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—— Abstract

We describe SquareSlider, a software framework for visualizing reconfiguration algorithms of modular
robots in the sliding square model. In this model, a robot consists of a configuration of squares in
a rectangular grid, which can reconfigure through a fixed set of possible moves. SquareSlider is a
web-based tool that implements an easy-to-use interface allowing the user to build a configuration,
run a reconfiguration algorithm on it, and examine the results.
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1 Introduction

A popular research topic in robotics and computer science is the development of modular
robots [9]. These typically consist of homogeneous building blocks called modules, connected
in such a way that the robot is able to move modules relative to each other. This way, the
robot can transform by reconfiguring its modules. Such a reconfiguration requires careful
motion planning and efficient algorithms to be viable in practice. To enable the systematic
study of reconfiguration algorithms, many models of modular robots have been proposed,
such as the sliding cube model [3, 5, 6, 7] and the pivoting cube model [1, 2, 4, 8].

Here, we focus on reconfiguration in the sliding cube model in two dimensions (the “sliding
square model”). In this model, the elementary building blocks are square modules that live
in the rectangular unit grid. The modules can perform two types of moves: slides and convez
transitions (illustrated in Figure 1). The source and target configurations are assumed to be
face-connected, and at any time during the reconfiguration, the configuration also has to
stay face-connected.

In this paper we describe a software tool called SquareSlider which provides a framework
to visualize and interact with reconfigurations. We initially created SquareSlider to support
the development of the reconfiguration algorithm Gather&Compact [3], but the framework
can be useful for other algorithms as well. To this end, we designed SquareSlider to be
modular: algorithm implementations are separate from the core. This way, although only
Gather&Compact has currently been implemented, other algorithms can be plugged in easily.

We implemented SquareSlider as a web-based tool, thus ensuring that the visualization is
easily accessible, without the additional hurdle of having to compile and run a separate pro-
gram. SquareSlider is available at https://alga.win.tue.nl/software/squareslider/.
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Figure 1 The two types of moves in the sliding square model: (a) slide, (b) convex transition.

For the implementation, we used TypeScript,' a typed variant of JavaScript that compiles
down to JavaScript. For the graphics, we used WebGL via the PIXI.js? project. The GUI
elements used (toolbars and buttons) are custom-built. In the remainder of this paper, we
will describe in detail the functionality offered by our framework.

2  Functionality

SquareSlider’s GUI consists of a large canvas that displays the configuration, and two toolbars:
one on the top and one on the bottom (see Figure 2). The functionality of SquareSlider can
be divided into four categories: visualization, interaction, animation, and framework utilities.
We will highlight the most interesting aspects of each category.
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Figure 2 The GUI of SquareSlider after drawing a configuration and coloring two arbitrary
squares. The three squares on the right have been selected, as indicated by the blue outlines.

Visualization. By default, a configuration is visualized as gray squares in a grid, as shown
in Figure 3a. The grid has an z- and y-axis defining a coordinate system, where every grid
cell is indexed by its bottom-left corner. The coordinates are especially useful for interaction
and animation, as will be explained below.

Many reconfiguration algorithms use information about the connectivity of the configura-
tion, such as partitioning the squares into components, depending on their k-connectivity.
We therefore augment the visualization of the squares with marks indicating this information.
Currently, SquareSlider can capture the type of connectivity used by Gather&Compact [3]
(see Figure 3b). Firstly, a square has a filled (blue or red) mark if it can perform moves with-
out disconnecting the configuration, while a non-filled mark indicates that moving the square
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Figure 3 (a) A configuration visualized in our framework. (b) The same configuration, with
connectivity marks added (see the main text for an explanation of the marks).

disconnects the configuration (i.e., this square forms a cut vertex in the adjacency graph of
the configuration). Secondly, the color and shape of the marks indicates a partitioning of the
configuration into (roughly) 2-connected components. Blue square marks indicate squares
in a chunk, a variant of a 2-connected component introduced in [3]. Specifically, a chunk
is defined by an inclusion-maximal cycle C along with all its degree-1 neighbors and any
squares inside C. Red circle marks indicate squares that are not part of a chunk. A special
crossed mark shows where components connect to each other.

We use a variant of the classic algorithm to compute 2-connected components in graphs,
which is based on DFS. This algorithm can easily be adapted for different notions of
connectivity, as may be required by other reconfiguration algorithms.

Interaction. Input configurations can be provided to SquareSlider in two ways. Firstly, the
editing tools in the bottom toolbar (see Figure 2) allow users to place and remove squares
by clicking or dragging over grid cells. Clicking an empty grid cell adds a square in that
cell, while clicking an existing square removes that square. Dragging over a series of cells
adds or removes squares in all these cells, thus enabling quick editing of large configurations.
Furthermore, users can color squares to see how a specific square or set of squares moves
during reconfiguration. Secondly, users can export the configuration to a JSON string, which
can later be loaded again. Such a JSON string can also be generated by an external tool.

Animation. Once a connected configuration is built, a reconfiguration can be performed. The
top toolbar provides functionality to start an animation of the moves in such a reconfiguration.
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Figure 4 The toolbars for animating reconfigurations. (a) The top toolbar. The left two buttons
allow the user to execute a reconfiguration algorithm, either by playing the whole sequence of
moves, or just a single step. The circular arrow button resets the configuration to the state before
reconfiguration. (b) The bottom toolbar (shown here for both Gather&Compact and a custom
move sequence) showing status information about the currently running algorithm.
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While the reconfiguration is running, the bottom toolbar is repurposed to show details on
the performed moves (see Figure 4). Functionality is available to play the reconfiguration
in one go (at various speeds), walk through the reconfiguration step by step, and to reset
the configuration to the original state (after which the bottom toolbar returns to its original
state, such that the configuration can be edited again).

Besides running an algorithm implementation, SquareSlider also has the option to manually
input a JSON string containing a sequence of moves. This can be useful to interface with
external tools. For example, the experiments in [3] used this functionality to interface with
the original implementation of [7].

Framework utilities. SquareSlider provides a wide range of utility functions that can be
used by algorithm implementations. For example, this includes functionality to check if a
configuration is connected, to determine if a given move is valid, to enumerate all squares on
the outer boundary of the configuration, and to compute a shortest sequence of moves to
move a given square to a target location.

An algorithm implementation consists of a TypeScript class containing a function that
produces moves that the algorithm wishes to perform. To ensure robustness, the core checks
if moves performed by an algorithm are valid in the sliding square model. Any invalid moves
halt the execution of the algorithm.
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