
Sparse Euclidean Spanners with Tiny Diameter:
A Tight Lower Bound
Hung Le #

University of Massachusetts, Amherst, MA, USA

Lazar Milenković #

Tel Aviv University, Israel

Shay Solomon #

Tel Aviv University, Israel

Abstract
In STOC’95 [ADMSS95] Arya et al. showed that any set of n points in R admits a (1 + ϵ)-
spanner with hop-diameter at most 2 (respectively, 3) and O(n log n) edges (resp., O(n log log n)
edges). They also gave a general upper bound tradeoff of hop-diameter at most k and O(nαk(n))
edges, for any k ≥ 2. The function αk is the inverse of a certain Ackermann-style function
at the ⌊k/2⌋th level of the primitive recursive hierarchy, where α0(n) = ⌈n/2⌉, α1(n) =

⌈√
n
⌉
,

α2(n) = ⌈log n⌉, α3(n) = ⌈log log n⌉, α4(n) = log∗ n, α5(n) = ⌊ 1
2 log∗ n⌋, . . . . Roughly speaking,

for k ≥ 2 the function αk is close to ⌊ k−2
2 ⌋-iterated log-star function, i.e., log with ⌊ k−2

2 ⌋ stars.
Also, α2α(n)+4(n) ≤ 4, where α(n) is the one-parameter inverse Ackermann function, which is an
extremely slowly growing function.

Whether or not this tradeoff is tight has remained open, even for the cases k = 2 and k = 3.
Two lower bounds are known: The first applies only to spanners with stretch 1 and the second is
sub-optimal and applies only to sufficiently large (constant) values of k. In this paper we prove a
tight lower bound for any constant k: For any fixed ϵ > 0, any (1 + ϵ)-spanner for the uniform line
metric with hop-diameter at most k must have at least Ω(nαk(n)) edges.
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1 Introduction

Consider a set S of n points in Rd and a real number t ≥ 1. A weighted graph G = (S, E, w)
in which the weight function is given by the Euclidean distance, i.e., w(x, y) = ∥x − y∥
for each e = (x, y) ∈ E, is called a geometric graph. We say that a geometric graph G

is a t-spanner for S if for every pair p, q ∈ S of distinct points, there is a path in G

between p and q whose weight (i.e., the sum of all edge weights in it) is at most t times
the Euclidean distance ∥p − q∥ between p and q. Such a path is called a t-spanner path.
The problem of constructing Euclidean spanners has been studied intensively over the years
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54:2 Sparse Euclidean Spanners with Tiny Diameter: A Tight Lower Bound

[15, 25, 4, 10, 16, 5, 17, 32, 2, 11, 18, 35, 34, 19, 27]. Euclidean spanners are of importance
both in theory and in practice, as they enable approximation of the complete Euclidean graph
in a more succinct form; in particular, they find a plethora of applications, e.g., in geometric
approximation algorithms, network topology design, geometric distance oracles, distributed
systems, design of parallel machines, and other areas [16, 28, 32, 20, 22, 21, 23, 29]. We refer
the reader to the book by Narasimhan and Smid [30], which provides a thorough account on
Euclidean spanners and their applications.

In terms of applications, the most basic requirement from a spanner (besides achieving a
small stretch) is to be sparse, i.e., to have only a small number of edges. However, for many
applications, the spanner is required to preserve some additional properties of the underlying
complete graph. One such property, which plays a key role in various applications (such as
to routing protocols) [6, 1, 2, 11, 18, 24], is the hop-diameter : a t-spanner for S is said to
have an hop-diameter of k if, for any p, q ∈ S, there is a t-spanner path between p and q

with at most k edges (or hops).

1.1 Known upper bounds
1-spanners for tree metrics. We denote the tree metric induced by an n-vertex (possibly
weighted) rooted tree (T, rt) by MT . A spanning subgraph G of MT is said to be a 1-spanner
for T , if for every pair of vertices, their distance in G is equal to their distance in T . The
problem of constructing 1-spanners for tree metrics is a fundamental one, and has been
studied quite extensively over the years, also in more general settings, such as planar metrics
[38], general metrics [37] and general graphs [8]. This problem is also intimately related to
the extremely well-studied problems of computing partial-sums and online product queries
in semigroup and their variants (see [36, 39, 3, 13, 31, 2], and the references therein).

Alon and Schieber [3] and Bodlaender et al. [9] showed that for any n-point tree metric, a
1-spanner with diameter 2 (respectively, 3) and O(n log n) edges (resp., O(n log log n) edges)
can be built within time linear in its size. For k ≥ 4, Alon and Schieber [3] showed that
1-spanners with diameter at most 2k and O(nαk(n)) edges can be built in O(nαk(n)) time.
The function αk is the inverse of a certain Ackermann-style function at the ⌊k/2⌋th level
of the primitive recursive hierarchy, where α0(n) = ⌈n/2⌉, α1(n) = ⌈

√
n⌉, α2(n) = ⌈log n⌉,

α3(n) = ⌈log log n⌉, α4(n) = log∗ n, α5(n) =
⌊ 1

2 log∗ n
⌋
, etc. Roughly speaking, for k ≥ 2

the function αk is close to ⌊ k−2
2 ⌋-iterated log-star function, i.e., log with ⌊ k−2

2 ⌋ stars. Also,
α2α(n)+2(n) ≤ 4, where α(n) is the one-parameter inverse Ackermann function, which is an
extremely slowly growing function. (The functions αk(n) and α(n) are formally defined in
[3, 33]; see also Section 2 of the full version [26].) Bodlaender et al. [9] constructed 1-spanners
with diameter at most k and O(nαk(n)) edges, with a high running time. Solomon [33]
gave a construction that achieved the best of both worlds: a tradeoff of k versus O(nαk(n))
between the hop-diameter and the number of edges in linear time of O(nαk(n)).

Alternative constructions, given by Yao [39] for line metrics and later extended by
Chazelle [12] to general tree metrics, achieve a tradeoff of m edges versus Θ(α(m, n)) hop-
diameter, where α(m, n) is the standard two-parameter inverse Ackermann function [36]; see
also Section 2 of the full version [26]. However, these constructions provide 1-spanners with
diameter Γ′ · k rather than 2k or k, for some constant Γ′ > 30.

(1 + ϵ)-spanners. In STOC’95 Arya et al. [5] proved the so-called “Dumbbell Theorem”,
which states that, for any d-dimensional Euclidean space, a (1 + ϵ, O( log(1/ϵ)

ϵd ))-tree cover can
be constructed in O( log(1/ϵ)

ϵd ·n log n+ 1
ϵ2d ·n) time; see Section 2 for the definition of tree cover.

The Dummbell Theorem implies that any construction of 1-spanners for tree metrics can be



H. Le, L. Milenković, and S. Solomon 54:3

translated into a construction of Euclidean (1 + ϵ)-spanners. Applying the construction of
1-spanners for tree metrics from [33], this gives rise to an optimal O(n log n)-time construction
(in the algebraic computation tree (ACT) model1) of Euclidean (1 + ϵ)-spanners. This result
can be generalized (albeit not in the ACT model) for the wider family of doubling metrics,
by using the tree cover theorem of Bartal et al. [7], which generalizes the Dumbbell Theorem
of [5] for arbitrary doubling metrics.

1.2 Known lower bounds
The first lower bound on 1-spanners for tree metrics was given by Yao [39] and it estab-
lishes a tradeoff of m edges versus hop-diameter of Ω(α(m, n)) for the uniform line metric.
Alon and Schieber [3] gave a stronger lower bound on 1-spanners for the uniform line metric:
hop-diameter k versus Ω(nαk(n)) edges, for any k; it is easily shown that this lower bound
implies that of [39] (see Appendix A of the full version [26]), but the converse is not true.

The above lower bounds apply to 1-spanners. There is also a lower bound on (1 + ϵ)-
spanners that applies to line metrics, by Chan and Gupta [11], which extends that of [39]: m

edges versus hop-diameter of Ω(α(m, n)). As mentioned already concerning this tradeoff, it
only provides a meaningful bound for sufficiently large values of hop-diameter (above say 30),
and it does not apply to hop-diameter values that approach 1, which is the focus of this work.
More specifically, it can be used to show that any (1 + ϵ)-spanner for a certain line metric
with hop-diameter at most k must have Ω(nα2k+6(n)) edges. When k = 2 (resp. k = 3),
this gives Ω(n log∗∗∗∗ n) (resp. Ω(n log∗∗∗∗∗ n)) edges, which is far from the upper bound of
O(n log n) (resp., O(n log log n)). Furthermore, the line metric used in the proof of [11] is
not as basic as the uniform line metric – it is derived from hierarchically well-separated trees
(HSTs), and to achieve the result for line metrics, an embedding from HSTs to the line with
an appropriate separation parameter is employed. The resulting line metric is very far from
a uniform one and its aspect ratio2 depends on the stretch – it will be super-polynomial
whenever ϵ is sufficiently small or sufficiently large; of course, the aspect ratio of the uniform
line metric (which is the metric used by [39, 3]) is linear in n. As point sets arising in real-life
applications (e.g., for various random distributions) have polynomially bounded aspect ratio,
it is natural to ask whether one can achieve a lower bound for a point set of polynomial
aspect ratio.

1.3 Our contribution
We prove that any (1 + ϵ)-spanner for the uniform line metric with hop-diameter k must
have at least Ω(nαk(n)) edges, for any constant k ≥ 2.

▶ Theorem 1. For any positive integer n, any integer k ≥ 2 and any ϵ ∈ [0, 1/2], any
(1 + ϵ)-spanner with hop-diameter k for the uniform line metric with n points must contain
at least Ω( n

26⌊k/2⌋ αk(n)) edges.

Interestingly, our lower bound applies also to any ϵ > 1/2, where the bound on the number of
edges reduces linearly with ϵ, i.e., it becomes Ω(nαk(n)/ϵ). We stress that our lower bound
instance, namely the uniform line metric, does not depend on ϵ, and the lower bound that it
provides holds simultaneously for all values of ϵ.

1 Refer to Chapter 3 in [30] for the definition of the ACT model. A matching lower bound of Ω(n log n)
on the time needed to construct Euclidean spanners is given in [14].

2 The aspect ratio of a metric is the ratio of the maximum pairwise distance to the minimum one.
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Although our lower bound on the number of edges coincides with Ω(nαk(n)) only for
constant k, we note that the values of k of interest range between 1 and O(α(n)), where
α(·) is a very slowly growing function, e.g., α(n) is asymptotically much smaller than log∗ n.
Indeed, as mentioned, for k = 2α(n) + 4, we have α2α(n)+4(n) ≤ 4, and clearly any spanner
must have Ω(n) edges. Thus the gap between our lower bound on the number of edges and
Ω(nαk(n)), namely, a multiplicative factor of 26⌊k/2⌋, which in particular is no greater than
2O(α(n)), is very small.

For technical reasons we prove a more general lower bound, stated in Theorem 17. In
particular, we need to consider a more general notion of Steiner spanners3, and to prove the
lower bound for a certain family of line metrics to which the uniform line metric belongs;
Theorem 1 follows directly from Theorem 17. See Section 2 for the definitions.

For constant values of k, Theorem 1 strengthens the lower bound shown by [3], which
applies only to stretch 1, whereas our tradeoff holds for arbitrary stretch. Whether or not
the term 1

26⌊k/2⌋ in the bound on the number of edges in Theorem 1 can be removed is left
open by our work. As mentioned before, we show in Appendix A of the full version [26] that
this tradeoff implies the tradeoff by [39] (for stretch 1) and [11] (for larger stretch).

The proof overview appears in the full version [26].

2 Preliminaries

▶ Definition 2 (Tree covers). Let MX = (X, δX) be an arbitrary metric space. We say that a
weighted tree T is a dominating tree for MX if X ⊆ V (T ) and it holds that δT (x, y) ≥ δX(x, y),
for every x, y ∈ X. For γ ≥ 1 and an integer ζ ≥ 1, a (γ, ζ)-tree cover of MX = (X, δX) is
a collection of ζ dominating trees for MX , such that for every x, y ∈ X, there exists a tree T

with dT (u, v) ≤ γ · δX(u, v); we say that the stretch between x and y in T is at most γ, and
the parameter γ is referred to as the stretch of the tree cover.

▶ Definition 3 (Uniform line metric). A uniform line metric U = (Z, d) is a metric on a set
of integer points such that the distance between two points a, b ∈ Z, denoted by d(a, b) is their
Euclidean distance, which is |a − b|. For two integers l, r ∈ Z, such that l ≤ r, we define a
uniform line metric on an interval [l, r], denoted by U(l, r), as a subspace of U consisting of
all the integer points k, such that l ≤ k ≤ r. We use U(n) to denote a uniform line metric
on the interval [1, n].

Although we aim to prove the lower bound for uniform line metric, the inductive nature
of our argument requires several generalizations of the considered metric space and spanner.

▶ Definition 4 (t-sparse line metric). Let l and r be two integers such that l < r. We call
metric space U((l, r), t) t-sparse if:

It is a subspace of U(l, r).
Each of the consecutive intervals of [l, r] of size t ([l, l + t − 1], [l + t, l + 2t − 1], . . . )
contains exactly one point. These intervals are called ((l, r), t)-intervals and the point
inside each such interval is called representative of the interval.

▶ Remark 5. Throughout the paper, we will always consider Steiner spanners that can contain
arbitrary points from the uniform line metric.

3 A Steiner spanner for a point set S is a spanner that may contain additional Steiner points (which do
not belong to S). Clearly, a lower bound for Steiner spanners also applies to ordinary spanners.
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▶ Definition 6 (Global hop-diameter). For any two integers l, r such that r = l + nt − 1,
let U((l, r), t) be a t-sparse line metric with n points and let X be a subspace of U((l, r), t).
An edge that connects two points is ((l, r), t)-global if it has endpoints in two different
((l, r), t)-intervals of U((l, r), t). A spanner on X with stretch (1 + ϵ) has its ((l, r), t)-global
hop-diameter bounded by k if every pair of points in X has a path of stretch at most (1 + ϵ)
consisting of at most k ((l, r), t)-global edges.

For ease of presentation, we focus on ϵ ∈ [0, 1/2], as this is the basic regime. Our argument
naturally extends to any ϵ > 1/2, with the lower bound degrading by a factor of 1/ϵ.

▶ Lemma 7 (Separation property). Let l, r, t ∈ N, l ≤ r, t ≥ 1 and let i := ⌈ 1+ϵ/2
1+ϵ l + ϵ/2

1+ϵ r⌉,
and j := ⌊ ϵ/2

1+ϵ l + 1+ϵ/2
1+ϵ r⌋. Let a, b be two points in U((l, r), t) such that i ≤ a < b ≤ j. Then,

any (1 + ϵ)-spanner path between a and b contains points strictly inside [l, r].

▶ Corollary 8. For every integer N ≥ 34 and any t-sparse line metric U((1, N), t), any
spanner path with stretch at most 3/2 between metric points a and b such that ⌊N/4⌋ ≤ a ≤
b ≤ ⌈3N/4⌉ contains points strictly inside [1, N ].

3 Warm-up: lower bounds for hop-diameters 2 and 3

In this section, we prove the lower bound for cases k = 2 (Lemma 10 in Section 3.1) and k = 3
(Lemma 13 in Section 3.2). In fact, we prove more general statements (Theorems 9 and 12),
which apply not only to uniform line metric, but to subspaces of t-sparse line metrics, where
a constant fraction of the points is missing. We use these general statements in Section 4, to
prove the result for general k (cf. Theorem 17).

3.1 Hop diameter 2
▶ Theorem 9. For any two positive integers n ≥ 1000 and t, and any two integers l, r such
that r = l + nt − 1, let U((l, r), t) be a t-sparse line metric with n points and let X be a
subspace of U((l, r), t) which contains at least 31

32 n points. Then, for any choice of ϵ ∈ [0, 1/2],
any spanner on X with ((l, r), t)-global hop-diameter 2 and stretch 1 + ϵ contains at least
T ′

2(n) ≥ n
256 · α2(n) ((l, r), t)-global edges which have both endpoints inside [l, r].

The theorem is proved in three steps. First, we prove Lemma 10, which concerns uniform
line metrics. Then, we prove Lemma 11 for a subspace that contains at least 31/32 fraction
of the points of the original metric. In the third step, we observe that the same argument
applies for t-sparse line metrics.

▶ Lemma 10. For any positive integer n, and any two integers l, r such that r = l + n − 1,
let U(l, r) be a uniform line metric with n points. Then, for any choice of ϵ ∈ [0, 1/2], any
spanner on U(l, r) with hop-diameter 2 and stretch 1 + ϵ contains at least T2(n) ≥ 1

16 · n log n

edges which have both endpoints inside [l, r].

Proof. Suppose without loss of generality that we are working on the uniform line metric
U(1, n). Let H be an arbitrary (1 + ϵ)-spanner for U(1, n) with hop-diameter 2.

For the base case, we take 64 ≤ n ≤ 127. In that case our lower bound is n
16 · log n < n−1,

which is a trivial lower bound for the number of edges in H, since every two consecutive
points must be connected via a direct edge.

For the proof of the inductive step, we can assume that n ≥ 128. We would like to prove
that the number of spanner edges in H is lower bounded by T2(n), which satisfies recurrence
T2(n) = 2T2(⌊n/2⌋) + 11n/64 with the base case T2(n) = (n/16) log n when n ≤ 128. Split

SoCG 2022
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the interval into two disjoint parts: the left part [1, ⌊n/2⌋] and the right part [⌊n/2⌋ + 1, n].
From the induction hypothesis on the uniform line metric U(1, ⌊n/2⌋) we know that any
spanner with hop-diameter 2 and stretch 1 + ϵ contains at least T2(⌊n/2⌋) edges that have
both endpoints inside [1, ⌊n/2⌋]. Similarly, any spanner for U(⌊n/2⌋ + 1, n) contains at least
T2(⌊n/2⌋) edges that have both endpoints inside [⌊n/2⌋ + 1, n]. This means that the sets of
edges considered on the left side and the right side are disjoint. We will show below that
there are Ω(n) edges that have one point on the left and the other on the right.

Consider the set L, consisting of the points inside [n/4, ⌊n/2⌋] and the set R, consisting
of the points in [⌊n/2⌋ + 1, 3n/4]. From Corollary 8, since n is sufficiently large, we know
that any (1 + ϵ)-spanner path connecting point a ∈ L and b ∈ R has to have all its points
inside [1, n]. We use term cross edge to denote any edge that has one endpoint in the left part
and the other endpoint in the right part. We claim that any spanner with hop-diameter at
most 2 and stretch 1 + ϵ has to contain at least min(|L|, |R|) cross edges. For this particular
choice of |L| and |R|, we have that min(|L|, |R|) = |R|. Suppose for contradiction that the
spanner contains less than |R| cross edges. This means that at least one point in x ∈ R is
not connected via a direct edge to any point on the left. Observe that, for every point l ∈ L,
the 2-hop spanner path between x and l must be of the form (x, rl, l) for some point rl in the
right set. It follows that every l ∈ L induces a different cross edge (rl, l). Thus, the number
of cross edges, denoted by |EC |, is |R| ≥ |L|, which is a contradiction. From the definition of
L and R, we know that min(|L|, |R|) ≥ n/4 − 2, implying that the number of cross edges is
at least n/4 − 2 ≥ 11n/64, for all n ≥ 26. (See also Figure 1 for an illustration.) Thus, we
have: T2(n) = 2T2(⌊n/2⌋) + 11n

64 ≥ 2 · ⌊n/2⌋
16 log⌊n/2⌋ + 11n

64 ≥ n
16 · log n as claimed. ◀

Figure 1 An illustration of the first two levels of the recurrence for the lower bound for k = 2
and ϵ = 1/2. We split the interval U(1, n) into two disjoint parts. In Lemma 10, we show that there
will be at least Ω(n) cross edges, which are the spanner edges having endpoints in both parts. The
values iL and jL are set according to Corollary 8 so that the spanner edges crossing µ(n) cannot be
used for the left set; otherwise the resulting stretch will be bigger than 1 + ϵ.

▶ Lemma 11 (Proof omitted; see the full version [26]). For any positive integer n, and any
two integers l, r such that r = l + n − 1, let U(l, r) be a uniform line metric with n points
and let X be a subspace of U(l, r) which contains at least 31

32 n points. Then, for any choice
of ϵ ∈ [0, 1/2], any spanner on X with hop-diameter 2 and stretch 1 + ϵ contains at least
T ′

2(n) ≥ 0.48 · n
16 log n edges which have both endpoints inside [l, r].
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Completing the proof of Theorem 9. Note that α2(n) = ⌈log n⌉ and hence, we will show
that T ′

2(n) ≥ n
256 ⌈log n⌉. Suppose without loss of generality that we are working on any

t-sparse line metric with n points, U((1, N), t), where N = nt. Let H be an arbitrary
(1 + ϵ)-spanner for U((1, N), t) with ((1, N), t)-global hop-diameter 2. We would like to lower
bound the number of ((l, r), t)-global edges required for H.

Since ϵ ∈ [0, 1/2], every two consecutive points in U((1, N), t), except for the leftmost
and the rightmost two, have to be connected by a spanner path which has all its endpoints
inside the interval [1, N ]. This implies that the number of spanner edges is at least n − 3,
which is in turn greater than (n/16) log n, for any 64 ≤ n ≤ 127.

Let M = ⌊n/2⌋t and let L be the set of ((l, r), t)-intervals that are fully inside [N/4, M ]
and R be the set of ((l, r), t)-intervals that are fully inside [M, 3N/4]. In that case, the number
of ((l, r), t)-intervals inside L can be lower bounded by |L| ≥ ⌊(M − N/4 + 1)/t⌋ ≥ n/4 − 2,
which is the bound that we used for L. Similarly, we obtain that |R| ≥ n/4 − 1. The
cross edges will be those edges that contain one endpoint in [1, M ] and the other endpoint
in [M + 1, N ]. It follows that the cross edges are also ((l, r), t)-global edges. The same
argument can be applied to lower bound the number of cross edges, implying the lower
bound on the number of ((l, r), t)-global edges. The same proof as in Lemma 11 gives
T ′

2(n) ≥ 0.48 · n
16 log n ≥ n

256 ⌈log n⌉, when n ≥ 1000, as desired. ◀

3.2 Hop diameter 3
▶ Theorem 12. For any two positive integers n ≥ 1000 and t, and any two integers l, r

such that r = l + nt − 1, let U((l, r), t) be a t-sparse line metric with n points and let X

be a subspace of U((l, r), t) which contains at least 127
128 n points. Then, for any choice of

ϵ ∈ [0, 1/2], any spanner on X with ((l, r), t)-global hop-diameter 3 and stretch 1 + ϵ contains
at least T ′

3(n) ≥ n
1024 · α3(n) ((l, r), t)-global edges which have both endpoints inside [l, r].

The theorem is proved in three steps. First, we prove Lemma 13, which concerns uniform
line metrics. Then, we prove Lemma 16 for a subspace that contains at least 31/32 fraction
of the points of the original metric. In the third step, we observe that the same argument
applies for t-sparse line metrics.

▶ Lemma 13. For any positive integer n, and any two integers l, r such that r = l + n − 1,
let U(l, r) be a uniform line metric with n points. Then, for any choice of ϵ ∈ [0, 1/2], any
spanner on U(l, r) with hop-diameter 3 and stretch 1 + ϵ contains at least T3(n) ≥ n

40 log log n

edges which have both endpoints inside [l, r].

Proof. Suppose without loss of generality that we are working on the uniform line metric
U(1, n). Let H be an arbitrary (1 + ϵ)-spanner for U(1, n) with hop-diameter 3.

For the base case, we assume that 11 ≤ n ≤ 127. We have that n
40 log log n < n − 1, which

is a trivial lower bound on the number of edges of H, since every two consecutive points have
to be connected via a direct edge.

We now assume that n ≥ 128. Divide the the interval [1, n] into consecutive subintervals
containing b := ⌊

√
n⌋ points: [1, b], [b + 1, 2b], etc. Our goal is to show that the number

of spanner edges is lower bounded by T3(n), which satisfies recurrence T3(n) =
⌊

n

⌊√
n⌋

⌋
·

T3 (⌊
√

n⌋) + n/18, with the base case T3(n) = (n/40) log log n when n < 128.
For any j such that 1 ≤ j ≤ ⌊n/b⌋, the interval spanned by the jth subinterval is

[(j − 1)b + 1, jb]. Using the induction hypothesis, any spanner on U((j − 1)b + 1, jb) contains
at least T3(b) edges that are inside [(j − 1)b + 1, jb]. This means that all the subintervals

SoCG 2022
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will contribute at least ⌊n/b⌋ · T3(b) spanner edges that are mutually disjoint and in addition
do not go outside of [1, n]. We will show that there are Ω(n) edges that have endpoints in
two different subintervals, called cross edges. By definition, the set of cross edges is disjoint
from the set of spanner edges considered in the term ⌊n/b⌋ · T3(b).

Consider the points that are within interval [n/4, 3n/4]. From Corollary 8, since n is
sufficiently large, we know that any (1 + ϵ)-spanner path connecting two points in [n/4, 3n/4]
has to have all its points inside [1, n].

We call a point global if it is adjacent to at least one cross edge. Otherwise, the point is
non-global. The following two claims bound the number of cross edges induced by global and
non-global points, respectively.

▷ Claim 14. Suppose that among points inside interval [n/4, 3n/4], m of them are global.
Then, they induce at least m/2 spanner edges.

The claim is true since each global point contributes at least one cross edge and each edge is
counted at most twice.

▷ Claim 15. Suppose that among points inside interval [n/4, 3n/4], m of them are non-global.
Then, they induce at least

(
m/

√
n

2
)

cross edges.

Proof. Consider two sets A and B such that A contains a non-global point a ∈ [n/4, 3n/4]
and B contains a non-global point b ∈ [n/4, 3n/4]. Since a is non-global, it can be connected
via an edge either to a point inside of A or to a point outside of [1, n]. Similarly, b can be
connected to either a point inside of B or to a point outside of [1, n]. From Corollary 8, and
since a, b ∈ [n/4, 3n/4], we know that every spanner path with stretch (1 + ϵ) connecting a

and b has to use points inside [1, n]. This means that the spanner path with stretch (1 + ϵ)
has to have a form (a, a′, b′, b), where a′ ∈ A and b′ ∈ B. In other words, we have to connect
points a′ and b′ using a cross edge; furthermore every pair of intervals containing at least
one non-global point induce one such edge and for every pair this edge is different.

Each interval contains at most b = ⌊
√

n⌋ non-global points, so the number of sets
containing at least one non-global point is at least m/b. Interconnecting all the sets requires(

m/b
2

)
≥

(
m/

√
n

2
)

edges. ◁

The number of points inside [n/4, 3n/4] is at least n/2 + 1, but we shall use a slightly
weaker lower bound of 15n/32. We consider two complementary cases. In the first case, at
least 1/4 of 15n/32 points are global. Claim 14 implies that the number of the cross edges
induced by these points is at least 15n/256. The other case is that at least 3/4 fraction of
15n/32 points are non-global. Claim 15 implies that for a sufficiently large n, the number
of cross edges induced by these points can be lower bounded by 15n/256 as well. In other
words, we have shown that in both cases, the number of cross edges is at least 15

256 n > n
18 .

Thus, we have: T3(n) ≥
⌊

n

⌊√
n⌋

⌋
· T3 (⌊

√
n⌋) + n

18 ≥ ⌊
√

n⌋ · ⌊
√

n⌋
40 (log log⌊

√
n⌋) + n

18 , which is

at most n
40 log log n, as claimed. ◀

▶ Lemma 16 (Proof omitted; see the full version [26]). For any positive integer n, and any
two integers l, r such that r = l + n − 1, let U(l, r) be a uniform line metric with n points
and let X be a subspace of U(l, r) which contains at least 127

128 n points. Then, for any choice
of ϵ ∈ [0, 1/2], any spanner on X with hop-diameter 3 and stretch 1 + ϵ contains at least
T ′

3(n) ≥ 0.18 · n
40 log log n edges which have both endpoints inside [l, r].
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Completing the proof of Theorem 12. Note that α3(n) = ⌈log log n⌉ and hence, we will
show that T ′

3(n) ≥ n
1024 · ⌈log log n⌉. Suppose without loss of generality that we are working

on any t-sparse line metric with n points, U((1, N), t), where N = nt. Let H be an arbitrary
(1 + ϵ)-spanner for U((1, N), t) with ((1, N), t)-global hop-diameter 3. We would like to lower
bound the number of ((l, r), t)-global edges required for H.

Since ϵ ∈ [0, 1/2], every two consecutive points in U((1, N), t), except for the leftmost
and the rightmost two, have to be connected by a spanner path which has all its endpoints
inside the interval [1, N ]. This implies that the number of spanner edges is at least n − 3,
which is in turn greater than (n/40) log log n, for any 11 ≤ n ≤ 127.

Let consider the set of ((l, r), t)-intervals that are fully inside [N/4, 3N/4]. The number
of such intervals can be lower bounded by ((3N/4 − N/4)/t − 2 ≥ n/2 − 2, which is larger
than the bound of 15n/32, which we used. The cross edges will become ((1, N), t)-global
edges and the same argument can be applied to lower bound their number. The same proof
in Lemma 16 gives:

T ′
3(n) ≥ 0.18 · n

40 log log n ≥ n

1024 · ⌈log log n⌉

when n ≥ 1000, as desired. ◀

4 Lower bound for constant hop-diameter

We proceed to prove our main result, which is a generalization of Theorem 1. In particular,
invoking Theorem 17 stated below where X is the uniform line metric U(1, n) gives Theorem 1.

▶ Theorem 17. For any two positive integers n ≥ 1000 and t, and any two integers l, r

such that r = l + nt − 1, let U((l, r), t) be a t-sparse line metric with n points and let X be a
subspace of U((l, r), t) which contains at least n(1 − 1

2k+4 ) points. Then, for any choice of
ϵ ∈ [0, 1/2] and any integer k ≥ 2, any spanner on X with ((l, r), t)-global hop-diameter k

and stretch 1 + ϵ contains at least T ′
k(n) ≥ n

26⌊k/2⌋+4 · αk(n) ((l, r), t)-global edges which have
both endpoints inside [l, r].

Proof. We will prove the theorem by double induction on k ≥ 2 and n. The base case for
k = 2 and k = 3 and every n is proved in Theorems 9 and 12, respectively.

For every k ≥ 4, we shall prove the following two assertions.
1. For any two positive integers n and t, and any two integers l, r such that r = l + nt − 1,

let U((l, r), t) be a t-sparse line metric with n points. Then, for any choice of ϵ ∈ [0, 1/2],
any spanner on U((l, r), t) with ((l, r), t)-global hop-diameter k and stretch 1 + ϵ contains
at least Tk(n) ≥ n

26⌊k/2⌋+2 αk(n) ((l, r), t)-global edges which have both endpoints inside
[l, r].

2. For any two positive integers n and t, and any two integers l, r such that r = l +nt−1, let
U((l, r), t) be a t-sparse line metric with n points and let X be a subspace of U((l, r), t)
which contains at least n(1 − 1

2k+4 ) points. Then, for any choice of ϵ ∈ [0, 1/2], any
spanner on X with ((l, r), t)-global hop-diameter k and stretch 1 + ϵ contains at least
T ′

k(n) ≥ n
26⌊k/2⌋+4 · αk(n) ((l, r), t)-global edges which have both endpoints inside [l, r].

For every k ≥ 4, we first prove the first assertion, which relies on the second assertion
for k − 2. Then, we prove the second assertion which relies on the first assertion for k. We
proceed to prove assertion 1.
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Proof of assertion 1. Suppose without loss of generality that we are working on any
t-sparse line metric U((1, N), t). Let H be an arbitrary (1 + ϵ)-spanner for U((1, N), t) with
((1, N), t)-global hop-diameter k.

Let M be A((k − 2)/2, 4) if k is even and B(⌊(k − 2)/2⌋, 4) if k is odd. For the base
case take 4 ≤ n < max(M, 10000). We consider n − 2 points in U((1, N), t): all the points
from the metric, excluding the leftmost and the rightmost one. Since ϵ ∈ [0, 1/2], every two
consecutive points among the considered n−2 points have to be connected by a spanner path
which has all its endpoints inside the interval [1, N ]. This implies that the number of spanner
edges is at least n − 3. Then n

26⌊k/2⌋+2 αk(n), which is at most n
26⌊k/2⌋+2 log∗(n) ≤ n − 3.

Next, we prove the induction step. We shall assume the correctness of the two statements:
(i) for k and all smaller values of n, and (ii) for k′ < k and all values of n. Let N := nt and let
b := αk−2(n). Divide the the interval [1, N ] into consecutive ((1, N), bt)-intervals containing
b points: [1, bt], [bt + 1, 2bt], etc. We would like to prove that the number of spanner edges is
lower bounded by recurrence

Tk(n) =
⌊

n

αk−2(n)

⌋
· Tk(αk−2(n)) + n

26⌊k/2⌋+1 ,

with the base case Tk(n) = n
26⌊k/2⌋+2 αk(n) for n ≤ 10000.

There are ⌊n/b⌋ ((1, N), bt)-intervals containing exactly b points. For any j such that
1 ≤ j ≤ ⌊n/b⌋, the jth ((1, N), bt)-interval is [(j − 1)bt + 1, jbt]. Using inductively the
assertion 1 for k and a value b < n, any spanner on U((j − 1)bt + 1, jbt) contains at least
Tk(b) edges that are inside [(j − 1)bt + 1, jbt]. This means that all the ((1, N), bt)-intervals
will contribute at least ⌊n/b⌋ · Tk(b) spanner edges that are mutually disjoint and in addition
do not go outside of [1, N ].

We will show that there are Ω(n/23k) edges that have endpoints in two different ((1, N), bt)-
intervals, i.e. edges that are ((1, N), bt)-global. Since these edges are ((1, N), bt)-global, they
are disjoint from the spanner edges considered in the term ⌊n/b⌋ · T3(b). We shall focus on
points that are inside ((1, N), bt)-intervals fully inside [N/4, 3N/4]; denote the number of
such points by p. We have p ≥ n/2 − 2αk−2(n), but we will use a weaker bound:

p ≥ n/4. (1)

▶ Definition 18. A point that is incident on at least one ((1, N), bt)-global edge is called a
((1, N), bt)-global point.

Among the p points inside inside [N/4, 3N/4], denote by p′ the number of ((1, N), bt)-
global points. Let p′′ = p − p′, and m be the number of ((1, N), bt)-global edges incident on
the p points. Since each ((1, N), bt)-global point contributes at least one ((1, N), bt)-global
edge and each such edge is counted at most twice, we have

m ≥ p′/2. (2)

Next, we prove that

m ≥ n

26⌊k/2⌋+1 , if
⌈

p′′

b

⌉
≥

(
1 − 1

2k+2

)
·
⌈p

b

⌉
(3)

Recall that we have divided [1, N ] into consecutive ((1, N), bt)-intervals containing b :=
αk−2(n) points. Consider now all the ((1, N), bt)-intervals that are fully inside [N/4, 3N/4],
and denote this collection of ((1, N), bt)-intervals by C. Let l′ (resp. r′) be the leftmost (resp.
rightmost) point of the leftmost (resp. rightmost) interval in C; note that l′ and r′ may
not coincide with points of the input metric, they are simply the leftmost and rightmost
boundaries of the intervals in C.
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Constructing a new line metric. For each ((1, N), bt)-interval I in C, if I contains a point
that is not ((1, N), bt)-global, assign an arbitrary such point in I as its representative; other-
wise, assign an arbitrary point as its representative. The collection C of ((1, N), bt)-intervals,
together with the set of representatives uniquely defines (bt)-sparse line metric, U((l′, r′), bt).
This metric has ⌈p/b⌉ ((1, N), bt)-intervals, since there are ⌈p/b⌉ intervals covering p points in
the input t-sparse metric U((1, N), t) inside the interval [N/4, 3N/4]. Recall from Definition 4
that a bt-sparse metric is uniquely defined given its ((1, N), bt)-intervals and representatives.
Let X be the subspace of U((l′, r′), bt) induced by the representatives of all intervals in C
that contain points that are not ((1, N), bt)-global and using Equation (3), we have

|X| ≥
⌈

p′′

b

⌉
≥

(
1 − 1

2k+2

)
·
⌈p

b

⌉
(4)

Recall that H is an arbitrary (1 + ϵ)-spanner for U((1, N), t) with ((1, N), t)-global
hop-diameter k. Let a and b be two arbitrary points in X, and denote their corresponding
((1, N), bt)-intervals by A and B, respectively. Since a (reps., b) is not ((1, N), bt)-global,
it can be adjacent either to points outside of [1, N ] or to points inside A (resp., B). By
Corollary 8 and since a, b ∈ [N/4, 3N/4], any spanner path with stretch (1 + ϵ) connecting a

and b must remain inside [1, N ]. Hence, any (1 + ϵ)-spanner path in H between a and b is of
the form (a, a′, . . . , b′, b), where a′ ∈ A (resp. b′ ∈ B). Consider now the same path in the
metric X. It has at most k hops, where the first and the last edges are not ((1, N), bt)-global.
Thus, although this path contains at most k ((1, N), t)-global edges in U((1, N), t), it has at
most k − 2 ((1, N), bt)-global edges in X. It follows that H is a (Steiner) (1 + ϵ)-spanner
with ((1, N), bt)-global hop-diameter k − 2 for X. See Figure 2 for an illustration.

Denote by n′ := ⌈p/b⌉ the number of points in U((l′, r′), bt). Since p ≥ n/4, it follows that
n′ ≥ ⌈n/(4b)⌉. By (4), X is a subspace of U((l′, r′), bt), and its size is at least a (1 − 1/2k+2)-
fraction (i.e., a (1 − 1/2(k−2)+4)-fraction) of that of U((l′, r′), bt). Hence, by the induction
hypothesis of assertion 2 for k − 2, we know that any spanner on X with ((l′, r′), bt)-global
hop-diameter k − 2 and stretch 1 + ϵ contains at least T ′

k−2(n′) ≥ n′

26⌊(k−2)/2⌋+4 · αk−2(n′)
((l′, r′), bt)-global edges which have both endpoints inside [l′, r′]. Since every ((l′, r′), bt)-
global edge is also a ((1, N), bt)-global edge, we conclude with the following lower bound on
the number of ((1, N), bt)-global edges required by H:

T ′
k−2 (n′) ≥ n′

26⌊(k−2)/2⌋+4 · αk−2 (n′)

≥ n

4 · 26⌊(k−2)/2⌋+4 · αk−2(n)
· αk−2

(⌈
n

4αk−2(n)

⌉)
≥ n

8 · 26⌊(k−2)/2⌋+4

= n

26⌊k/2⌋+1

The last inequality follows since, when k ≥ 4, the ratio between αk−2(⌈n/4αk−2(n)⌉) and
αk−2(n) can be bounded by 1/2 for sufficiently large n (i.e. larger than the value considered
in the base case). In other word, we have shown that whenever ⌈p′′/b⌉ ≥ (1−1/2k+2) · ⌈p/b⌉,
the number of the ((1, N), bt)-global edges incident on the p points inside [N/4, 3N/4] is
lower bounded by n/26⌊k/2⌋+1; we have thus proved (3).

Recall (see (1)) that we lower bounded the number p of points inside [N/4, 3N/4] as
p ≥ n/4. We consider two complementary cases: either ⌈p′′/b⌉ ≥ (1 − 1/2k+2) · ⌈p/b⌉, or
⌈p′′/b⌉ < (1 − 1/2k+2) · ⌈p/b⌉, where p′′ is the number of points in [N/4, 3N/4] that are not
((1, N), bt)-global. In the former case (i.e. when ⌈p′′/b⌉ ≥ (1 − 1/2k+2)), by (3), we have
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the number of ((1, N), bt)-global edges is lower bounded by n/26⌊k/2⌋+1. In the latter case,
we have p−p′

b − 1 <
⌊

p−p′

b

⌋
= p′′

b <
(
1 − 1

2k+2

)
·
⌈

p
b

⌉
<

(
1 − 1

2k+2

)
· p

b + 1. In other words,
we can lower bound p′ by p/2k+2 − 2b. From (2) and using that p ≥ n/4, the number of
((1, N), bt)-global edges is lower bounded by n/2k+5 − αk−2(n). Since the former bound is
always smaller for n sufficiently large (i.e. larger than the value considered in the base case),
we shall use it as a lower bound on the number of ((1, N), bt)-global edges required by H.
We note that every ((1, N), bt)-global edge is also ((1, N), t)-global, as required by assertion
1. It follows that

Tk(n) ≥
⌊

n

αk−2(n)

⌋
· αk−2(n)

26⌊k/2⌋+2 · αk(αk−2(n)) + n

26⌊k/2⌋+1

≥
(

n

αk−2(n) − 1
)

· αk−2(n)
26⌊k/2⌋+2 · (αk(n) − 1) + n

26⌊k/2⌋+1

≥ n

26⌊k/2⌋+2 αk(n)

For the second inequality we have used that αk(n) = 1 + αk(αk−2(n)), and for the third,
the fact that αk−2(n) · (αk(n) − 1) ≤ n for sufficiently large n (i.e. larger than the value
considered in the base case). This concludes the proof of assertion 1.

(a)

(b)

(c)

Figure 2 Constructing a new line metric and invoking the induction hypothesis. (a) We have
n = 32, k = 5, and a 2-sparse line metric U((1, 64), 2) with representatives of each ((1, 64), 2)-interval
highlighted in green. (b) Since b = αk−2(n) = 3, we consider a collection of ((1, 64), 6)-global
intervals inside [N/4, 3N/4], denoted by C. The seventh block contains only ((1, 64), 6)-global points
(highlighted in red) as each of them is incident on a ((1, 64), 6)-global edge. (c) The new line metric
is 6-sparse line metric U((19, 48), 6) consisting of 4 green points. Finally, we use the induction
hypothesis of assertion 2 for k = 3 to lower bound the number of ((1, N), 6)-global edges. A spanner
path between x1 and x2 consisting of 5 edges, 3 of which are ((1, N), 6) global is depicted.

Proof of assertion 2. Suppose without loss of generality that we are working on any
t-sparse line metric U((1, N), t). Let H be an arbitrary (1 + ϵ)-spanner for U(1, N) with
((1, N), t)-global hop-diameter k. We shall inductively assume the correctness of assertion 1
and assertion 2: (i) for k and all smaller values of n, and (ii) for k′ < k and all values of n.

Recall the recurrence we used in the proof of assertion 1, Tk(n) = ⌊n/αk−2(n)⌋ ·
Tk(αk−2(n)) + n

26⌊k/2⌋+1 , which provides a lower bound on the number of ((l, r), t)-global
edges of H. The base case for this recurrence is whenever n < 10000. Consider the recursion
tree of Tk(n) and denote its depth by ℓ and the number of nodes at depth i by ci. In addition,
denote by ni,j the number of points in the jth interval of the ith level and by ei,j the number
of ((1, N), t)-global edges contributed by this interval. We have that the contribution of an
interval is ni,j/26⌊k/2⌋+1. By definition, we have Tk(n) =

∑ℓ
i=1

∑ci

j=1 ei,j ≥ n
26⌊k/2⌋+2 αk(n).
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Let H ′ be any (1 + ϵ) spanner on X with ((1, N), t)-global hop-diameter k. To lower
bound the number of spanner edges in H ′, we now consider the same recursion tree, but
take into consideration the fact that we are working on metric X, which is a subspace of
U((1, N), t). This means that at each level of recursion, instead of n points, there is at least
n(1 − 1/2k+4) points in X. The contribution of the jth interval in the ith level is denoted
by e′

i,j . We call the jth interval in the ith level good if it contains at least ni,j(1 − 1/2k+3)
points from X. (Recall that we have used ni,j to denote the number of points from U(l, r)
in the jth interval of the ith level.) From the definition of good interval and the fact that
each level of recurrence contains at least n(1 − 1/2k+4) points, it follows that there are at
least n/2 points contained in the good intervals at the ith level. Denote the collection of all
the good intervals at the ith level by Γi.

Recall that we are working with recurrence Tk(n) = ⌊n/αk−2(n)⌋ ·Tk(αk−2(n))+ n
26⌊k/2⌋+1 .

In particular, in the first level of recurrence, we consider the contribution of n points, whereas
in the second level, we consider the contribution of ⌊n/αk−2(n)⌋ · αk−2(n) points. Denote by
ni the number of points whose contribution we consider in the ith level of recurrence. Then,
we have n1 = n, n2 = ⌊n/αk−2(n)⌋ · αk−2(n) ≥ n − αk−2(n). Denote by α

(j)
k−2(n) value of

αk−2(·) iterated on n, i.e. α
(0)
k−2(n) = n, α

(1)
k−2(n) = αk−2(n), α

(2)
k−2(n) = αk−2(αk−2(n)), etc.

In general, for i ≥ 2, we have ni ≥ n−
∑i

j=2
nα

(j−1)
k−2 (n)

α
(j−2)
k−2 (n)

≥ n−n·
∑i

j=2
⌈log(j−1)(n)⌉
⌈log(j−2)(n)⌉ . We observe

that there is an exponential decay between the numerator and denominator of terms in each
summand and that terms grow with j. Since we do not consider intervals in the base case, we
also know that ⌈log(i−1)(n)⌉ ≥ 10000, meaning that the largest term in the sum is 10000/29999.
By observing that every two consecutive terms increase by a factor larger than 2, we conclude
that ni ≥ 0.99n. Since at each level there are at least n/2 points inside of good intervals, this
means that there are at least 0.49n points inside of good intervals which were not ignored.
Denote by Γi the set of good intervals in the ith level whose contribution is not ignored.
Then we have T ′

k(n) =
∑ℓ

i=1
∑c′

i
j=1 e′

i,j ≥
∑ℓ

i=1
∑

j∈Γi
ei,j ≥ 0.49 · Tk(n) ≥ n

26⌊k/2⌋+4 αk(n).
This concludes the proof of assertion 2. We have thus completed the inductive step for k. ◀
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