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Abstract
The disjointness graph of a set system is a graph whose vertices are the sets, two being connected by
an edge if and only if they are disjoint. It is known that the disjointness graph G of any system
of segments in the plane is χ-bounded, that is, its chromatic number χ(G) is upper bounded by a
function of its clique number ω(G).

Here we show that this statement does not remain true for systems of polygonal chains of length 2.
We also construct systems of polygonal chains of length 3 such that their disjointness graphs have
arbitrarily large girth and chromatic number. In the opposite direction, we show that the class
of disjointness graphs of (possibly self-intersecting) 2-way infinite polygonal chains of length 3 is
χ-bounded: for every such graph G, we have χ(G) ≤ (ω(G))3 + ω(G).
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1 Introduction

Ramsey theory has many applications to other parts of mathematics and computer science [27],
including complexity theory [21], approximation algorithms, [22], coding [18], geometric data
structures [20], graph drawing and representation [2]. Constructing nearly optimal Ramsey
graphs is a notoriously difficult combinatorial problem [10]. The few efficient constructions
that we have are far from optimal, but they can come in handy in those areas where we have
interesting theorems, but lack nontrivial constructions. Here we provide two examples from
combinatorial geometry, based on two classical constructions of Erdős and Hajnal [9, 8]. We
close this paper with a result pointing in the opposite direction.
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56:2 Disjointness Graphs of Short Polygonal Chains

For any graph G, let χ(G) and ω(G) denote the chromatic number and the clique number
of G, respectively. Clearly, we have χ(G) ≥ ω(G), and if equality holds for every induced
subgraph of G, then G is called a perfect graph. Following Gyárfás and Lehel [15, 16, 13, 14],
a class of graphs G is said to be χ-bounded if there is a function f such that χ(G) ≤ f(ω(G))
for every G ∈ G.

Which classes of graphs are χ-bounded? Or, reversing the question, if a graph has small
clique number, how can its chromatic number be large? These questions are related to the
some of the deepest unsolved problems in graph theory. There are two different approaches
that have yielded spectacular results in recent years.

One can investigate what kind of substructures must necessarily occur in graphs of high
chromatic number. According to Hadwiger’s conjecture [17], if the chromatic number of
a graph is at least t, then it must contain a Kt-minor. (We now know that it contains a
Ks-minor with s = Ω(t/(log log t)); cf. [7].) Gyárfás [12] proved that if a graph has bounded
clique number and its chromatic number is sufficiently large, then it must contain a long
induced path; see also [11]. According to the (still open) Gyárfás-Sumner conjecture [29], the
same is true for any fixed tree instead of a path. Scott and Seymour proved that the class
of graphs with no induced odd cycle of length at least 5 is χ-bounded. For many beautiful
recent results of this kind, see the survey [28].

The second fruitful research direction was initiated by Asplund and Grünbaum [1]: Find
geometrically defined classes of graphs that are χ-bounded. Given a set S of geometric
objects, their intersection graph (resp., disjointness graph) is a graph on the vertex set S, in
which two vertices are connected by an edge if and only if the corresponding objects have a
nonempty intersection (resp., are disjoint). It was proved in [1] that the class of intersection
graphs of axis-parallel rectangles in the plane is χ-bounded (see also [4]). The corresponding
statement is false for boxes in 3 and higher dimensions [3], and even for segments in the
plane [26].

For disjointness graphs G of systems of segments in the plane, we have χ(G) ≤ (ω(G))4 [19].
The same is true for systems x-monotone curves, that is, for continuous curves in the plane
with the property that every vertical line intersects them in at most one point. It was shown
in [25] that, in this generality, the order of magnitude of this bound cannot be improved. On
the other hand, we proved [24] that the class of disjointness graphs of strings (continuous
curves in the plane) is not χ-bounded. Improving our construction, Mütze, Walczak, and
Wiechert [23] exhibited systems of polygonal curves consisting of three segments such that
their disjointness graphs are triangle-free (ω = 2), yet their chromatic numbers can be
arbitrarily large.

The above results leave open the case of polygonal curves consisting of two segments. Our
first result settles this case. A polygonal curve consisting of k segments is called a polygonal
k-chain.

▶ Theorem 1. There exist arrangements of polygonal 2-chains in the plane whose disjointness
graphs are triangle-free and have arbitrarily large chromatic numbers.

We do not know if Theorem 1 can be strengthened by requiring that the disjointness
graph of the curves has large girth.

▶ Problem 2. Do there exist arrangements of polygonal 2-chains in the plane whose disjoint-
ness graphs have arbitrarily large girth and chromatic number?

Our next result shows that the answer to the above question is in the affirmative if,
instead of 2-chains, we are allowed to use polygonal 3-chains.
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▶ Theorem 3. For any integers g and k, there is an arrangement of non-selfintersecting
polygonal 3-chains in the plane whose disjointness graph has girth at least g and chromatic
number at least k.

A 1-way infinite polygonal 2-chain is the union of a half-line and a segment that share an
endpoint. In our proof of Theorem 1, we actually construct arrangements of 1-way infinite
polygonal 2-chains whose disjointness graphs are triangle free, but have arbitrarily large
chromatic number. Doubly tracing these 1-way infinite 2-chains and slightly perturbing the
resulting curve, we obtain an arrangement of 2-way infinite 4-chains, i.e., 4-chains whose
first and last pieces are half-lines. Hence, we obtain the following

▶ Corollary 4. There exist arrangements of 2-way infinite polygonal 4-chains in the plane
whose disjointness graphs are triangle-free and have arbitrarily large chromatic numbers.

Our next theorem shows that Corollary 4 is optimal: the class of disjointness graphs of
(possibly self-intersecting) 2-way infinite polygonal 3-chains is χ-bounded.

▶ Theorem 5. Let G be the disjointness graph of an arrangement of 2-way infinite polygonal
3-chains in the plane. Then we have χ(G) ≤ (ω(G))3 + ω(G).

In fact, we will establish Theorem 5 in a somewhat stronger setting: for arrangements of
2-way infinite curves that consist of three x-monotone pieces; see Theorem 7. With more
work, the bound in Theorem 5 and Theorem 7 can be improved to χ(G) ≤ (ω(G))3.

In the polygonal case, our proof is algorithmic. There is a polynomial time algorithm
in the number of the polygonal chains, which, for every k, either finds k pairwise disjoint
chains or produces a coloring of their disjointness graph with at most k3 colors.

In Sections 2 and 3, we establish Theorems 1 and 3, respectively. Section 4 contains the
proof of Theorem 5. We end this note with a few remarks and open problems.

In what follows, we informally call a polygonal 2-chain a V-shape and a polygonal 3-chain
a Z-shape.

2 Shift graphs – Proof of Theorem 1

For every n > 1, Erdős and Hajnal [8] defined the shift graph Sn, as follows. The vertex set
of Sn consist of all pairs (a, b) with 1 ≤ a < b ≤ n, where two vertices, (a, b) and (a′, b′), are
connected by an edge if and only if b = a′ or b′ = a. It is easy to see that Sn is triangle-free
and that χ(Sn) = ⌈log2 n⌉.

Order the vertices (a, b) of Sn according to the co-lexicographic order, that is, let (a, b) ≺
(a′, b′) if b < b′, or if b = b′ and a < a′. Let v1, . . . , v(n

2) denote the vertices of Sn, listed in
this order.

Let vi = (a, b) be a vertex. Its neighbors having a smaller index are (a′, b′) with b′ = a.
No such neighbor exist if and only if a = 1. Notice that, for any i,
1. either vi has no neighbor vj with a smaller index j < i,
2. or there exist integers c(i), d(i) with 1 ≤ c(i) ≤ d(i) < i such that for every j < i,

vjvi ∈ E(Sn) ⇐⇒ c(i) ≤ j ≤ d(i).

Recall that a 1-way infinite V-shape is the union of a half-line and a segment that share
an endpoint. In the rest of this proof, for simplicity, we call a 1-way infinite V-shape long.

Our goal is to assign a long V-shape to each vertex of Sn so that two V-shapes are disjoint
if and only if the corresponding vertices are adjacent in Sn. This will prove Theorem 1,
because in any finite collection of long V-shapes, we can cut the half-lines short so that

SoCG 2022



56:4 Disjointness Graphs of Short Polygonal Chains

the resulting (bounded) V-shapes have the same intersection structure. Hence, we obtain a
collection of V-shapes with Sn as its disjointness graph, and the graphs Sn are triangle-free
and their chromatic numbers tend to infinity, as n → ∞.

We assign the long V-shape Vi to the vertex vi of Sn recursively starting at V1. Let hi

and si denote the half-line and the straight-line segment, respectively, comprising Vi and let
us denote their common endpoint by pi = (xi, yi). We write qi for the other endpoint of si.

During the recursive process, we will maintain the following properties:
(i) pi is the left end point of both hi and si;
(ii) both hi and si have positive slopes;
(iii) si is above hi, i.e., the slope of si is larger than the slope of hi;
(iv) for any i > j, the slope of hi will be smaller than the slope of hj ;
(v) for any i > j, we have xi < xj and yi < yj .

Let V1 be any long V-shape satisfying the above conditions. Let i > 1, and assume
recursively that we have already constructed the long V-shapes V1, . . . , Vi−1 satisfying the
above requirements. Next, we define Vi. We distinguish two cases:

Case A: The vertex vi = (a, b) has no neighbor with a smaller index, i.e., we have a = 1.

Let ℓ be a horizontal line passing above p1. It will intersect every Vj with 1 ≤ j < i.
Slightly rotate ℓ about any fixed point of the plane so that the resulting line ℓ′ has a very
small positive slope, smaller than the slope of hi−1 and it still intersects all Vj for j < i.
Choose a point pi = (xi, yi) ∈ ℓ,, very far to the left, so that xi < xi−1 and yi < yi−1. Let hi

be the part of ℓ′ to the right of pi, and let qi be a point to the right of pi which lies above hi.
One can choose qi such that the segment si = piqi does not intersect any of the earlier Vj .

p
c(i)−1

p
i

d(i)+1
p d(i)

p

i
s

h i

q
i

Vi

Figure 1 Inserting Vi.

Case B: The vertex vi = (a, b) has at least one neighbor of smaller index, i.e., a > 1.

Let c(i) and d(i) be the constants satisfying property (2) above and let ℓ be a horizontal
line that passes below pd(i) and above pd(i)+1. In case d(i) + 1 = i we could simply choose ℓ

to be an arbitrary horizontal line below pd(i), but the careful reader may notice that this
case never occurs as no vertex vi in Sn is adjacent to vi−1.

The line ℓ intersects every Vj with d(i) < j < i and is disjoint from all Vj with j ≤ d(i).
Slightly rotate ℓ about any fixed point in the plane so that the resulting line ℓ′ has a very
small positive slope, smaller than that of hi−1 and it still intersects the same previously
defined long V-shapes Vj . Select a slope α which is larger than the slope of hc(i), but smaller
than the slope of hc(i)−1, if hc(i)−1 exists, that is, if c(i) > 1.
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For any j < i, let ℓj and ℓ′
j denote the lines of slope α through pj and qj , respectively.

Choose a point pi = (xi, yi) ∈ ℓ′ so far to the left that we have xi < xi−1, yi < yi−1 and pi

lies above the lines ℓj and ℓ′
j , for all j ≤ i.

Let hi be the part of ℓ′ to the right of pi. Let f be the half-line of slope α, whose left
endpoint is pi. Then f goes strictly above all sj for j < i and also of all hj with c(i) ≤ j < i,
but will intersect all hj with 1 ≤ j < c(i). Choose qi on f to the right of these intersection
points, then the segment si = piqi also intersects all hj with 1 ≤ j < c(i).

Notice that the long V-shape Vi consisting of hi and si constructed above satisfies the
conditions (i)–(v) listed above, further it intersects exactly those other long V-shapes Vj

(j < i) for which vj and vi are not adjacent in Sn. See Fig. 1. This means that the
disjointness graph of the collection of the

(
n
2
)

long V-shapes constructed above is exactly Sn.
This completes the proof of Theorem 1. ◀

In the above proof, we have constructed a collection of 1-way infinite V-shapes in which
each pair intersects at most twice. With a little additional care (namely, by insisting that
each qi is higher than p1), we can achieve the following. For 1 ≤ i < j ≤

(
n
2
)
, with vi = (a, b)

and vj = (a′, b′), we have
if a′ < b, then Vi and Vj intersect once;
if a′ = b, then Vi and Vj are disjoint;
if a′ > b, then Vi and Vj intersect twice.

3 Hypergraphs of large girth – Proof of Theorem 3

A hypergraph H is a pair (V, E), where V is a finite vertex set, E is the set of hyperedges,
that is, a collection of subsets of V . It is called n-uniform if each of its hyperedges has n

vertices. In a proper coloring of H, every vertex is assigned a color in such a way that none
of the hyperedges is monochromatic. The chromatic number of H is the smallest number of
colors used in a proper coloring of H. A Berge-cycle in H consists of a sequence of distinct
vertices v1, . . . , vk and a sequence of distinct hyperedges e1, . . . , ek ∈ E with vi, vi+1 ∈ ei for
1 ≤ i < k and vk, v1 ∈ ek. Here k is the length of the Berge-cycle and it is assumed to be at
least 2. The girth of a hypergraph is the length of its shortest Berge-cycle (or infinite if it
has no Berge-cycle).

For the proof, we need the following classical result.

▶ Erdős-Hajnal Theorem ([9], Corollary 13.4). For any integers n ≥ 2, g ≥ 3, and k ≥ 2,
there exists an n-uniform hypergraph with girth at least g and chromatic number at least k.

Theorem 3 is a direct consequence of part (5) of the following statement.

▶ Lemma 6. For any integers g ≥ 3, k ≥ 2, there is a natural number n = n(g, k) such
that for every set P of n points on the x-axis in R2 and for every real c > 0, there is an
arrangement Z = Z(P ) of n Z-shapes satisfying the following conditions.
(1) Each point in P is the endpoint of exactly one Z-shape in Z.
(2) Apart from a single endpoint in P , every Z-shape in Z lies strictly above the x-axis.
(3) No Z-shape in Z is self-intersecting and any two cross at most twice.
(4) For any Z-shape z = pqrs ∈ Z whose vertices p, q, r, s have x-coordinates xp, xq, xr, xs,

and p ∈ P , we have xq + c < xp < xs < xr − c.
(5) The disjointness graph of the Z-shapes in Z has girth at least g and chromatic number at

least k.

SoCG 2022
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Proof. For each g, we prove the lemma by induction on k. We fix g ≥ 3. For k = 2,
n(g, 2) = 2 is a good choice. For any two points on the x-axis and any c > 0, we can take two
disjoint Z-shapes satisfying the requirements. Their disjointness graph is K2, its chromatic
number 2 and it has infinite girth. See Fig. 2.

pp
1 2
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q

1

s

q
2 2r r

12

Figure 2 The case k = 2.

Suppose now that k ≥ 2 and that we have already proved the statement for k. Now we
prove it for k + 1. Let n = n(g, k).

By the Erdős-Hajnal Theorem stated above, there exists an n-uniform hypergraph H

whose girth is at least g and chromatic number at least k + 1. Let v1, v2, . . . , vm denote the
vertices of H and e1, e2, . . . , eM the hyperedges of H. Let N = nM + m. We show that
n(g, k + 1) = N satisfies the requirements of the lemma.

Let P be an arbitrary set of N points on the x-axis and let c > 0. For any vi ∈ V (H),
let di denote the degree of vi, that is, the number of hyperedges that contain vi. Obviously,
we have

m∑
i=1

(di + 1) = nM + m = N.

Choose m disjoint open intervals, I1, . . . , Im, such that each Ii contains precisely di + 1
points of P . For every i, 1 ≤ i ≤ m, we associate the interval Ii with vertex vi of H. Let pi

denote the leftmost point in P ∩ Ii. For every i and j (1 ≤ i ≤ m, 1 ≤ j ≤ M) for which
vi ∈ ej , assign a distinct point pj

i ∈ (P ∩ Ii) \ {pi} to the pair (vi, ej).

Next, we construct a set of N Z-shapes that satisfy conditions (1)–(5) of the lemma
with parameters g, k + 1, and c. We construct subsets Zj of our eventual set of Z-shapes
for 1 ≤ j ≤ M . We construct these sets one by one starting at Z1 and using the inductive
hypothesis for various subsets of P of size n and with a parameter c′ that we choose to be
larger than c plus the diameter of P .

For j = 1, consider the n = n(g, k)-element point set P ′
1 = {p1

i : vi ∈ e1}. By the
induction hypothesis, there is a set Z1 of Z-shapes such that one of their endpoints belongs
to P ′

1, and they satisfy conditions (1)–(5) with parameter c′.
Suppose that j > 1 and that we have already constructed the sets of Z-shapes Z1, . . . , Zj−1.

Now let P ′
j = {pj

i : vi ∈ ej}. By the induction hypothesis, there is a set Z ′
j of Z-shapes

with one of their endpoints in P ′ which satisfy conditions (1)–(5) with parameter c′. Apply
an affine transformation (x, y) → (x, y/Kj) to all Z-shapes in Z ′

j , where Kj is a very large
constant to be specified later. The resulting family of Z-shapes, Zj , still satisfies all defining
conditions and, by choosing Kj large enough, we can achieve that every element of Zj

intersects every Z-shape in
⋃

h<j Zh exactly once or twice.

The set
⋃M

j=1 Zj contains exactly one Z-shape starting at each point pj
i . We still need

to add one Z-shape zi = piqirisi starting at each point pi, 1 ≤ i ≤ m. We define them
recursively for i = 1, . . . , m. We make sure that each zi = piqirisi satisfies the following
properties.
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(i) The segment qiri is horizontal and the y-coordinate of its points is larger than the
y-coordinate of any point of any Z-shape in (

⋃M
j=1 Zj) ∪ {zh : 1 ≤ h < i}.

(ii) The slope of piqi is −εi, the slope of risi is εi, for a sufficiently small constant εi > 0,
to be specified later.

(iii) The x-coordinate of si is equal to the x-coordinate of the right endpoint of Ii, and the
y-coordinate of si is εi.

Clearly, if we choose εi > 0 sufficiently small, then zi is disjoint from all Z-shapes in⋃M
j=1 Zj that start in Ii, but it intersects exactly once all other Z-shapes already defined.

Also, zi satisfies conditions (2) and (3), and it satisfies condition (4), too, provided that εi is
sufficiently small. See Fig. 3.

{
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j

1

1

pp
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Figure 3 Inserting z1.

As we maintained conditions (1)–(4) throughout the construction, it remains only to
prove that the disjointness graph G of Z satisfies condition (5) with k + 1 in place of k.

To this end, let us explore the structure of G. The vertices of G can be partitioned into
the sets Zj for 1 ≤ j ≤ M and the independent set W = {zi : 1 ≤ i ≤ m}. Further, there is
no edge between two distinct sets Zj and Zj′ . There is a single edge from zi to Zj if vi ∈ ej ,
and there is no edge from zi to Zj otherwise. Finally, each vertex in Zj is adjacent to exactly
one of the vertices zi, and it satisfies vi ∈ ej .

The structure above implies that each cycle C of G is either contained in a single set
Zj , or it passes through several sets Zj and several vertices in W . In the former case,
by our assumption on the disjointness graph of Zj , the length of C is at most g. In the
latter case, let us record the vertices of W and the sets Zj as the cycle passes through
them: zi1 , Zj1 , zi2 , Zj2 , . . . , zih

, Zjh
. Here, the vertices vi1 , . . . , vih

are all distinct and, if the
same is true for the hyperedges ej1 , . . . , ejh

, then they form a Berge-cycle of length h in the
hypergraph H. If the hyperedges are not all distinct, then an even shorter Berge-cycle is
formed by any repetition-free interval between two occurrences of the same hyperedge. By
our assumption on the girth of H, we have h ≥ g in both cases, so all cycles of G have length
at least g, as required.

Suppose now that there is a proper k-coloring of G. Restricting it to the set W (and
identifying each zi ∈ W with the vertex vi of H), we obtain a k-coloring of the vertices of
the hypergraph H. By our assumption, this cannot be a proper coloring. Therefore, there
is a monochromatic hyperedge ej . In this case, no vertex in Zj can receive the common
color of the vertices of ej , so we have a proper (k − 1)-coloring of Zj . This contradicts our
assumption on the disjointness graph of Zj and, thus, proves that G has no proper k-coloring.
This concludes the proof of Lemma 6 and, hence, of Theorem 3. ◀

James Davies [5] used a very similar construction to show that there are intersection
graphs of axis-parallel boxes and intersection graphs of lines in 3-space with arbitrarily large
girths and chromatic numbers.

SoCG 2022
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4 Two-way infinite polygonal chains – Proof of Theorem 5

As we pointed out at the end of Section 2, the class of disjointness graphs of 1-way infinite
V-shapes is not χ-bounded. But if we require both ends of a V-shape to be long, the situation
will change.

A 2-way infinite polygonal k-chain is a continuous curve in the plane consisting of two
half-lines connected by an (ordinary) polygonal (k − 2)-chain. We can relax this definition
by requiring only that each of the k pieces are x-monotone, and the first and the last pieces
have unbounded projections to the x-axis. In this case, the curve is called a 2-way infinite
k-monotone chain.

According to this definition, a 2-way infinite polygonal 2-chain (V-shape)) whose half-lines
are not vertical is a 2-way infinite 2-monotone chain. It can also be regarded as a degenerate
2-way infinite 3-monotone chain. Note that by performing a suitable rotation, if necessary,
we can always assume that none of the half-line pieces of a finite arrangement of 2-way
infinite polygonal k-chains is vertical. Therefore, the following theorem implies Theorem 5.

A

B

B

A

A
B

Figure 4 The three partial orders: A is to the left of B, below B, and above B.

▶ Theorem 7. The disjointness graph G of a finite arrangement of 2-way infinite 3-monotone
chains satisfies χ(G) ≤ (ω(G))3 + ω(G).

Proof. We call a (possibly self-intersecting) 2-way infinite k-monotone chain A wide if it
intersects every vertical line. A chain A with this property divides the plane into (open)
connected components, exactly one of which contains a vertical half-line pointing upwards.
We call this component the upside of A. For any two wide 2-way infinite k-monotone chains,
A and B, we say that A is higher than B if A is contained in the upside of A. In this
case, the upside of B is also contained in the upside of A. Therefore, the relation “higher”
defines a partial order on any arrangement of wide k-monotone chains. According to this
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partial order, only disjoint pairs are comparable. Since any two disjoint wide 2-way infinite
k-monotone chains are comparable, the disjointness graph of any collection of wide 2-way
infinite k-monotone chains is a comparability graph.

Now we turn our attention to the non-wide case. The complement of a non-wide 2-way
infinite k-monotone chain A has precisely one connected component which contains a vertical
line. We call this component the large component. The chain A is said to be a right chain if
A is to the right of the vertical lines in the large component, otherwise it is a left chain. If A

is a right chain, we call its large component the left side of A. On the other hand, if A is
a left chain, we call the union of all connected components of the complement of A, other
than its large component, the left side of A.

For any two non-wide 2-way infinite k-monotone chains, A and B, we say that A is to
the left of B if both A and its left side are contained in the left side of B. Obviously, this
relation also defines a partial order, with respect to which only disjoint non-wide chains are
comparable. It is not true that any two disjoint non-wide 2-way infinite 3-monotone chains
are comparable. Therefore, we need to introduce two further partial orders.

For any two subsets of the plane, A and B, we say that A is below B (A is above B, resp.),
if the following two conditions are satisfied:
1. every vertical line that intersects A also intersects B;
2. if a ∈ A ∩ ℓ and b ∈ B ∩ ℓ for a vertical line ℓ, then the y-coordinate of a is strictly lower

(higher, resp.) than the y-coordinate of b.
Note that “above” and “below” are two separate partial orders and not the inverses of each
other. It is clear that both of these relations are partial orders on arbitrary planar sets and
that any two comparable sets are disjoint. See Fig. 4.

▶ Lemma 8. Any two disjoint non-wide 2-way infinite 3-monotone chains, A and B, are
comparable by one of the three relations “below”, “above”, or “to the left”.

To establish the lemma, note that non-wide 2-way infinite 3-monotone chains must be,
in fact, 2-way infinite 2-monotone chains. A left chain with this property is the union of
the graphs of two continuous functions f1, f2 : (−∞, a] → R, where f1(a) = f2(a). Let
B be another left chain obtained as the union of the graphs of two continuous functions
g1, g2 : (−∞, b] → R, and assume that A and B are disjoint. We can assume, by symmetry,
that b ≤ a. Consider g1(b) = g2(b). It is easy to see that if it is below both f1(b) and f2(b),
then B is below A. If it is above both f1(b) and f2(b), then B is above A. Finally, if g1(b) is
between f1(b) and f2(b), then B is to the left of A. A similar argument applies if both A

and B are right chains. Finally, if a left chain is disjoint from a right chain, then the left
chain is always to the left of the right chain. This completes the proof of Lemma 8.

Now we return to the proof of Theorem 7. Fix a family F of 2-way infinite 3-monotone
chains, and let G denote their disjointness graph. Let F1 and F2 consist of the wide and
non-wide elements of F , respectively. We have seen that the disjointness graph G[F1] of F1
is a comparability graph. Comparability graphs are perfect, so we have χ(G[F1]) = ω(G[F1]).
We also proved that the comparability graph G[F2] of F2 is the union of three comparability
graphs. This implies that χ(G[F2]) ≤ (ω(G[F2]))3.

For the entire graph G, we have

χ(G) ≤ χ(G[F1]) + χ(G[F2]) ≤ ω(G[F1]) + (ω(G[F2]))3 ≤ ω(G) + (ω(G))3,

as required. This completes the proof of the theorem. ◀
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In [25], for every k ≥ 2, we constructed arrangements of x-monotone curves such that
their left endpoints lie on the y-axis and their disjointness graphs have clique number k

and chromatic number
(

k+1
2

)
. We can extend these curves to the left by adding horizontal

half-lines without changing their intersection structure. Traversing the resulting curves twice,
we obtain families of 2-way infinite 2-monotone chains such that their disjointness graphs
satisfy χ(G) =

(
ω(G)+1

2
)
.

We were unable to improve on the bound in Theorem 7 even for 2-way infinite polygonal
3-chains. The best lower bound we have in this case is ω(G)(log 5/ log 2)−1 ≈ ω(G)1.32, and it
follows from a construction in [19].

5 Concluding remarks

A. Given an arrangement C of curves in the plane and a line ℓ, we say that C is grounded on
ℓ if every member c ∈ C lies in the same closed half-plane bounded by ℓ, and c has precisely
one point in common with ℓ, which is one of its endpoints.

The chromatic number of intersection graphs of grounded curves has been extensively
studied (see [6], for a survey), but less is known about the corresponding problem for
disjointness graphs. In the proof of Theorem 1, we constructed arrangements of 1-way
infinite V-shapes whose disjointness graphs are triangle-free and whose chromatic numbers
are arbitrarily large. Applying a suitable projective transformation, these arrangements can
be turned into arrangements of grounded V-shapes.

B. In Problem 2, we asked whether the disjointness graph of an arrangement of V-shapes can
have simultaneously arbitrarily high chromatic number and girth. The following statement
provides an affirmative answer to a relaxed version of this question. The odd-girth of a graph
is the length of the shortest odd cycle in it (or infinite if the graph is bipartite).

▶ Proposition 9. There exist arrangements of polygonal 2-chains in the plane whose dis-
jointness graphs have arbitrarily large odd-girths and chromatic numbers.

Proof. The proof is based on the same idea as the Proof of Theorem 1, where we represented
the shift graph Sn as the disjointness graph of an arrangement of V-shapes. The vertices
of Sn are pairs (a, b) of integers 1 ≤ a < b ≤ n, so they can be associated with the edges of
the complete graph Kn. Thus, the vertices of Sn associated with the edges of a subgraph
G ⊆ Kn induce a subgraph G∗ ⊆ Sn. It is easy to verify that for any G ⊆ Kn, we have
(1) χ(G∗) ≥ log(χ(G)) and
(2) the odd-girth of G∗ is strictly larger than the odd-girth of G.

For any integers g and k, there exist n = n(g, k) and a subgraph G ⊂ Kn with girth (and,
hence, odd-girth) at least g and chromatic number at least k. By properties (1) and (2),
the odd-girth of the corresponding induced subgraph G∗ of Sn will be larger than g, and its
chromatic number will be at least log k. The graph G∗ inherits from Sn a representation as
a disjointness graph of V-shapes. ◀

Unfortunately, getting rid of short even cycles, even 4-cycles, looks impossible by using
this simple trick.

C. The arrangements of polygonal curves proving Theorems 1 and 3 have the property
that any two of them have at most two points in common. It would be interesting to decide
whether these theorems remain true if we insist that the curves are single-crossing, that is,
any two curves have at most one point in common at which they properly cross.
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▶ Conjecture 10. The class of disjointness graphs of single-crossing polygonal 2-chains is
χ-bounded.

Mütze et al. [23] proved that the same statement is false for polygonal 3-chains.

D. To prove Theorem 1, we established that the shift graph Sn, a triangle-free graph
of unbounded chromatic number, can be obtained as the disjointness graph of V-shapes.
However, the fractional chromatic number of Sn is bounded: it is smaller than 4 for every n.
Do there exist triangle-free disjointness graphs of V-shapes with arbitrarily large fractional
chromatic number?

Analogously, our construction for Theorem 3 gives disjointness graphs with bounded
fractional chromatic number. Do there exist disjointness graphs of Z-shapes with arbitrarily
large girth and fractional chromatic number?
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