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—— Abstract

Hardness of approximation aims to establish lower bounds on the approximability of optimization

problems in NP and beyond. We continue the study of hardness of approximation for problems
beyond NP, specifically for stochastic constraint satisfaction problems (SCSPs). An SCSP with k
alternations is a list of constraints over variables grouped into 2k blocks, where each constraint has
constant arity. An assignment to the SCSP is defined by two players who alternate in setting values
to a designated block of variables, with one player choosing their assignments uniformly at random
and the other player trying to maximize the number of satisfied constraints.

In this paper, we establish hardness of approximation for SCSPs based on interactive proofs.
For k < O(logn), we prove that it is AM[k]-hard to approximate, to within a constant, the value of
SCSPs with k alternations and constant arity. Before, this was known only for k = O(1).

Furthermore, we introduce a natural class of k-round interactive proofs, denoted IR[k] (for
interactive reducibility), and show that several protocols (e.g., the sumcheck protocol) are in IR[k].
Using this notion, we extend our inapproximability to all values of k: we show that for every k,
approximating an SCSP instance with O(k) alternations and constant arity is IR[k]-hard.

While hardness of approximation for CSPs is achieved by constructing suitable PCPs, our results
for SCSPs are achieved by constructing suitable IOPs (interactive oracle proofs). We show that
every language in AM[k < O(logn)] or in IR[k] has an O(k)-round IOP whose verifier has constant
query complexity (regardless of the number of rounds k). In particular, we derive a “sumcheck
protocol” whose verifier reads O(1) bits from the entire interaction transcript.
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1 Introduction

Many combinatorial optimization problems are NP-hard, and so there is little hope to solve
them in polynomial time. This has motivated the study of polynomial-time approzimation
algorithms to solve optimization problems, which has revealed a surprising landscape. While
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they are equivalent as decision problems (under polynomial-time reductions), NP-complete
problems behave radically different from the point of view of approximability. Specifically,
known approximation algorithms for NP-complete problems sometimes achieve approxima-
tions to within any constant, sometimes only to within a certain constant, and sometimes do
not even achieve a constant approximation.

This differing behavior is justified via results in the area of hardness of approzimation.
For a given NP-complete problem, the goal is to prove that it is NP-hard to approximate
the problem to better than a certain approximation ratio (e.g., better than 1/2). Ideally,
this ratio would match the best known approximation algorithm, thereby ruling out better
approximation algorithms.

The key tool used to establish hardness of approximation for NP-complete problems are
probabilistic proofs [13]. For example, the PCP theorem [6, 5] says that every language in
NP can be decided via a verifier that reads O(1) bits from a polynomial-length proof, and in
turn this implies, e.g., that the value of 3SAT cannot be approximated to within an arbitrary
constant.

More generally, improvements in PCP constructions imply hardness results for correspond-
ing constraint satisfaction problems (CSPs). Yet, there are numerous problems of interest
that are not CSPs, and for which we wish to understand their behavior with respect to
inapproximability.

Hardness of approximation beyond NP

Prior work has investigated hardness of approximation for natural problems in other complex-
ity classes. In one direction, PCP-like theorems for fine-grained complexity have been used
to establish hardness results for problems within the complexity class P (see [1, 3, 2, 9, 8]).
In the other direction, several works study the inapproximability of two-player CSPs. A
CSP can be viewed as a one-player game where the player wishes to maximize the number
of satisfied constraints; this view naturally leads to two-player CSPs played in moves. Ko
and Lin [17] proved the inapproximability of two-player CSPs with k moves, based on the
hardness of the k-th level of the Polynomial Hierarchy. Haviv, Regev, and Ta-Shma [16]
proved that this inapproximability result holds even when each variable occurs O(1) times.

SCSPs and their hardness

In this paper, we study the hardness of approximating a natural class of problems known as
stochastic constraint satisfaction problems (SCSPs), also known as games against nature [19].
Informally, they are two-player CSPs where one player is an adversary and the other player
is a (public-coin) referee that plays random moves.

» Definition 1 (informal). An SCSP @ with k alternations is a list of constraints C1,...,Cn
over variables that are grouped into 2k blocks and take on values over an alphabet 3. The
SCSP has arity q if each constraint depends on at most q variables. An assignment for ® is
defined by two players who alternate in setting values to a designated block of variables with
one player choosing their assignments uniformly at random and the other player trying to
mazximize the number of satisfied clauses. The value of ® is the expected fraction of clauses
satisfied in this process.

The hardness of approximating the value of SCSPs, to within a constant factor, has
been studied in a line of works. Let AM[k] be the class of languages that have a k-round
public-coin IP with constant soundness error. Drucker [12] extended the PCP theorem to the
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stochastic setting, showing that it is AM[1]-complete to approximate the value of SCSPs with
one alternation (k = 1) and arity q = O(1). Subsequently, [4] showed that, for every k, it is

AM]Jk]-complete to approximate the value of SCSPs with k alternations and arity q = O(k).

In the regime of many alternations, Condon, Feigenbaum, Lund, and Shor [10] showed that
it is PSPACE-complete to approximate the value of SCSPs with k = poly alternations and
arity @ = O(1). This leaves open the approximation hardness of SCSPs with k alternations
and constant arity, for general values of k:

How hard is approzimating the value of SCSPs with k alternations and arity q = O(1)?

It seems reasonable to hypothesize that it is AM[k]-hard to approximate SCSPs with k
alternations.

Note that Goldreich, Vadhan, and Wigderson [14] showed that AM[k] # AM][o(k)] (under
reasonable hardness assumptions), meaning that increasing the round complexity k adds
more power to the complexity class AM[k]. For sufficiently many rounds, we know that
IP = PSPACE [18, 21]. Thus, it is imperative to understand the approximation hardness of
SCSPs with k alternations while respecting the different regimes for k.

SCSP hardness from I0Ps

The above results are derived (implicitly or explicitly) by leveraging the connection between
SCSPs and the PCP analog of interactive proofs, called interactive oracle proofs (IOPs)
[7, 20]. A k-round (public-coin) IOP is a k-round (public-coin) IP where the verifier has
PCP-like access to each prover message: after the interaction, the verifier probabilistically

reads a small number of locations from the interaction transcript and then accepts or rejects.

A k-round public-coin IOP with query complexity q can be viewed as an SCSP with k
alternations and arity q (see Section 2.1). Therefore, constructions of IOPs for hard languages
imply corresponding hardness of approximation results for the resulting SCSPs. This leads
us to ask:

Does every language in AM[K] have a k-round IOP with constant query complexity?

1.1 Our results

In this paper, we establish hardness of approximation for SCSPs from (general) interactive
proofs. Moreover, we also prove that tighter hardness results can be achieved for specific
languages that are interactively reducible (a notion that we introduce).

1.1.1 On the AM hardness of SCSPs

We prove that it is AM[k]-hard to approximate the value of binary-alphabet SCSPs with k
alternations and arity max{O(1),O(k/log |x|)} (x is the instance).

» Theorem 2 (informal). Let L € AM[K] be a language. There exists a deterministic
polynomial-time reduction that maps an instance x for L to an SCSP instance ® with binary
alphabet, k alternations, and arity max{O(1),O0(k/log|x|)} such that:

if x € L then the value of ® is 1;

if x ¢ L then the value of ® is at most 1/2.

Our improvement in arity is particularly meaningful for logarithmic round complexity:
Theorem 2 establishes that, for k(|x|) = O(log |x|), approximating the value of an SCSP
instance with k alternations and arity O(1) is as hard as deciding all of AMJk]. Previously,
this was known only for constant k [12, 4].
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Many results on the hardness of approximating the value of (standard) CSPs are achieved
by constructing suitable PCPs. Similarly (as was noted in [4]), by constructing a suitable
k-round IOP for a language L, one can show that approximating the value of SCSPs with k
alternations up to a constant factor is as hard as deciding L. We establish Theorem 2 using
this framework by providing a transformation that maps a k-round IP into a k-round IOP
with small query complexity.

» Lemma 3 (informal). Let L be a language with a k-round public-coin IP. Then L has a
k-round public-coin binary IOP where, on input x, the verifier reads max{O(1), O(k/log |x|)}
bits of the interaction transcript. All other parameters are polynomially related.

Lemma 3 is surprising in light of the work of Goldreich, Vadhan, and Wigderson [14],
which shows a separation between AM[k] and AMJ[o(k)] (under relatively weak hardness
assumptions). Since the query complexity is smaller than the round complexity, Lemma 3
implies that the IOP verifier does not make queries to every round of the protocol. This
can be viewed as saying that the power of AM[K] is unchanged even when the verifier only
accesses O(k/log |x]|) of the k rounds. In other words, reducing round complexity of public-
coin protocols reduces their power, but it is nevertheless possible to not read every round of
interaction while preserving the power.

1.1.2 Hardness of SCSPs from interactive reducibility

Theorem 2 establishes the hardness of SCSPs with k = O(log |x|) alternations and arity
O(1) (over the binary alphabet), but does not work for O(1)-arity SCSPs with k = w(log |x|)
alternations.

We extend this by showing that approximating the value of O(1)-arity SCSPs with
k alternations is as hard as solving #SAT,.! In fact, we show this for a more general
class of languages that are interactively reducible, a notion that we introduce in this work.
Informally, the notion requires that it is possible to reduce, via an interactive protocol,
multiple transcripts of an IP for the relation into a single transcript. We require that the
probability of the verifier accepting conditioned on the reduced transcript be (roughly) the
minimum probability of the verifier accepting conditioned on any of the original transcripts.
See Section 2.3 for further details and discussion.

Interactive reducibility is a natural property; we show that general interactive proofs can
be seen as interactive reductions (albeit ones with bad parameters), and show interactive
reductions for the sumcheck protocol [18] and for Shamir’s protocol [21].

The notion of interactive reducibility allows us to get an optimal version of Lemma 3 for
additional languages. Let IR[k] be the class of languages that have a (1-round) interactive
reduction with k predicates (these predicates roughly align with rounds of an IP).

» Lemma 4 (informal). Let L be a language in IR[k]. Then L has an O(k)-round public-coin
IOP, with polynomial proof length, where the verifier reads O(1) bits of the interaction
transcript.

In particular, applying Lemma 4 to the sumcheck protocol yields the following (perhaps
surprising) conclusion: any k-round sumcheck protocol can be transformed to a O(k)-round
IOP where the verifier has O(1) query complexity (over the binary alphabet). Notice that
using standard PCP techniques it is only known how to achieve a similar (non-interactive)
result with exzponential proof length.

1 #SATy is the restriction of #SAT to instances of size n and k(n) variables.
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Using this improved lemma, we immediately get that for every k, deciding whether a
binary-alphabet SCSP instance with O(k) alternations and arity O(1) has value 1 or value
1/2 is IR [k]-hard:

» Theorem 5 (informal). Let L € IR[k] be a language. There exists a deterministic polynomial-
time reduction that maps an instance x for L to an SCSP instance ® with binary alphabet,
O(k) alternations, and arity O(1) such that:

if x € L then the value of ® is 1;

if x & L then the value of ® is at most 1/2.

Using our interactive reduction for sumcheck, we know that #SAT, € IR[k]. Thus, by
Theorem 5, we establish that approximating the value of SCSPs with O(k) alternations
and constant arity is #SAT-hard. Similarly, using our interactive reduction for Shamir’s
protocol, we recover the result of [10], showing that approximating the value of SCSPs with
polynomially-many alternations and constant arity is PSPACE-hard.

1.1.3 Summary of results and open questions

We construct O(1)-query IOPs for every language in AM[k < O(log |x|)] or in IR[k]. Moreover,
we construct O(k/ log|x|)-query IOPs for every language in AM[k]. These results establish
approximation hardness for SCSPs as follows: (a) for k = O(log|x]), it is AM[k]-hard
to approximate the value of SCSPs with k alternations and constant arity; and (b) for
k = w(log|x|), it is IR[k]-hard to approximate the value of SCSPs with O(k) alternations
and constant arity, and AM[k]-hard when the SCSPs have arity O(k/log|x]|). Our results
are summarized in Figure 1 together with previously known results.

Our work leaves open the AM-hardness of approximating the value of SCSPs with
k = w(log |x|) alternations and constant arity. From the perspective of IOPs, we also leave
open the basic question that we raised in the introduction: Does every language in AM[K]
have a k-round (public-coin) IOP with constant query complexity over the binary alphabet?
Our results contribute notable progress towards resolving this question (see paragraph above),
but answering the question for every regime of k remains a fascinating challenge in the theory
of probabilistic proofs.

hardness alternations arity

[10] PSPACE unbounded 0(1)

[this work] IR K] O(k) 0(1)

[this work] #SAT\ O(k) o(1)

[4] AMIK] k O(k)
[this work] AM[K] k max{O0(1),0(k/log |x|)}

[12] AM[1] 1 o(1)

[5, 6, 11] NP n/a 0o(1)

Figure 1 Summary of results for approximating the value of binary-alphabet SCSPs to within a
constant factor. AM[k] denotes the class of languages with k-round public-coin interactive proofs.
IR[k] denotes the class of languages with (1-round) interactive reductions with k predicates. #SAT
is the restriction of #SAT to instances of size n and k(n) variables.
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2  Techniques

We outline the main ideas behind our results. In Section 2.1 we explain a generic connection
between SCSPs and IOPs: in order to establish the hardness of approximating SCSPs, it
suffices to construct IOPs with certain properties. This will be our goal in the remaining
sections. In Section 2.2 we show how to transform k-round IPs into k-round IOPs with
query complexity max{O(1),0(k/log|x|)}. In Section 2.3 we show that for relations that
are interactively reducible we can construct O(1)-query IOPs even when those relations are
only known to have IPs with round complexity w(log |x]|).

2.1 On the hardness of approximating SCSPs via IOPs

We review the generic connection between CSPs and PCPs, and then describe the analogous
connection between SCSPs and IOPs. In both cases, efficient constructions of PCPs/IOPs
imply hardness of approximation results for corresponding CSPs/SCSPs.

2.1.1 CSP hardness from PCPs

A CSP @ is a list of boolean functions C1, ..., Cy, over variables from a bounded alphabet
3. The CSP has arity q if each constraint depends on at most q variables. The goal is to
determine the maximum fraction of constraints that can be satisfied by any assignment.

We can map a non-adaptive PCP verifier V for a language L and an instance x into
a CSP. The variables represent locations of the PCP string. Each choice of PCP verifier
randomness induces a corresponding constraint, whose variables are those that the PCP
verifier would have read from the PCP string. The constraint is satisfied if and only if the
PCP verifier accepts when it receives the assignment of the variables as its query answers.
The CSP’s arity equals the PCP’s query complexity.

By completeness of the PCP system, if x € L then there exists a PCP string that
makes the PCP verifier accept with probability 1, which in turn means that there is an
assignment that simultaneously satisfies every constraint in the CSP. By the soundness of
the PCP system, if x ¢ L then every PCP string makes the PCP verifier accept with at most
probability 1/2, which in turn means that no assignment can satisfy more than half of the
constraints of the CSP.

Thus, distinguishing whether the CSP’s value is 1 or at most 1/2 is as hard as deciding L.

2.1.2 SCSP hardness from 10Ps

The general connection between SCSPs (Definition 1) and IOPs is stated in the lemma below.
Recall that a k-round IOP is a k-round IP where the verifier has PCP-like access to each
prover message: the prover and verifier interact for k rounds, and after the interaction, the
verifier probabilistically reads a small number of bits from each prover message and decides
to accept or reject based on the examined locations. The randomness used in the final phase
is called decision randomness (which we distinguish from the random messages that the
verifier sends to the prover during the interaction and may be queried at only few locations).

» Lemma 6. Let L be a language with a non-adaptive k-round public-coin IOP with alphabet
>, polynomial proof length, query complexity q, decision randomness ry., and soundness
error 3.
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Then there exists a deterministic polynomial-time reduction that maps an instance x for
L to an SCSP instance ® with alphabet ¥, k alternations, arity q, 2™ constraints and a
polynomial number of variables such that:

if x € L then the value of ® is 1;

if x ¢ L then the value of ® is at most (.

Proof sketch. Let Vo be the (non-adaptive) IOP verifier for L and let | be the (per-round)
proof length of the IOP. Given an instance x, we construct the SCSP instance ® as follows.
The SCSP has 2k blocks of | variables that align with the interaction transcript between the
IOP prover and IOP verifier (the i-th variable of the j-th block corresponds to the i-th symbol
of the j-th message of the protocol). The SCSP has a constraint C, for each p € {0, 1},
whose input variables correspond to the locations of the transcript that Vo, queries given
instance x and randomness p; the constraint C), is satisfied if and only if Vs (x; p) accepts if
it reads the symbols assigned to the variables of C,.

The SCSP instance ® has k alternations (corresponding to the rounds of the IOP) and
| = poly(]x|) variables per alternation (corresponding to the message length) that are assigned
values in the alphabet ¥ (the alphabet of the IOP). Each of its 2" constraints has arity g
since each constraint has as many inputs as queries made by the IOP verifier V gp.

Finally, we analyze the value of the SCSP. By construction, there exists an IOP prover
strategy that causes the IOP verifier Vo, to accept with probability § if and only if there
exists a strategy for the existential player in the SCSP such that the expected fraction of
constraints that are satisfied is 0 (i.e., the value of ® is at least §). Therefore, by perfect
completeness of the IOP, if x € L then the value of ® is 1. Conversely, by soundness of the
IOP, if x ¢ L then the value of ® is at most 3. <

2.2 Transforming IPs into 10OPs

We outline the proof of Lemma 3 (transforming an IP into an IOP with small query
complexity). In Section 2.2.1, we show how to transform a logarithmic-round IP into a
O(1)-query IOP. Then in Section 2.2.2 we extend this idea to transform a k-round IP into a
O(k/ log|x|)-query IOP.

2.2.1 From O(log |x|)-round IP to O(1)-query IOP

We show how to transform a k-round public-coin IP where k = O(log |x|) into an O(k)-round
public-coin IOP with the following efficiency: polynomial proof length over the binary
alphabet; constant query complexity; and logarithmic decision randomness.

First, we sketch how to transform a k-round public-coin IP (P, Vip) into an O(k)-round
public-coin IOP (Pop, Vigp) where the verifier reads O(1) rounds (in their entirety) from the
interaction transcript. Then we explain how to ensure that the verifier queries O(1) bits in
total.

2.2.1.1 A strawman protocol

We describe a natural strategy for transforming the IP into an IOP where the verifier reads
O(1) rounds, albeit with high soundness error. The IOP prover P, and IOP verifier V op
respectively simulate the IP prover and verifier (P, V), inducing an interaction transcript

tr = (p1,a1,..., Pk, ak). At this time, however, Vo, does not read any messages from tr.

After this interaction, P, sends a transcript tr’, which is allegedly equal to tr, as a single
message. Then Vo, reads tr’ and checks that tr’ is an accepting transcript for the IP verifier
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Vip. Moreover, Vo, tests consistency between tr (the real interaction) and tr’ (the alleged
copy of the interaction sent as a single message): Vo samples a random ¢ € [k], reads the i-th
prover message and i-th verifier message in tr, and checks that these equal the corresponding
messages in tr'.

In this IOP, Vo, reads O(1) messages from the interaction transcript, but the soundness
error of the IOP is large (even when discounting the soundness error of the underlying
IP). Indeed, it may be that a cheating IOP prover sends a malicious transcript tr’ that is
accepting but differs from the real transcript tr in one round only. In this case, Vo catches
the inconsistency only with probability 1/k, which means that the soundness error could be
as large as 1 — 1/k.

Note that reducing this soundness error via parallel repetition would increase the number
of rounds queried by V gs. Achieving constant soundness error would require O(k) repetitions,
resulting in an IOP verifier that reads O(k) rounds, taking us back to where we started.

2.2.1.2 Our transformation

We present a transformation that improves on the above strawman protocol, achieving a
constant soundness error for any IP that has a logarithmic number of rounds.

A malicious IOP prover in the strawman protocol has two strategies: the transcript tr’
sent as the last message either agrees with the real transcript tr on more than half of the
rounds, or it does not. If tr’ agrees with tr in less than half of the rounds, then the IOP verifier
catches this inconsistency with probability at least 1/2. Intuitively, the transformation that
we sketch below ensures that if tr' is consistent with tr on at least half of the rounds, then
the consistent rounds must contain within them a full execution of the underlying IP. Then,
since this consistent part was generated interactively in tr, by the soundness property of the
IP, this contained transcript will be rejected with high probability. We now describe our
transformation in more detail.

Suppose that our public-coin IP has k(|x|) = O(log |x|) rounds and that the verifier
message in each round is r bits long. The IOP (P, Viop) on a given instance x works as
follows.

1. P, sets Sp := {0} (i.e., Sp consists of the empty transcript).
2. Fori=1,...,2k:
P, sends S;_1.
Vior sends a random p; € {0,1}" (corresponding to a message of V).
Por sets S; := S;—1 U {(tr]|pil|ae:) }
Si—1~
3. Py sends Sox and, for every i € [2k], also sends T; := S;.
4. In the decision phase, Vo, performs the checks below.
a. Subset consistency: For every i € [2k], check that T;_, C T;.
b. Transcript consistency: Choose a random ¢ € [2k]. Check that S;_; = T;_; and
S; = T;. Additionally, check that for every tr € S;_; there is a message ay; such
that (tr||ps||at,:) € Si, where p; is the verifier message sent during the i-th round of

treSi where ay; == Pp(x, tr||p;) for each tr €

interaction.
c. Membership: Check that for every transcript tr € Toy that is complete (i.e., contains
messages for all k rounds of the IP) it holds that Vs (x,tr) = 1.

2.2.1.3 Efficiency

We briefly discuss the main efficiency measures of the transformation.
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Query complexity. The IOP verifier reads O(1) rounds from the transcript.
Communication complexity. We argue that all messages in the protocol have length
poly(|x|). For every i, |S;| < 2|S;_1| since S; contains all transcripts in S;—; and
continuations of each of these transcripts. Since k = O(log |x|), |:S;| = poly(|x]|) for every
i. Each transcript within S; has polynomial length, so the length of these messages is
poly(|x|). Finally, the sets T1,...,Tok have the same sizes as Si, ..., Sox (respectively)
and so the prover’s final message has length poly(|x|).

Decision randomness. The IOP verifier uses O(logk) = O(log|x|) bits of decision
randomness.

2.2.1.4 Analysis

In this overview, we discuss soundness only, as completeness follows straightforwardly from
the construction. Let S be the soundness error of (Pp, V). We show that the IOP (Pyop, Vi)
has soundness error

Biop = max {;7 (2kk) ' 6}

The above expression can be made constant by applying poly(|x|) parallel repetitions to
—1

(P, Vip) prior to applying our transformations, until it has soundness error 5’ < (2 : (2kk)) .
Fix x ¢ L and a cheating IOP prover Por. A fixed transcript of the IOP has the structure:

(S0, p1, 51,5 p2rg S2is (Tos -+ To) )

Given such a transcript, we say that an index i is consistent if: (a) S;—1 = T;—1 and S; = T};
and (b) for every tr € S;_; there is a message a; such that (tr||p;||awi) € Si.
Conditioned on the event that the transcript generated during the interaction has less than

k consistent indices i, Vop rejects with probability at least 1/2 due to its check in Item 4b.

We are thus left to analyze the probability that Vo rejects conditioned on the event that
the generated transcript has at least k consistent indices.

Fix indices 47 < --- < ik and suppose that all these indices are consistent with respect to
the transcript. By the definition of consistency, for every j € [k], S;;,—1 = T3, -1, Si; = T3, and
(trl|pi;|lateq;) € Sy, for every tr € S;, 1. This implies that there exist a;,,...,a; such that
(pirllai|] - - llpacllai,) € Ti.. By the subset consistency check, Vo accepts only if T;, C Thy,
in which case (p;, [|ai, || - ||pi]|as) € Tok. This transcript was generated interactively by the
prover and verifier and hence, by the soundness of the IP, Vio(x, p;, [|ai, || - - |1pil]ai) = 1
with probability at most 5. If the transcript is rejecting, then this is detected by Ve in its
membership check.

The previous analysis holds for fixed indices i; < --- < ix. By applying the union bound
to all choices of indices, we have that, conditioned on the transcript generated having at
least k consistent rounds, Vo accepts with probability at most (zkk) - B.

Putting together both (non-intersecting) events of the number of rounds consistent
with the generated transcript, we conclude that V,,, accepts with probability at most

max{3, (Qkk) - B}
2.2.1.5 Achieving query complexity O(1) over the binary alphabet

The verifier in the IOP described above reads O(1) rounds (in their entirety) from the
interaction transcript, rather than O(1) bits in total. We additionally achieve this latter goal
by building on a result in [4].
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In more detail, [4] transforms a k-round public-coin IP into an O(k)-round public-coin
IOP with polynomial proof length over the binary alphabet and where the IOP verifier reads
O(1) bits from each round. We extend this to transform a k-round IOP whose verifier reads
q of the k rounds into a O(k)-round IOP whose verifier reads O(1) bits from each of O(q)
rounds. See the full version of this paper for more details.

2.2.2 10Ps from general IPs

The transformation described in the previous section works for O(log |x|)-round IPs. However,
it cannot be directly applied to IPs with more rounds because the proof length (and thus
also the verifier running time) would be more than polynomial.

Nevertheless, we extend the transformation to work for any public-coin IP while achieving
a moderate improvement on the number of read rounds. In the main loop of the IOP, rather
than advancing each IP transcript in S;_; by one round, advance it by O(k/log |x|) rounds
before inserting the resulting transcripts into the set .S;. During its decision phase, the IOP
verifier chooses an index ¢ and reads the entire O(k/ log |x|)-round interaction done during
this iteration of the IOP. Completeness and soundness of this new transformation are similar
to the one presented in the previous section, but now the verifier reads O(k/ log |x|) rounds.
The rest of the efficiency parameters are similar to the IOP described in the previous section,
except that proof length is polynomial regardless of k.

After applying the (adapted) transformation of [4], this process yields a O(k)-round IOP
with query complexity O(k/log|x|) (over the binary alphabet). This concludes the proof
sketch of Lemma 3.

Can we do better?

The construction described in this section doubles the number of transcripts stored in the set
S; relative to S;_1. This causes a blow-up in parameters and is the reason why this approach
fails in constructing O(1)-query IOPs from IPs with super-logarithmic round complexity.
Intuitively, if we could reduce this doubling then we may be able to modify the transformation
to get O(1)-query IOPs. While we do not achieve this for general IP, we show that, using this
intuition, we can construct O(1)-query IOPs for a rich class of relations that are interactively
reducible. We discuss this notion, and corresponding new IOP constructions, in the following
section.

2.3 Interactive reducibility

In Section 2.2.1 we described how to transform an IP into an IOP with O(1) query complexity.
The new protocol kept track of a set containing all partial transcripts of the IP generated
so far in the protocol. In every round, every partial transcript in the set was advanced by
one round, and the newly advanced transcripts were added to the set held previously. This
meant that in every round, the set contains twice as many transcripts as in the previous
round. As we require polynomial proof length and verifier running time, this technique was
unable to allow reading of O(1) rounds for IPs with greater than O(log |x|) rounds.
Intuitively, suppose it were possible to take multiple transcripts and reduce them into a
single transcript that in some sense preserves soundness of all of the transcripts combined.
In that case, this issue could be bypassed, and the protocol would work for IPs with
super-logarithmic round complexity. In more detail, suppose we want to reduce transcripts
tri,...,tr, into a new transcript tr’. The acceptance probability of a transcript prefix tr; is the
maximum over all prover strategies of the probability that the verifier will end up accepting
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when continuing interaction with the prover from transcript tr;. Roughly, we require that:
(a) if the acceptance probability of every tr; is 1, then so is the acceptance probability of tr';
and (b) if there exists some transcript tr; with small acceptance probability, then (with high
probability) the acceptance probability of tr’ is also small.

In this section, we introduce the concept of interactive reducibility, which formally
captures this intuition. We exemplify this in Section 2.3.1 by describing how to reduce
multiple transcripts of the sumcheck protocol into a single transcript. Then, in Section 2.3.2,
we formally define interactive reducibility. In Section 2.3.3, we show how to adapt the protocol
described in Section 2.2.1 to work with interactive reductions and bypass the blow-up in the
original protocol. Finally, in Section 2.3.4, we discuss relations known to have interactive
reducibility.

2.3.1 An interactive reduction for sumcheck

We exemplify the notion of interactive reducibility in the case of the sumcheck protocol [18].

Below we review this protocol, and then explain how to reduce multiple transcripts into one
transcript via an interactive reduction.

2.3.1.1 The sumcheck protocol

The verifier has query access to a n-variate polynomial p of individual degree d over some
field F. The goal of the verifier is to test, for a given field element =y, whether

Z plag,...,an) =7 .

Qg0 €{0,1}

The protocol begins with the prover sending a polynomial p; of degree d, claimed to
equal pr(X) =3, . cron P(X,2,..., ). The verifier checks that p1(0) + p1(1) = v
(rejecting if not), samples a random field element 71, and sends it to the prover. Both parties
define 1 := py(rq).

This one-round interaction leads to a new sumcheck claim

Z p(r17a27"'7a’n):’yl )

ag,...,a, €{0,1}

that has the following properties: (a) if the original claim is true then the new claim is also
true; and (b) if the original claim is false then with high probability the new claim is also
false.

Next, the prover sends py claimed to equal pa(X) := Zag,_“7ane{071} p(r1, X, as, ..., an)
and the protocol repeats as before. This process continues until the n variables are fixed
to some field elements (r1,...,7,), and the problem has been reduced to checking that
p(r1,...,7n) = Yn, which the verifier can check via one query to the polynomial p.

One can associate a round j of the protocol with a list of field elements (rq,...,7;) and
a claimed sum +;, and think of that round as “reducing” a claim z = ((rq,...,7;),7;) that
Zaﬁl,‘..,ane{O,l} P(ri, .o T, Qjg1, - - ., Q) =y into a new claim z’ = ((r1,...,7j+1),Vj+1)
that ZajJFg,.A.,anE{O,l} p(rl, sy T, 02, . . ,an) = Yj+1-

2.3.1.2 Reducing multiple sumcheck claims

We are given claims z1,...,z; where each z; consists of (r;1,...,7; ;) and a claimed sum
) ] 5L 11,

. . Ll . . / ! / ! .

7i,j- We seek to reduce these t claims into a single claim z’ = ((r{,...,7%,),7},) such that:
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(a) If each z; is a true statement, then z’ is a true statement; and (b) If there is some z;
that is a false statement, then with high probability 7’ is a false statement. Notice that in
order to merge multiple sumcheck transcripts it suffices to merge multiple sumcheck claims

71, ...,7%. Thus we will focus on merging such claims.

Before describing the reduction, we define a polynomial I,, .. :F — F7 that represents
a curve through the t points described by the instances zy,...,z;. That is, I, (1) =
(rij1,...,ri;) for every i € [t| (here we implicitly associate the set [t] with an arbitrary set

S CF of size t, known to all parties). By interpolation, the degree of I, ., is less than t.

Given this definition, we describe the interactive reduction for the sumcheck protocol.
Prover: Send the polynomial g € F[ X7, X5] defined as:

g(Xl’XQ) = Z p(Im ----- Zt(Xl)’X27aj+2""7an) . (1)

jy2,..,0n€{0,1}

Verifier: Receive a bivariate polynomial § € F[X;, X5] of degree at most j-d - (t — 1) in
X1 and degree at most d in X5.
1. Consistency: Check that for every i € [t] it holds that = 13 9(i, @) = 7i,;. (Reject
if not.)
2. Generate new instance:
(i) Sample uniformly random field elements p,r* < F and send them to the prover.
(i) Set (ry,...,75) =L,  .(p) and vj1 := g(p,7*) and output the new instance

B,y

r_ / ox
7' = ((Tl,...mj,r ),’yj+1) .

Analysis. It follows straightforwardly from the protocol that, if z,...,z, are all true
statements and the prover acts honestly, then z’ is a true statement. We show that if any
one of the statements z, ...,z is false then with high probability so is z’.

Let g be as defined in Equation (1) with respect to z1,...,z:. Suppose that z; is a false
claim (i.e., Zaj+1,.4.,ane{0,1} P(Tidy - s Tijy Qjgl, - - - Qn) 7# Vi ;). Then, by definition,

Z g(i,a) = Z P(Tists oy Tigs Qjts ey Q) # Vij

ae{0,1} jg1,.0n€{0,1}

During its consistency check, the verifier checks that Zae{o,l} g(i,«) = ;3. Thus, in order
for the verifier to not reject, a cheating prover must send § # g. By the Schwartz—Zippel
lemma, since g and § are low-degree polynomials (provided that the degree d and the number
of instances being reduced t are small with respect to |F|), the probability that the uniformly
chosen p and r* are such that g(p,r*) = g(p, r*) is small. Whenever (p,r*) # g(p,r*) we
have that

Z p(rllv o 7T;‘a T’*7Olj+2, ey an) = g(parr*) 7é g(pv T*) =Yj+1 >
Qjy2,..,an€{0,1}

and so the resulting statement z' := ((r,...,75,7%),7j11) is false.

2.3.2 Defining interactive reducibility

We define interactive reducibility, which captures the capability of merging multiple tran-
scripts/instances into a single transcript /instance while preserving correctness and soundness.
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» Definition 7. An £-round public-coin protocol (P, Vig) where Vg Tuns in polynomial time

1s an interactive reduction for a relation R with k predicates and soundness error € if

there exists a sequence of predicates fo, f1,. .., fx such that the following holds.
Completeness: For every (x,w) € R, j € [K], and z1, ...,z such that f;_1(x,2z;) =1
for every i € [t], it holds that:

Pr[fj(x,zl) = 1‘ 7z — (Pr(xX,w,%1,...,%), Vr(X, 21, ..., %)) ] =1.

Soundness: For every x ¢ L(R), j € [K], and z1,...,2z, if there exists i € [t] where
fi—1(x,2z;) = 0 then for every (computationally unbounded) Py it holds that:

Pr [ fi(x,z") = 1‘ z' (f’|R,V|R(x,Z1,...,Zt)> } <e(x,t) .

Relation identity: fo(x,z) =1 if and only if x € L(R).
Triviality: fi(x,z) can be computed in time poly(|x|,|z|).
We call x the base instance and z1, ...,z round instances.

An interactive reduction (Pg, Viz) has (polynomially) bounded output length if there
exists ¢ € N such that, for every base instance x, witness w, and round instances z1, ..., %,

the new instance z’ output by (Pg, Vir) on inputs (x, w,z,...,z) has length at most |x|°.

2.3.3 10Ps from interactive reducibility

We show that any relation with an f-round interactive reduction with k predicates (and

bounded output length) has a (¢ - k)-round public-coin IOP with query complexity O(k).

This is a variation of the protocol described in Section 2.2, adapted to work with interactive
reducibility. For simplicity, in this overview, we present the protocol only for the case £ =1
(such as the sumcheck protocol).

To aid with notation, in the description of the protocol, we replace the set S; (which
in Section 2.2.1 contained the set of all transcripts generated up until the é-th iteration) with
an array A; where A;[j] contains all of the round instances generated in the i-th iteration
that are associated with the j-th predicate of the interactive reduction. In iteration i, the
interactive reduction will be run k times in parallel, where for every j € [k] we run given the
round instances stored in A;_1[j].

2.3.3.1 The protocol

Let (P, Vir) be a one-round interactive reduction for R with k predicates. The IOP prover
P receives as input an instance x and witness w, and the IOP verifier Vo, receives as
input the instance x. They interact as follows.

1. For every i € {0,...,2k}, Pp defines the (k 4+ 1)-entry array A; as follows

o fy =0
Ailj] = {@ ifje{l,... k}

The set A;[j] will store all instances corresponding to f; collected by iteration ¢ of the
protocol.
2. Fori=1,...,2k:
a. Pp sends A;_1 to Vigp.
b. V5 sends a random p; < {0, 1}" (this corresponds to a message of Vig).

24:13

CCC 2022



24:14 Hardness of Approximation for Stochastic Problems via Interactive Oracle Proofs

c. P sends a; ; := Pr(x,w, A;_1[j — 1], p;) for all j € [k], and sets A;[j] := A;—1[j] U
{zi;} where z; ; := Vig(x, A;i_1[j —1], pi, a; ;) is the output of the interactive reduction
verifier given base instance x, round instances A;_1[j — 1], verifier randomness p;, and
prover reply a; ;.

3. P sends Ay and, for every i € {0,...,2k}, sends B; := A;. This concludes the
interaction.

4. In the decision phase, V,, is given oracle access to a transcript with the following
structure:

(Ao, p1, (@11, a1 k) s Al .y paks (@215 - - -5 Gakk) 5 Aok, (Bo, - - ., Bak))

Vior performs the checks below.

a. Subset consistency. Read the arrays By, B1, . .., Bok in their entirety. For every i € [2k]
and j € {0,...,k} check that B;,_1[j] C B;[j].

b. Transcript consistency. Sample a random i € [2{]. Read the arrays A;_; and A; sent
by P and the interaction p; and (a;1,. .., air).
i. Check that A;_1 = B;_1 and A; = B;.
ii. For every j € [k], check that A;[j] = A;1[j] U {z] ;} where

Z/i,j = VIR(X7 Aifl[j - 1]7Pi7ai,j) s

is the output of the interactive reduction verifier given base instance x, round
instances A;_1[j — 1], verifier randomness p;, and prover reply a; ;. (Reject if Vig
rejects.)

c. Final predicate holds. Check that fi(x,z) =1 for every z € Ba[K].

2.3.3.2 Analysis

The protocol has perfect completeness and soundness error max{%, (2|'(k) -k - e} where k is the
number of predicates and € is the soundness of the interactive reduction respectively. This can
be shown in a similar manner to that described in Section 2.2.1. The main difference between
the two protocols is in the analysis of the proof length. In the protocol of Section 2.2.1 the
number of sent transcripts doubled in each round. In contrast, in the new protocol, one round
instance is added for each predicate. In more detail, for every ¢ € [2k] and j € [k], we have
|A;[j]| = |Ai—1[4]] + 1. Since k = poly(|x|), the total number of round instances generated
and sent is polynomial in |x|. If the interactive reduction has bounded output length, then
each of these round instances has polynomially-bounded length. We can therefore conclude
that the overall proof length is poly(|x]).

2.3.4 Relations with interactive reducibility

Several relations of interest have interactive reductions.

2.3.4.1 General IPs

We show that any relation with a k-round interactive proof has an m-round interactive
reduction with k/m predicates (for any m that divides k). To see this, consider round
instances z that are sets of j-message partial transcripts of the IP. The interactive reduction
advances each of the transcripts in the set z by m rounds, as in the IP. The predicates are
defined with respect to the “state function” of the IP, which roughly denotes whether the
prover has an accepting strategy with respect to this transcript or whether no strategy will
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cause the verifier to accept with high probability (over the remaining interaction). See the
full version of this paper for a formal definition of the state function of an IP through the
concept of round-by-round soundness.

Notice that if this interactive reduction is used in the protocol of Section 2.3.3, this yields
the protocol described in Section 2.2.1. This interactive reduction does not have bounded
output length since the new round instance stores all of the previous transcripts and their
continuations. Therefore the resulting IOP does not achieve O(1) total query complexity.

2.3.4.2 Sumcheck protocol

Using the ideas described in Section 2.3.2, we show that any relation that can be reduced
into k-variate sumcheck has a one-round interactive reduction with k predicates and bounded
output length. As a result, any relation that can be reduced into k-variate sumcheck has a
O(k)-round public-coin IOP with query complexity O(1).

2.3.4.3 Shamir’s protocol

Shamir’s protocol [21] gives an IP for all of PSPACE, thereby showing the IP = PSPACE
theorem. Extending the ideas developed in Section 2.3.2, we show a one-round interactive
reduction with bounded output length and polynomially-many predicates for Shamir’s
protocol. This establishes that every language in PSPACE has a poly(|x|)-round public-coin
IOP with query complexity O(1).

2.3.4.4 Future directions

We leave the exploration of what other relations have interactive reductions to future work.

Following the extensive use of polynomials in both the sumcheck protocol and Shamir’s
protocol, it seems likely that these techniques can be adapted to also work for low-depth
circuits through the delegation protocol in [15].
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