in the dependency effects on the study units. Current matching
techniques based on similarity indexes and pairing strategies need to be extended with optimal
spatial matching procedures. Here, we propose a decision framework to support analysts through
the choice of existing matching methods and anticipate the development of specialized matching
methods for spatial data. This framework thus enables to identify knowledge gaps.
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1 Introduction

When collecting data to analyze causal effects of an intervention, Randomised Controlled
Trials (RCTs) are the theoretical best practice. Yet RCTs are costsly and complex [15, 18].
Quasi-experimental methods on observational data have been proposed, i.e. on data collected
for different purposes and only re-analyzed to identify causal effects of interventions. Causal
studies on observational data lack control over the design and data collection process, making
it impossible to manage the selection and confounding bias. Matching is the analytical step
that aims to reduce such bias by controlling for the imbalance between the characteristics of
the units in the treated and control groups based on the distribution of covariates [16].

Matching on spatial data is an emerging topic in spatial causal inference [1], where
theoretical assumptions of independent random processes do not hold due to first-order
effects (spatial heterogeneity) and second-order effects (spatial lags) [10]. Matching methods
find pairs of units from the treated and control groups based on the similarity measured from
baseline covariates. For non-spatial data, established methods are available, e.g., Propensity
Score (PS) [12] and Mahalanobis Distance (MD) matching [13]. These methods do not
consider the effects of spatial heterogeneity and spatial autocorrelation and may lead to
biased estimates of causal effects in spatial data.

Here we investigate the requirements for considering spatial data characteristics in spatial
matching, addressing the question: How to measure the similarity and match spatial units of
control and treated groups in spatial causal inference? We describe the challenges along the
analytical process of (1) spatiotemporal dependence estimation, (2) covariate selection and
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prioritization, (3) similarity measurement, and finally, (4) the optimal matching and pairing
of spatial units. We present an outline of a decision-making workflow, enabling to reduce
bias in spatial causal analysis.

2 Spatial/Spatiotemporal Matching Framework

2.1 Data Generation Processes

Causal inference on spatial data should lead to better insights into the spatial data generation
process, whether static (i.e., single snapshot) or dynamic (spatio-temporal change). Static
spatial data are cross-sectional, i.e., reflecting spatial dependence in the system but not
capturing change over time. A general static spatial causal model can be expressed by
Equation 1, where § and p; are the coeflicients that quantify the direct and indirect causal
effects, respectively. Y, D, W, X, and ¢ refer to the outcome variable, treatment, weight
matrix, observed covariates, and the error term sequentially. Correspondingly, 3,0, p, v, 7y, §
are coefficients.

covariates spatial lag of outcomes
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In dynamic spatial systems, temporal dependence should be considered in addition
to spatial dependence. Data capturing dynamical systems are spatial panel data, and
these require spatiotemporal causal models. Equation 2 shows the structure of the general
spatiotemporal data generation process resulting in spatial panel data. There, 32 and p;
are the coefficients that need to be determined to quantify the direct and indirect causal
effects sequentially. ¢ is the time variable, where Yj;; and Xj;; are the outcome variable
and covariates of adjacent neighbors for spatial unit ¢ at time ¢. Y; ,—; and X, ,_; are the
outcome and covariates of time lag [ of spatial unit ¢ where L is the number of effective
temporal lags chosen by the researcher. Similarly, Y;:—; and X;;_; are the outcome and
covariates of different time lags of neighbours of the spatial unit 7. Spatial and spatiotemporal
observational data generation processes thus hold different characteristics which should be
reflected in matching strategies.
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2.2 The Spatial and Spatiotemporal Matching Process

Imagine the need to measure the causal effect of an intervention, e.g., the effect of opening
new train stations on the average suburb property prices. There are two groups of suburbs:
suburbs with new stations (treated group) and those without (control group). Because we
lack control over the assignment of suburbs to treated and control groups, a matching process
is needed to manage the selection and confounding biases on the measured causal effects,
i.e., price increases may be due to other effects. Figure 1 shows a simple matching process
for five suburbs. A similarity index is computed based on the values of different covariates,
and similar suburbs from the treated and control groups are then matched (suburb 1 —
suburb 4, and suburb 2 — suburb 5). During the matching process, some units may be
pruned (e.g., suburb 3).

Before Matching

After Matching
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Figure 1 Matching process for suburbs (spatial units); T - treatment, X; - covariates.

X

Similarity index = 0.91

(5)

In spatial and spatiotemporal matching (S/STM), we are analyzing data that are sets
of variables { X, };cs over a study area (S) partitioned into a set of spatial units (locations)
in the d-dimensional Euclidean space Ry (where is typically 2). X; refers to a measured
variable at unit ¢ [9]. For each study area S, we may observe a distinct spatial process.
The outcome variable {Y;};cs then captures a multivariate spatial process. Moreover, the
similarity index measured based on the spatial processes {X;};cs will be, in turn, a type of
a multivariate spatial process, too. We define the similarity index of spatial units {Sim;};cs
as a multivariate spatial process in S, where {Sim;};cs = g({Xi}tics). ¢ is a similarity
measurement function based on the baseline spatial processes for each unit 7. For spatial
matching we define M with a function of pairing and matching based on the measured
Sim,; for the treated and control units, M = f(k,j € S|{Simi}tres,, {Sim;}jecs,, W). f
is a function that matches, i.e., pairs of units — a unit k from the treated group (S;) and
a matching unit j from the control group (S2), conditional on the similarity based on the
values of covariates and the values of a spatial function W, representative of the variation in
spatial dependence and heterogeneity.

Optimal matching seeks to find pairs close to a hypothetical exact matching process.
The difference between the output of a defined matching procedure and exact matching is
known as imbalance (I). If Ig is a degree of imbalance for the whole set of spatial units
before matching and I, the imbalance after matching for a subset of the entire dataset
z, we aim to reduce imbalance, I, < Ig. Imbalance can thus be defined as a mean of
absolute differences of similarity index values between spatial treated and control units,

Do ie. (ISimi—Sim;|)
I(zy,) = =kiczm .

n

Where z,, refers to the set of spatial observations after
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matching by method m. Simy and Sim; are similarity index values of units in the treated
and control groups, respectively, and n is the number of matched pairs identified using
method m.
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Figure 2 Framework of Spatial Matching Process.

2.3 Components of the Framework

Figure 2 shows our proposed framework of an S/STM procedure to reduce bias in the
estimation of spatial causal effects. We now discuss the challenges of each step.

Spatial and Temporal Dependence. Spatial or temporal autocorrelation in covariates is
an important factor that must be considered in the S/STM. A similarity index based on
spatial covariates of the spatial units may also result in a multivariate spatial process. The
spatial dependence in the covariates can be effective in measuring the value of the similarity
index. Failing to consider spatial or temporal dependence in the similarity measurement and
pairing steps may result in imbalanced and biased matches.

Covariate Prioritisation. Covariate prioritization (CP) is a procedure that enables bringing
the qualitative domain expertise of experts to the process of matching and thus minimizing
the imbalance. An exact matching method based on categorical covariates (one of the
simplest methods for CP) and the caliper matching methods (predefined threshold on a
covariate) are both established methods of CP [7]. CP based on expert input can effectively
contribute to the matching process and causal effect inference, yet caution is required to
avoid bringing human bias into the matching process.

Similarity Measurement of Spatial Units. The effect of the spatial structure of covariates
on the value of similarity indices is a challenge for S/STM, as is the effect of time dependence
when matching spatial panel data. We defined the spatial similarity with Equation 2.2 as
a multivariate spatial process that may be affected by spatial dependence. PS has been
suggested as a similarity index for spatial units in a matching procedure [2, 11]. However,
King and Nielsen [8] recently showed that PS may lead to matching imbalance, known as
the Propensity Score Paradox. Mahalanobis distance has also been applied to quantify the
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similarity between spatial units, yet it is problematic when applied on units with a large
number of covariates that are not normally distributed [5]. Hence, specialized similarity
indices should be developed for spatial and spatiotemporal similarity quantification.

Spatial /Spatiotemporal Pairing. Following similarity measurement, the process of finding a
suitable match (i.e., pairing) remains one of the main hurdles of the overall process for S/STM.
Current pairing methods in S/STM include Nearest Neighbour search, caliper methods, and
threshold distance-based search. Matching pairs only based on distance or search radius
threshold between the spatial units is not optimal, as it neglects spatial/temporal autocorrel-
ation and heterogeneity. Such simplistic pairing processes may lead to incorrect matches
and, consequently, incorrect estimates of causal effects. An integrated pair search method is
required for S/STM, including the multidimensional consideration of similarity across time
and geographical distance and neighbourhood evaluation. As shown in Equation 2.2, after
measuring similarity, the definition of a suitable spatial function W is essential for a match
with low imbalance.

Balance Checking. Ultimately, the most influential factor in the outcomes of causal analysis
is having a balanced set of treated and control group members after matching. Therefore,
balance checking is a critical validation step that enables to have unbiased causal inference.
Equation 2.2 shows the quantification of imbalance for a given matching model. The goal
is to achieve an imbalance close to the imbalance of a theoretical exact matching process.
Typically, a threshold value of imbalance is set for the imbalance index. Metrics for assessing
imbalance in the matching process include standardized mean differences [4], and variance
ratios [14]. For spatial data, new metrics may be needed enabling to better assess the balance
in the matching process on S/STM data, with special consideration for the characteristics of
static and dynamic spatial data.

Spatial /Spatiotemporal Structure of Outcome Variables. Common spatial data generation
processes include the General Nesting Spatial Model, Spatial Autoregressive Combined Model,
Spatial Durbin Model, Spatial Durbin Error Model, Spatial Autoregressive Model, Spatial
Lag of X Model, Spatial Error Model, and Ordinary Least Squares Model [6]. In the
case of dynamic data, the spatiotemporal data generation processes we may consider the
General Nesting Spatiotemporal Model, Vector Autoregressive Model [17], Spatiotemporal
Autoregressive Combined Model, Spatiotemporal Durbin Model, Spatiotemporal Durbin
Error Model, Spatiotemporal Autoregressive Model, Spatiotemporal Lag of X Model, and
Spatiotemporal Error Model [3]. The nuanced selection of the right model applicable to the
data generation process will allow for better quantification of the causal effect, which is the
final step in our framework.

Estimation of Direct and Indirect causal Effects. The direct and indirect treatment effects
resulting from spatial dependence between units must be considered to quantify the true
effect of treatment accurately (e.g., a policy intervention applied to different spatial units,
for instance, administrative regions). The indirect effects occur when treated spatial units
are adjacent to untreated spatial units. In Equations 1 and 2, the first and second terms
of the causal effect component relate to the direct and indirect effects, respectively. After
matching, an assessment of the structure of the underlying data generation process is needed
before the quantification of causal effects.

23:5

COSIT 2022



23:6

Spatial and Spatiotemporal Matching Framework for Causal Inference

3 Conclusion

We discussed the challenges of the spatial and spatiotemporal data matching process, a
critical analytical step in causal analysis. We proposed an outline of a framework for spatial
matching. We discussed why spatial dependence and spatial heterogeneity challenge the
matching process on spatial data. The effects of temporal autocorrelation in panel spatial
data further complicate matching. We discussed, in particular, the issue of imbalance in
matching results, including when applying similarity measurement methods that do not
explicitly consider the spatio-temporal structure in the matching process (e.g., PS or MD
matching), failing to capture the effects of spatial dependence and heterogeneity. We reflected
upon the need to explore nuanced unit similarity measurement in space. We next will address
the process of supporting analysts through this matching framework computationally, aiming
to investigate whether the interpretation of the structures in the data may be automated to
the extent that analysts can be guided through the process.
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