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Abstract
Over a decade ago, it was shown that every edge unfolding of the Platonic solids was without
self-overlap, yielding a valid net. Recent work has extended this property to their higher-dimensional
analogs: the 4-cube, 4-simplex, and 4-orthoplex. We present an interactive visualization that allows
the user to unfold these polytopes by drawing on their dual 1-skeleton graph.
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1 Unfolding Polytopes

The study of unfolding polyhedra was popularized by Albrecht Dürer in the early 16th century
who first recorded examples of polyhedral nets, connected edge unfoldings of polyhedra that
lay flat on the plane without overlap. Motivated by this, Shephard [8] conjectured that every
convex polyhedron can be cut along certain edges to admit a net. This claim remains open.

Consider this question for higher-dimensional polytopes: The codimension-one faces of a
polytope are facets and its codimension-two faces are ridges. The analog of an edge unfolding
of polyhedron is the ridge unfolding of an n-dimensional polytope: the process of cutting the
polytope along a collection of its ridges so that the resulting (connected) arrangement of its
facets develops isometrically into an Rn−1 hyperplane. Such an unfolding without overlap of
its facets yields a valid net. Instead of trying to find one net for each convex polyhedron (as
posed by Shephard), we consider a more aggressive property:

▶ Definition 1. A polytope P is all-net if every ridge unfolding of P yields a valid net.

A decade ago, Horiyama and Shoji [7] showed that the five Platonic solids are all-net. Recent
work [4] has shown applications in protein science: polyhedral nets are used to find a balance
between entropy loss and energy gain for the folding propensity of a given shape. The
higher-dimensional analogs of the Platonic solids are the regular polytopes. Three classes of
regular polytopes exist for all dimensions: the n-simplex, n-cube, and n-orthoplex (sometimes
called the cross-polytope or the cocube). The following is from [2] and [3]:

▶ Theorem 2. The 4-simplex, the 4-cube, and the 4-orthoplex are all-net.
© Satyan L. Devadoss, Matthew S. Harvey, and Sam Zhang;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 67; pp. 67:1–67:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:devadoss@sandiego.edu
mailto:msh3e@uvawise.edu
mailto:sam.zhang@colorado.edu
https://orcid.org/0000-0002-0371-9526
https://doi.org/10.4230/LIPIcs.SoCG.2022.67
https://sam.zhang.fyi/html/unfolding/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


67:2 Visualizing and Unfolding Nets of 4-Polytopes

▶ Remark 3. For n > 4, the n-simplex and n-cube are all-net, while the n-orthoplex fails.
Three additional regular polytopes appear only in four-dimensions: the 24-cell, 120-cell, and
600-cell. Their all-net property remain unexplored.

A ridge unfolding of a convex 4-dimensional polytope is given by a series of cuts along its
2-dimensional ridges so that the polytope may be unwrapped and “laid flat” in R3. The goal
of our visualization is to show the resulting net – the final placement of the unwrapped facets
– rather than the unwrapping itself. Such an unfolding is specified by the combinatorics of
the arrangement of its facets in the resulting net. In particular, a ridge unfolding of polytope
P induces a spanning tree in the 1-skeleton of the dual of P : a tree whose nodes are the
facets of the polytope and whose edges are the uncut ridges between the facets.

We now consider these associated graphs, the 1-skeleton of the duals of these polytopes:
Since the 4-simplex is self-dual, its 1-skeleton is simply the complete graph on 5 nodes
(corresponding to the 5 facets of the 4-simplex). The 4-cube is dual to the 4-orthoplex,
whose 1-skeleton forms the 4-Roberts graph. The 8 nodes of this graph can arranged on a
circle so that antipodal nodes represent opposite facets of the cube. Finally, the dual of the
4-orthoplex is the 4-cube, whose 1-skeleton forms the 4-hypercube graph. We chose a drawing
of this graph where its 16 nodes are arranged on a circle.

The work of Buekenhout and Parker [1] has enumerated the spanning trees on these three
graphs. Since unfoldings are in bijection with spanning trees, there are (up to symmetry), 3
distinct unfoldings of the 4-simplex, 261 distinct unfoldings of the 4-cube, and 110,912 distinct
unfoldings of the 4-orthoplex. By Theorem 2 above, each of these unfoldings is a valid net.
Our visualization software (https://sam.zhang.fyi/html/unfolding/) allows the user to
interactively create all of these nets. The figures in this paper show three examples.

Figure 1 A user-drawn spanning tree and its corresponding unfolded 4-simplex net.

2 Unfolding Geometry

An unfolding is specified, step-by-step, by drawing a spanning tree. As it is being drawn, the
corresponding net is formed by attaching new facets along the faces indicated by the tree.

In the case of the hypercube, the facets are cubes. The first cube is placed with its center
(centroid) at the origin and its faces parallel to the coordinate planes. Each subsequent facet
is attached to an exposed face f of one of the facets F in the existing structure as follows:
the center P of F is translated one edge length in the direction perpendicular to F , to a new
point Q (so that f bisects PQ). A new facet is then placed with Q as its center.

https://sam.zhang.fyi/html/unfolding/
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Figure 2 A user-drawn spanning tree and its corresponding unfolded 4-cube net.

In the case of the simplex and the orthoplex, the facets are tetrahedra. Unlike the cube,
a tetrahedron cannot be conveniently embedded in R3, making calculations there difficult. It
can be much more elegantly placed in R4, with its vertices at (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),
and (0, 0, 0, 1). Each subsequent facet is then attached to an exposed face f of a facet F by
reflection across f . This reflection will fix all of f , hence all the vertices of F except for one,
say P . Thanks to the R4 embedding, its reflection, Q, can be calculated by a simple matrix
multiplication. A new facet is then constructed whose vertices are those of f , along with Q.
In this construction, the unfolded net will lie in the hyperplane x1 + x2 + x3 + x4 = 1. Once
vertex coordinates have been calculated, it is necessary to rotate the shape into standard
3-dimensional space x4 = 0 before displaying the final result.

Figure 3 A user-drawn spanning tree and its corresponding unfolded 4-orthoplex net.
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3 Implementation

Our visualization is an interactive, open source browser application implemented using
HTML5 and JavaScript, and the application and source code can be accessed at https:
//sam.zhang.fyi/html/unfolding/. The user can select whether to unfold the 4-cube, the
4-simplex, or the 4-orthoplex. The user performs the unfolding by drawing a spanning tree on
the graph of the 1-skeleton of the dual polytope. The graph of the 1-skeleton is represented
using the JavaScript library JSXGraph [6], and the unfolded faces in R3 are drawn in WebGL
using ThreeJS [5]. We used built-in features of ThreeJS to allow the user to scroll to zoom
and click and drag to rotate the unfolded object.

The architecture of the application reuses common components for unfolding the cube,
simplex, and orthoplex. In particular, we implement our own spanning tree data structure,
which together with the underlying structure of the graph of the 1-skeleton of the dual
polytope allows us to determine the set of valid moves. We maintain an undo stack of a
single move, so that the visualization displays the outcome of a move when a valid node on
the 1-skeleton is moused over, and saves the move if and only if a click is registered on the
node before the mouse is moved off of the node. Otherwise, the move is undone when the
mouse leaves the node.

There are a variety of choices for embedding the 1-skeleton of the dual polytope onto
the plane, though we can pick elegant choices that position all of the nodes around the
circumference of a circle. For the simplex, we have a standard visualization of a clique, and
for the cube, we draw the 1-skeleton (a Roberts graph) as a clique with the opposite edges
removed. For the orthoplex, we embed its 1-skeleton in a way that all of the edges either
form part of the “circumference” of the graph or are parallel to the plane’s vertical and
horizontal axes.

We emphasize the current node by highlighting it as black on both the 1-skeleton as well
as in the unfolding. Unvisited nodes are colored blue (if accessible) and red (if inaccessible),
while visited nodes are shaded dark blue and dark red, appropriately. We arbitrarily fix
a node as the starting one. Due to the ability of the user to pan the camera around the
unfolding, all unfoldings up to rotation, but not reflection, are identified in the visualization.
We introduced a minor amount of transparency into the unfolding so that the user can more
clearly see the structure of the overall object.

References
1 Francis Buekenhout and Monique Parker. The number of nets of the regular convex polytopes

in dimension ≤ 4. Discrete mathematics, 186:69–94, 1998.
2 Kristin DeSplinter, Satyan L Devadoss, Jordan Readyhough, and Bryce Wimberly. Unfolding

cubes: Nets, packings, partitions, chords. Electronic Journal of Combinatorics, 27:4–41, 2020.
3 Satyan L Devadoss and Matthew Harvey. Unfoldings and nets of regular polytopes. arXiv,

2021. arXiv:2111.01359.
4 Paul Dodd, Pablo Damasceno, and Sharon Glotzer. Universal folding pathways of polyhedron

nets. Proceedings of the National Academy of Science, 115:6690–6696, 2018.
5 Mr. Doob. ThreeJS, 2021. URL: https://github.com/mrdoob/threejs.
6 Michael Gerhäuser, Bianca Valentin, and Alfred Wassermann. JSXGraph: Dynamic math-

ematics with JavaScript. International Journal for Technology in Mathematics Education,
17(4), 2010.

7 Takashi Horiyama and Wataru Shoji. Edge unfoldings of platonic solids never overlap. In
Proceedings of the 23rd Canadian Conference on Computational Geometry, 2011.

8 Geoffrey C Shephard. Convex polytopes with convex nets. In Mathematical Proceedings of the
Cambridge Philosophical Society, volume 78. Cambridge University Press, 1975.

https://sam.zhang.fyi/html/unfolding/
https://sam.zhang.fyi/html/unfolding/
http://arxiv.org/abs/2111.01359
https://github.com/mrdoob/threejs

	1 Unfolding Polytopes
	2 Unfolding Geometry
	3 Implementation

