
Conflict-Based Local Search for Minimum Partition
into Plane Subgraphs
Jack Spalding-Jamieson #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Brandon Zhang #

Vancouver, Canada

Da Wei Zheng # Ñ

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract
This paper examines the approach taken by team gitastrophe in the CG:SHOP 2022 challenge. The
challenge was to partition the edges of a geometric graph, with vertices represented by points in the
plane and edges as straight lines, into the minimum number of planar subgraphs. We used a simple
variation of a conflict optimizer strategy used by team Shadoks in the previous year’s CG:SHOP to
rank second in the challenge.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases local search, planar graph, graph colouring, geometric graph, conflict
optimizer

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.72

Category CG Challenge

Supplementary Material
Software (Source Code): https://github.com/jacketsj/cgshop2022-gitastrophe

archived at swh:1:dir:0e86e287cc9a882064e46283cb35cbd64b0df4e8

1 Introduction

Given a graph G = (V, E) and an assignment f : V → Z2 inducing a straight-line drawing in
R2 with integer vertex coordinates, the minimum partition into plane subgraphs problem
asks for a partition of the edges E into a minimal number of sets E1, E2, . . . , Ek such that
for each subgraph Gi = (V, Ei), f induces a planar straight-line drawing. That is, no pair of
edges from the same subset intersect, except possibly at their common endpoint. This was
the problem posed in the 2022 Computational Geometry Challenge (CG:SHOP 2022). For
more detail about the challenge, we refer readers to the summary paper [5].

Reduction to vertex-colouring

Solving the minimum partition into plane subgraphs problem for G = (V, E) is equivalent
to solving the well-studied minimum vertex-colouring problem for the intersection conflict
graph G′ with V (G′) = E(G) and E(G′) equal to the set of intersections in the provided
straight-line drawing. We did not explicitly use the geometric properties of the instances
and instead solved the aforementioned vertex colouring problem.

Henceforth, we will only refer to the intersection conflict graph G′ induced by the instance.
Vertices will refer to the vertices V (G′), and edges will refer to the edges E(G′). Our goal
is to partition the vertices using a minimum set of colour classes C = {Ci}, where no two
vertices in the same colour class Ci are incident to a common edge.

© Jack Spalding-Jamieson, Brandon Zhang, and Da Wei Zheng;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 72; pp. 72:1–72:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jacksj@uwaterloo.ca
https://orcid.org/0000-0002-1209-4345
mailto:brandon.zhang@alumni.ubc.ca
https://orcid.org/0000-0001-8775-0709
mailto:dwzheng2@illinois.edu
https://davidzheng.web.illinois.edu/
https://orcid.org/0000-0002-0844-9457
https://doi.org/10.4230/LIPIcs.SoCG.2022.72
https://github.com/jacketsj/cgshop2022-gitastrophe
https://archive.softwareheritage.org/swh:1:dir:0e86e287cc9a882064e46283cb35cbd64b0df4e8;origin=https://github.com/jacketsj/cgshop2022-gitastrophe;visit=swh:1:snp:b91cad15b07a44afb2c1fe72013d7836d7654ad1;anchor=swh:1:rev:89410fbdbb97511881ee4830d28604fcffa0c314
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


72:2 CG:SHOP Challenge 2022

Existing literature

There are many existing practical heuristic algorithms [11, 10, 13, 14, 1] to the vertex-colouring
problem. Many of these algorithms used DIMACS benchmark [9] graphs to evaluate their
results. In subsection 3.3 we compare the results of our methods for these instances. Most of
the benchmark instances had comparatively few edges (on the order of thousands or millions);
the largest intersection graphs considered in the CG:SHOP challenge had over 1.5 billion
edges.

We found a variation of the conflict optimizer strategy employed by team Shadoks for
CG:SHOP 2021 [4] to be effective. We describe this strategy in Section 2. Using this
strategy, we, team gitastrophe, placed second overall, and first among all junior teams.
This result was surprising to us, as our methods were relatively simple, relying exclusively
on the naive reduction to vertex-colouring. The first- and third-place teams also make use of
similar techniques [3] [6], although the fourth place team uses a very different SAT-based
approach [12].

2 Methods

2.1 Solution initialization
We used the traditional greedy algorithm of Welsh and Powell [15] to obtain initial solutions:
order the vertices in decreasing order of degree, and assign each vertex the minimum-label
colour not used by its neighbours. We attempted to use different orderings for the greedy
algorithm, such as sorting by the slope of the line segment associated with each vertex, and
we also tried numerous other strategies. Ultimately, we found that after running our solution
optimizer for approximately the same amount of time, all initializations resulted in equal
number of colours.

2.2 Solution optimization: conflict search
Our most successful method for improvement of the solutions was inspired by the conflict
optimization approach used by the Shadoks team for CG:SHOP 2021 [4]. At a high-level,
our algorithm will iteratively attempt to eliminate a selected colour class. The details are as
follows:
1. Pick a random colour class C to be eliminated. Uncolour all vertices in C and add all

vertices in that colour class to a conflict set S. We maintain only a valid vertex-colouring
for the set V (G′) − S. Once S is empty, we will have produced a valid vertex colouring
of G′ which uses one fewer colour.

2. Pick and remove a random element v from S. For each colour class, we compute the
conflict score with v. The conflict score of a colour class Ci is∑

u∈Ci

(u,v)∈E(G′)

1 + q(u)2 (1)

where q(u) is the number of times that u has been removed from the conflict set S in
previous iterations of this step.

3. Pick the colour class Ci with the lowest conflict score. Uncolour all vertices in Ci which
are adjacent to v and add those vertices to S. Insert v into Ci.

4. Repeat steps 2 and 3 until the set S is empty.



J. Spalding-Jamieson, B. Zhang, and D. Zheng 72:3

There is no guarantee that this algorithm terminates. In practice, we restart the procedure
when any value of q(u) surpasses a fixed threshold.

The primary differences between our approach to conflict optimization and those of the
first and third place teams are the choice of an exponent of 2 in Step 2, and the behaviour
when q(u) surpasses its fixed threshold.

Modifications to the conflict optimizer

Taking inspiration from memetic algorithms, which alternate between an intensification and
a diversification stage, we continually switched between a phase where we used the above
conflict score, and one where we minimized only the number of conflicts (i.e. we replaced the
conflict score of (1) with

∑
u∈Ci,(u,v)∈E(G′) 1). Each phase lasted for 105 iterations. Adding

the conflict-minimization phase gave minor improvements to some of the challenge instances.

2.3 Failed approach: memetic algorithms

Although many of the leading approaches to vertex colouring are memetic, our attempts at
implementing them performed poorly. These memetic algorithms take a long time to run on
the standard DIMACS instances [9], and did not scale well to the much larger intersection
graphs in the challenge.

We implemented the memetic algorithms Evo-Div [11] and HEAD [10], but neither of
these approaches were able to improve on the scores obtained by the conflict optimizer.
Both of these algorithms use TABUCOL [8], a tabu search algorithm, as their local search
component, so we tried to replace it with the conflict optimizer. However, this proved
to be ineffective. This may be attributed to a critical difference between TABUCOL and
the conflict optimizer: the conflict optimizer does not expressly minimize the number of
conflicting edges in the colouring, and only hopes to eventually resolve all conflicting vertices.

3 Results

3.1 Implementation

The conflict optimizer frequently looked up edges in the intersection graph. To speed this
process up, we precomputed the adjacency matrix of the graph and stored it in memory for
fast access. Our C++ implementation is available on Github.

3.2 Challenge computing environment

To perform our computations during the challenge, we mainly used a 32-core server with
two Xeon E5-2698 v3s. We spent about 2 days of CPU time per instance to obtain our best
solutions. Table 1 shows the scores of our greedy initialization, scores after running the
conflict optimizer for 10 minutes, 1 hour, and 24 hours, and the best result we obtained in
the challenge. Our algorithm obtains good results on many instances after a short period of
time; it comes close to matching the best solutions we obtained in the challenge within 24
hours (and surpasses some, as there is randomness in the algorithm).

SoCG 2022



72:4 CG:SHOP Challenge 2022

Table 1 Results of our algorithm on a subset of the challenge instances after fixed amounts of
optimization time. Note that on instances visp31334 and reecn51526 we obtained better results
after 24 hours than our final results from the challenge.

Instance Greedy 10m 1h 24h Final
rvisp5013 71 50 49 49 49
rsqrpecn8051 284 177 176 176 176
sqrp10642 186 124 124 124 124
rsqrp14364 225 137 137 137 137
reecn16388 210 152 152 151 151
vispecn19370 285 199 196 194 194
sqrpecn23715 657 436 425 423 423
visp26405 119 83 83 82 81
sqrp28863 316 209 192 191 191
visp31334 132 83 83 83 82
vispecn35198 379 262 246 242 243
visp38574 193 143 136 135 134
sqrp41955 362 236 214 204 204
sqrpecn45700 802 503 471 465 465
visp48558 230 159 147 144 144
reecn51526 456 334 317 311 312
visp55158 182 130 123 122 122
vispecn58391 609 440 394 370 369
visp62685 174 132 120 119 117
vispecn65831 711 522 473 442 440
sqrpecn69904 1152 740 693 651 650
sqrp72075 483 342 312 272 271

3.3 Comparison on DIMACS dataset

We ran our algorithm on the difficult DIMACS instances [9] to gauge our algorithm’s
performance on non-geometric graphs.

Table 2 shows our results after running our algorithm for 10 minutes, compared with
some of the state of the art colouring algorithms HEAD [10] and QACOL [13, 14].

Surprisingly, the conflict optimizer works extremely poorly on random graphs, but is
fast and appears to perform well on geometric graphs, matching the best-known results [7].
Interestingly, these geometric graphs are not intersection graphs as in the Challenge, but are
generated based on a distance threshold.

Applying Cheeger’s inequality [2], we note the intersection graphs resulting from the
challenge instances have noticeably lower edge conductance than random graphs, and we
believe this plays a part in the performance of the conflict optimizer.

4 Conclusion

The conflict optimizer approach was very effective for the large geometric intersection graphs
for the CG:SHOP 2022 challenge. Further investigation is needed into the reason the conflict
optimizer approach was effective.



J. Spalding-Jamieson, B. Zhang, and D. Zheng 72:5

Table 2 Comparison of our method with state-of-the-art graph colouring algorithms. The conflict
optimizer underperforms except on the geometric graphs rX.Y and dsjrX.Y .

Instance Colours HEAD [10] QACOL [13, 14]
dsjc250.5 29 28 28
dsjc500.1 13 12 12
dsjc500.5 52 47 48
dsjc500.9 130 126 126
dsjc1000.1 21 20 20
dsjc1000.5 93 82 82
dsjc1000.9 235 222 222
r250.5 65 65 65
r1000.1c 98 98 98
r1000.5 234 245 238
dsjr500.1c 85 85 85
dsjr500.5 122 - 122
le450_25c 26 25 25
le450_25d 26 25 25
flat300_28_0 33 31 31
flat1000_50_0 91 50 -
flat1000_60_0 93 60 -
flat1000_76_0 92 81 81
C2000.5 173 146 145
C4000.5 317 266 259

References
1 Daniel Brélaz. New methods to color the vertices of a graph. Communications of the ACM,

22(4):251–256, 1979.
2 Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. Problems in analysis,

625(195-199):110, 1970.
3 Loïc Crombez, Guilherme D. da Fonseca, Yan Gerard, and Aldo Gonzalez-Lorenzo. Shadoks

approach to minimum partition into plane subgraphs. In Symposium on Computational
Geometry (SoCG), pages 71:1–71:8, 2022.

4 Loïc Crombez, Guilherme D da Fonseca, Yan Gerard, Aldo Gonzalez-Lorenzo, Pascal Lafourc-
ade, and Luc Libralesso. Shadoks approach to low-makespan coordinated motion planning
(cg challenge). In 37th International Symposium on Computational Geometry (SoCG 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

5 Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Stefan Schirra. Minimum partition
into plane subgraphs: The CG: SHOP Challenge 2022. CoRR, abs/2203.07444, 2022. arXiv:
2203.07444.

6 Florian Fontan, Pascal Lafourcade, Luc Libralesso, and Benjamin Momège. Local search with
weighting schemes for the CG:SHOP 2022 competition. In Symposium on Computational
Geometry (SoCG), pages 73:1–73:6, 2022.

7 Olivier Goudet, Cyril Grelier, and Jin-Kao Hao. A deep learning guided memetic framework
for graph coloring problems, 2021. arXiv:2109.05948.

8 Alain Hertz and Dominique de Werra. Using tabu search techniques for graph coloring.
Computing, 39(4):345–351, 1987.

9 David S Johnson and Michael A Trick. Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11-13, 1993, volume 26. American Mathematical Soc.,
1996.

SoCG 2022

http://arxiv.org/abs/2203.07444
http://arxiv.org/abs/2203.07444
http://arxiv.org/abs/2109.05948


72:6 CG:SHOP Challenge 2022

10 Laurent Moalic and Alexandre Gondran. Variations on memetic algorithms for graph coloring
problems. Journal of Heuristics, 24(1):1–24, 2018.

11 Daniel Cosmin Porumbel, Jin-Kao Hao, and Pascale Kuntz. An evolutionary approach with
diversity guarantee and well-informed grouping recombination for graph coloring. Computers
& Operations Research, 37(10):1822–1832, 2010.

12 André Schidler. SAT-based local search for plane subgraph partitions. In Symposium on
Computational Geometry (SoCG), pages 74:1–74:8, 2022.

13 Olawale Titiloye and Alan Crispin. Quantum annealing of the graph coloring problem. Discret.
Optim., 8:376–384, 2011.

14 Olawale Titiloye and Alan Crispin. Parameter tuning patterns for random graph coloring with
quantum annealing. PloS one, 7(11):e50060, 2012.

15 D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and
its application to timetabling problems. The Computer Journal, 10(1):85–86, January 1967.


	1 Introduction
	2 Methods
	2.1 Solution initialization
	2.2 Solution optimization: conflict search
	2.3 Failed approach: memetic algorithms

	3 Results
	3.1 Implementation
	3.2 Challenge computing environment
	3.3 Comparison on DIMACS dataset

	4 Conclusion

