
Point Separation and Obstacle Removal by Finding
and Hitting Odd Cycles
Neeraj Kumar #

Department of Computer Science, University of California, Santa Barbara, CA, USA

Daniel Lokshtanov #

Department of Computer Science, University of California, Santa Barbara, CA, USA

Saket Saurabh #

Institute of Mathematical Sciences, Chennai, India
University of Bergen, Norway

Subhash Suri #

Department of Computer Science, University of California, Santa Barbara, CA, USA

Jie Xue #

New York University Shanghai, China

Abstract
Suppose we are given a pair of points s, t and a set S of n geometric objects in the plane, called
obstacles. We show that in polynomial time one can construct an auxiliary (multi-)graph G with
vertex set S and every edge labeled from {0, 1}, such that a set Sd ⊆ S of obstacles separates
s from t if and only if G[Sd] contains a cycle whose sum of labels is odd. Using this structural
characterization of separating sets of obstacles we obtain the following algorithmic results.

In the Obstacle-removal problem the task is to find a curve in the plane connecting s to t

intersecting at most q obstacles. We give a 2.3146qnO(1) algorithm for Obstacle-removal, signifi-
cantly improving upon the previously best known qO(q3)nO(1) algorithm of Eiben and Lokshtanov
(SoCG’20). We also obtain an alternative proof of a constant factor approximation algorithm for
Obstacle-removal, substantially simplifying the arguments of Kumar et al. (SODA’21).

In the Generalized Points-separation problem input consists of the set S of obstacles, a point
set A of k points and p pairs (s1, t1), . . . (sp, tp) of points from A. The task is to find a minimum
subset Sr ⊆ S such that for every i, every curve from si to ti intersects at least one obstacle in
Sr. We obtain 2O(p)nO(k)-time algorithm for Generalized Points-separation. This resolves an
open problem of Cabello and Giannopoulos (SoCG’13), who asked about the existence of such an
algorithm for the special case where (s1, t1), . . . (sp, tp) contains all the pairs of points in A. Finally,
we improve the running time of our algorithm to f(p, k) · nO(

√
k) when the obstacles are unit disks,

where f(p, k) = 2O(p)kO(k), and show that, assuming the Exponential Time Hypothesis (ETH), the
running time dependence on k of our algorithms is essentially optimal.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases points-separation, min color path, constraint removal, barrier resillience

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.52

Related Version Full Version: https://arxiv.org/abs/2203.08193

Funding Daniel Lokshtanov: BSF award 2018302 and NSF award CCF-2008838
Saket Saurabh: European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 819416), and Swarnajayanti Fellowship
(No. DST/SJF/MSA01/2017-18).
Subhash Suri: NSF award CCF-1814172

© Neeraj Kumar, Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 52; pp. 52:1–52:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neeraj@cs.ucsb.edu
mailto:daniello@ucsb.edu
mailto:saket@imsc.res.in
mailto:suri@cs.ucsb.edu
mailto:jiexue@nyu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2022.52
https://arxiv.org/abs/2203.08193
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Algorithms for Point Separation and Obstacle Removal

1 Introduction

Suppose we are given a set S of geometric objects in the plane, and we want to modify S in
order to achieve certain guarantees on coverage of paths between a given set A of points. Such
problems have received significant interest in sensor networks [2, 4, 6, 16], robotics [9, 12] and
computational geometry [3, 8, 11]. There have been two closely related lines of work on this
topic: (i) remove a smallest number of obstacles from S to satisfy reachability requirements for
points in A, and (ii) retain a smallest number of obstacles to satisfy separation requirements
for points in A.

In the most basic version of these problems the set A consists of just two points s and
t. Specifically, in Obstacle-removal the task is to find a smallest possible set Sd ⊆ S
such that there is a curve from s to t in the plane avoiding all obstacles in S \ Sd. In
2-Points-separation the task is to find a smallest set Sr ⊆ S such that every curve from
s to t in the plane intersects at least one obstacle in Sr. It is quite natural to require the
obstacles in the set S to be connected. Indeed, removing the connectivity requirements
results in problems that are computationally intractable [8, 10,21].

When the obstacles are required to be connected Obstacle-removal remains NP-
hard, but becomes more tractable from the perspective of approximation algorithms and
parameterized algorithms. For approximation algorithms, Bereg and Kirkpatrick [4] designed
a constant factor approximation for unit disk obstacles. Chan and Kirkpatrick [6,7] improved
the approximation factor for unit disk obstacles. Korman et al. [14] obtained a (1 + ϵ)-
approximation algorithm for the case when obstacles are fat, similarly sized, and no point in
the plane is contained in more than a constant number of obstacles. Whether a constant factor
approximation exists for general obstacles was posed repeatedly as an open problem [3,6, 7]
before it was resolved in the affirmative by a subset of the authors of this article [21].

For parameterized algorithms, Korman et al. [14] designed an algorithm for Obstacle-
removal with running time f(q)nO(1) for determining whether there exists a solution Sd of
size at most q, when obstacles are fat, similarly sized, and no point in the plane is contained
in more than a constant number of obstacles. Eiben and Kanj [8,10] generalized the result of
Korman et al. [14], and posed as an open problem the existence of a f(q)nO(1) time algorithm
for Obstacle-removal with general connected obtacles. Eiben and Lokshtanov [11] resolved
this problem in the affirmative, providing an algorithm with running time qO(q3)nO(1).

Like Obstacle-removal, the 2-Points-separation problem becomes more tractable
when the obstacles are connected. Cabello and Giannopoulos [5] showed that 2-Points-
separation with connected obstacles is polynomial time solvable. They show that the more
general Points-separation problem where we are given a point set A and asked to find
a minimum size set Sr ⊆ S that separates every pair of points in A, is NP-complete, even
when all obstacles are unit disks. They leave as an open problem to determine the existence
of f(k)nO(1) and f(k)ng(k) time algorithms for Points-separation, where k = |A|.

Our Results and Techniques

Our main result is a structural characterization of separating sets of obstacles in terms of
odd cycles in an auxiliary graph.

▶ Theorem 1. There exists a polynomial time algorithm that takes as input a set S of
obstacles in the plane, two points s and t, and outputs a (multi-)graph G with vertex set S
and every edge labeled from {0, 1}, such that a set Sd ⊆ S of obstacles separates s from t if
and only if G[Sd] contains a cycle whose sum of labels is odd.

N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:3

The proof of Theorem 1 is an application of the well known fact that a closed curve
separates s from t if and only if it crosses a curve from s to t an odd number of times.
Theorem 1 allows us to re-prove, improve, and generalize a number of results for Obstacle-
removal, 2-Points-separation and Points-separation in a remarkably simple way.
More concretely, we obtain the following results.

There exists a polynomial time algorithm for 2-Points-separation.

Here is the proof: construct the graph G from Theorem 1 and find the shortest odd
cycle, which is easy to do in polynomial time. This re-proves the main result of Cabello
and Giannopoulos [5]. Next we turn to Obstacle-removal, and obtain an improved
parameterized algorithm and simplified approximation algorithms.

There exists an algorithm for Obstacle-removal that determines whether there exists
a solution size set S of size at most q in time 2.3146qnO(1).

Here is a proof sketch: construct the graph G from Theorem 1 and determine whether
there exists a subset Sd of S of size at most q such that G − Sd does not have any odd label
cycle. This can be done in time 2.3146qnO(1) using the algorithm of Lokshtanov et al. [18]
for Odd Cycle Transversal.1 This parameterized algorithm improves over the previously
best known parameterized algorithm for Obstacle-removal of Eiben and Lokshtanov [11]
with running time qO(q3)nO(1).

If we run an approximation algorithm for Odd Cycle Transversal on G instead of a
parameterized algorithm, we immediately obtain an approximation algorithm for Obstacle-
removal with the same ratio. Thus, the O(

√
log n)-approximation algorithm for Odd

Cycle Transversal [1, 15] implies a O(
√

log n)-approximation algorithm for Obstacle-
removal as well. Going a little deeper we observe that the structure of G implies that the
standard Linear Programming relaxation of Odd Cycle Transversal on G only has a
constant integrality gap. This yields a constant factor approximation for Obstacle-removal,
substantially simplifying the approximation algorithm of Kumar et al [21].

There exists a a constant factor approximation for Obstacle-removal.

Finally we turn our attention back to a generalization of Points-separation, called
Generalized Points-separation. Here, instead of separating all k points in A from each
other, we are only required to separate p specific pairs (s1, t1), . . . , (sp, tp) of points in A

(which are specified in the input). We apply Theorem 1 several times, each time with the
same obstacle set S, but with a different pair (si, ti). Let Gi be the graph resulting from
the construction with the pair (si, ti). Finding a minimum size set Sr of obstacles that
separates si from ti for every i now amounts to finding a minimum size set Sr such that
Gi[Sr] contains an odd label cycle for every i. The graph in the construction of Theorem 1
does not depend on the points (si, ti) - only the labels of the edges do. Thus G1, . . . , Gp are
copies of the same graph G, but with p different edge labelings. Our task now is to find a
subgraph of G on the minimum number of vertices, such that the subgraph contains an odd
labeled cycle with respect to each one of the p labels. We show that such a subgraph has at
most O(p) vertices of degree at least 3 and use this to obtain a 2O(p2)nO(p) time algorithm

1 The only reason this is a proof sketch rather than a proof is that the algorithm of Lokshtanov et al. [18]
works for unlabeled graphs, while G has edges with labels 0 or 1. This difference can be worked out
using a well-known and simple trick of subdividing every edge with label 0 (see Section 4).

SoCG 2022

52:4 Algorithms for Point Separation and Obstacle Removal

for Generalized Points-separation. This implies a 2O(k4)nO(k2) time algorithm for
Points-separation, resolving the open problem of Cabello and Giannopoulos [5]. With
additional technical effort we are able to bring down the running time of our algorithm for
Generalized Points-separation to 2O(p)nO(k). This turns out to be close to the best
one can do. On the other hand, for pseudo-disk obstacles we can get a faster algorithm.

There exists a 2O(p)nO(k) time algorithm for Generalized Points-separation, and a
nO(

√
k) time algorithm for Generalized Points-separation with pseudo-disk obstacles.

A f(k)no(k/ log k) time algorithm for Points-separation, or a f(k)no(
√

k) time algorithm
for Points-separation with pseudo-disk obstacles would violate the ETH [13].

2 Preliminaries

All graphs used in this paper are undirected. It will also be more convenient to sometimes
consider multi-graphs, in which self-loops and parallel edges are allowed. The degree of a
vertex is the number of adjacent edges.

The arrangement Arr(S) of a set of obstacles S is a subdivision of the plane induced by
the boundaries of the obstacles in S. The faces of Arr(S) are connected regions and edges
are parts of obstacle boundaries. The arrangement graph GArr = (V, E) is the dual graph
of the arrangement whose vertices are faces of Arr(S) and edges connect neighboring faces.
The complexity of the arrangement is the size of its arrangement graph which we denote
by |Arr(S)|. We assume that the size of the arrangement is polynomial in the number of
obstacles, that is |Arr(S)| = |GArr| = nO(1). This is indeed true for most reasonable obstacle
models such as polygons or low-degree splines.

Plane curves and Crossings. A plane curve (or simply curve) is specified by a continuous
function π : [0, 1] → R2, where the points π(0) and π(1) are called the endpoints (we also
use the notation π to denote the image of the path function π). A curve is simple if it is
injective, and is closed if its two endpoints are the same. We say a curve π separates a pair
(a, b) of two points in R2 if a and b belong to different connected components of R2\π.

A crossing of π with π′ is an element of the set {t ∈ [0, 1] | π(t) ∈ π′}. We will often be
concerned with the number of times π crosses π′. This is defined as |{t ∈ [0, 1] | π(t) ∈ π′}|.
Whenever we count the number of times a curve π crosses another curve π′ we shall assume
that (and ensure that) |{t ∈ [0, 1] | π(t) ∈ π′}| is finite and that π and π′ are transverse.
That is for every t ∈ [0, 1] such that π(t) ∈ π′ there exists an ϵ > 0 such that the intersection
of π ∪ π′ with an ϵ radius ball around π(t) is homotopic with two orthogonal lines. We will
make frequent use of the following basic topological fact.

▶ Fact 2. Let π be a curve with endpoints a, b ∈ R2. We have that (i) A simple closed curve
γ separates (a, b) iff π crosses γ an odd number of times. (ii) If π crosses a closed curve γ

an odd number of times, then γ separates (a, b).

3 Labeled Intersection Graph of Obstacles

We begin by describing the construction of the labeled intersection graph GS = (S, X) of
the obstacles S. For the ease of exposition, we will use S to refer to the obstacle S ∈ S as
well as the vertex for S in GS interchangeably.

N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:5

Constructing the graph GS . For every obstacle S ∈ S we first select an arbitrary point
ref(S) ∈ S and designate it to be the reference point of the obstacle. Next, we select the
reference curve π to be a simple curve in the plane connecting s and t such that including it
to the arrangement Arr(S) does not significantly increase its complexity. That is, we want to
ensure that |Arr(S ∪ π)| = O(|Arr(S)|). Additionally, the reference curve π is chosen such
that there exists an ϵ > 0 and π is disjoint from an ϵ ball around every intersection point of
two obstacles in Arr(S) and from an ϵ ball around every reference point ref(S) for S ∈ S.

As long as the intersection of every pair of obstacles is finite and their arrangement has
bounded size, a suitable choice for π always exists (and can be efficiently computed). For
example one can choose π to be the plane curve corresponding to an s–t path in GArr.

We will now add edges to GS as follows. (See also Figure 1(c) for an example.)

For every obstacle S ∈ S that contains s or t, add a self-loop e = (S, S) with lab(e) = 1.
For every pair of obstacles S, S′ ∈ S that intersect, we add edges to G as follows.

Add an edge e0 = (S, S′) with lab(e0) = 0 if there exists a curve connecting ref(S) and
ref(S′) contained in the region S ∪ S′ that crosses π an even number of times.
Add an edge e1 = (S, S′) with lab(e1) = 1 if there exists a curve connecting ref(S) and
ref(S′) contained in the region S ∪ S′ that crosses π an odd number of times.

Checking whether there exists a curve contained in the region S ∪S′ with endpoints ref(S)
and ref(S′) that crosses π an odd (resp. even) number of times can be done in time linear
in the size of arrangement Arr′ = Arr(S ∪ S′ ∪ π). Specifically, we build the arrangement
graph GArr′ and only retain edges (fi, fj) such that the faces fi, fj ∈ S ∪ S′. If the common
boundary of faces fi, fj is a portion of π, we assign a label 1 to the edge (fi, fj), otherwise
we assign it a label 0. An odd (resp. even) labeled walk in GArr′ connecting the faces
containing ref(S) and ref(S′) gives us the desired plane curve πij . Since edges of GArr′ connect
adjacent faces of Arr′, we can ensure that the intersections between curve πij and the edges
of arrangement (including parts of reference curve π) are all transverse.

We are now ready to prove the following important structural property of the graph GS .

▶ Lemma 3. A set of obstacles S ′ ⊆ S in the graph GS separates the points s and t if and
only if the induced graph H = GS [S ′] contains an odd labeled cycle.

Proof. (⇒) For the forward direction, suppose we are given a set of obstacles S ′ that separate
s from t. If s or t are contained in some obstacle, then we must have an odd self-loop in GS
and we will be done. Otherwise, assume that s, t lie in the exterior of all obstacles, so we
have s, t ̸∈ R(S ′) where R(S ′) =

⋃
S∈S′ S is the region bounded by obstacles in S ′. Observe

that s, t must lie in different connected regions Rs, Rt of R2 \ R(S ′) or else the set S ′ would
not separate them. At least one of Rs or Rt must be bounded, wlog assume it is Rs. Let γ′

be the simple closed curve that is the common boundary of R(S ′) and Rs. We have that
γ′ encloses s but not t and therefore separates s from t. Using first statement of Fact 2,
we obtain that γ′ crosses the reference curve π an odd number of times. Observe that the
curve γ′ consists of multiple sections α′

1 → α′
2 · · · → α′

r where each curve α′
i is part of the

boundary of some obstacle Si. For each of these curves α′
i, we add a detour to and back

from the reference point ref(Si) of the obstacle it belongs. Specifically, let qi be an arbitrary
point on the curve α′

i and let α′
iℓ, α′

ir be the portion of α′
i before and after qi respectively.

We add the detour curve δi = qi → ref(Si) → qi ensuring that it always stays within the
obstacle Si which is possible because the obstacles are connected. (Same as before the curve
δi can be chosen to be transverse with π by considering the corresponding walk in graph of
Arr(Si ∪ π).) Let αi = α′

iℓ → δi → α′
ir be the curve obtained by adding detour δi to α′

i. Let

SoCG 2022

52:6 Algorithms for Point Separation and Obstacle Removal

γ = α1 → α2 · · · → αr be the closed curve obtained by adding these detours to γ′. Note that
γ is not necessarily simple as the detour curves may intersect each other. Every detour δi

consists of identical copies of two curves, so it crosses the reference curve π an even number
of times. Since γ′ crosses π an odd number of times, the curve γ also crosses π an odd
number of times. (See also Figure 1.) Observe that γ and γ′ are transverse with π because
intersections of π and obstacle boundaries are transverse and the detour curves δi are chosen
to be transverse with π.

q1

ref(S1)
S1

S2

S3

S4 δ1

γ′ γ

S3

S1

S2 S4

1

0 0

0

(a) (b) (c)

s
t

Figure 1 (a) The curve γ′ shown shaded in blue is the common boundary of R(S ′) and region
Rs (b) Adding detours δi to obtain curve γ (c) Labeled Intersection graph GS ob obstacles.

We will now translate the curve γ to a walk in the labeled intersection graph GS .
Specifically, consider the section of γ between two consecutive detours: γi,i+1 = ref(Si) →
qi → qi+1 → ref(Si+1). Therefore the obstacles Si, Si+1 must intersect and we have a curve
γi,i+1 connecting their reference points contained in the region Si ∪ Si+1 that also intersects
the reference curve π an odd (resp. even) number of times. By construction, GS must
contain an edge ei,i+1 with label 1 (resp. 0). By replacing all these sections of γ with the
corresponding edges of GS , we obtain an odd-labeled closed walk W in GS . Of all the
odd-labeled closed sub-walks of W , we select one that is inclusion minimal. This gives a
simple odd-labeled cycle in GS [S ′].

(⇐) The reverse direction is relatively simpler. Given an odd-labeled cycle in GS [S ′],
we obtain a closed curve γ in the plane contained in region R(S ′) as follows. For every
edge ei = (S, S′) of the cycle with label lab(ei), we consider the curve γi that connects the
reference points ref(S) and ref(S′) contained in S ∪ S′ and crosses the reference curve π

consistent with lab(ei). Moreover γi needs to be transverse with π. Such a curve exists by
construction of GS . Combining these curves γi in order gives us a closed curve γ in the
plane that crosses π an odd number of times. Although this curve may be self intersecting,
from second statement of Fact 2, we have that γ separates s and t. ◀

The construction of the graph GS , together with Lemma 3 prove Theorem 1.

2-Points-separation as Shortest Odd Cycle in GS . From Lemma 3, it follows that a
minimum set of obstacles that separates s from t corresponds to an odd-labeled cycle in GS
with fewest vertices. This readily gives a polytime algorithm for 2-Points-separation. In
particular, for a fixed starting vertex, we can compute the shortest odd cycle in GS in O(|S|2)
time by the following well-known technique. Consider an unlabeled auxiliary graph G′ with
vertex set is S × {0, 1}. For every edge e = (S, S′) of GS , we add edges {(S, 0), (S′, 0)} and
{(S, 1), (S′, 1)} if lab(e) = 0. Otherwise, we add the edges {(S, 0), (S′, 1)} and {(S, 1), (S′, 0)}.
The shortest odd cycle containing a fixed vertex S is the shortest path in G′ between vertices
(S, 0) and (S, 1). Repeating over all starting vertices gives the shortest odd cycle in GS . This

N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:7

can be easily extended for the node-weighted case which gives us the following useful lemma
that also yields a polynomial time algorithm for 2-Points-separation, reproving a result
of Cabello and Giannopoulos [5].

▶ Lemma 4. There exists a polynomial time algorithm for computing a minimum weight
labeled odd cycle in the graph GS .

Next we prove one more structural property of labeled intersection graph GS that will be
useful later. We define a (labeled) spanning tree T of a connected labeled multi-graph GS to
be a subgraph of GS that is a tree and connects all vertices in S. An edge e = (u, v) ∈ GS is
a tree edge if (u, v) ∈ T , otherwise it is called a non-tree edge.

▶ Lemma 5. Let GS be a connected labeled intersection graph and T be a spanning tree
of GS . If GS contains an odd labeled cycle, then it also contains an odd labeled cycle with
exactly one non-tree edge.

Proof. Let C be an odd cycle in GS that contains fewest non-tree edges. If C consists of
exactly one non-tree edge, we are done. Otherwise, C contains more than one non-tree edge.
Let e = (u, v) ∈ C be a non-tree edge and C ′ ⊂ C be the remainder of C without the edge e.
Since C is odd labeled, we must have lab(C ′) ̸= lab(e).

Let πuv be the unique path connecting u, v in T . This gives us a path πuv with label
lab(πuv). Recall that lab(C ′) ̸= lab(e). We have two cases. (i) If lab(πuv) ̸= lab(e), then
we obtain an odd labeled cycle πuv ⊕ e that has one non-tree edge, namely e, and we are
done. (ii) Otherwise, lab(πuv) = lab(e) ̸= lab(C ′). This gives us an odd labeled closed
walk W ∗ = πuv ⊕ C ′ which contains one less non-tree edge than C. Let C∗ ⊆ W ∗ be an
odd-labeled inclusion minimal closed sub-walk of W ∗ (one such C∗ always exists). Therefore,
C∗ is an odd-labeled cycle in GS that has fewer non-tree edges than C. But C was chosen
to be an odd labeled cycle with fewest non-tree edges, a contradiction. ◀

The above lemma also gives a simple O(|S2|) algorithm to detect whether there exists an odd
label cycle in GS . Specifically, consider an arbitrary spanning tree of T of GS and for each
edge not in T , compare its label with the label of the path connecting its endpoints in T .

▶ Lemma 6. Given a labeled graph GS , there exists an O(|S2|) time algorithm to detect
whether GS contains an odd labeled cycle.

4 Application to Obstacle-removal

We will show how to cast Obstacle-removal as a Labeled Odd Cycle Transversal
problem on the graph GS . Recall that in Obstacle-removal problem, we want to remove
a set Sd ⊆ S of obstacles from the input so that s and t are connected in S \ Sd. Equivalently,
we want to select a subset Sd of obstacles such that the complement set S \ Sd does not
separate s and t. From Lemma 3, it follows that the obstacles S \ Sd do not separate s and t

if and only if GS [S \ Sd] does not contain an odd labeled cycle. This gives us the following
important lemma.

▶ Lemma 7. A set of obstacles Sd ⊆ S is a solution to Obstacle-removal if and only if
the set of vertices Sd is a solution to Odd Cycle Transversal of GS .

This allows us to apply the set of existing results for Odd Cycle Transversal to obstacle
removal problems. In particular, this readily gives an improved algorithm for Obstacle-
removal when parameterized by the solution size (number of removed obstacles). Let

SoCG 2022

52:8 Algorithms for Point Separation and Obstacle Removal

G+
S denote the graph GS where every edge e with lab(e) = 0 is subdivided. Clearly an

odd-labeled cycle in GS has odd length in G+
S and vice versa. Applying the FPT algorithm

for Odd Cycle Transversal from [18] on the graph G+
S gives us the following result.

▶ Theorem 8. There exists a 2.3146knO(1) algorithm for Obstacle-removal parameterized
by k, the number of removed obstacles.

This also immediately gives us an O(
√

log OPT) approximation for Obstacle-removal
by using the best known O(

√
log OPT)-approximation [15] for Odd Cycle Transversal

on the graph G+
S . Observe that instances of obstacle removal are special cases of odd cycle

transversal, specifically where the graph GS is an intersection graph of obstacles. By applying
known results on small diameter decomposition of region intersection graphs, Kumar et al. [21]
obtained a constant factor approximation for Obstacle-removal. In the next section we
present an alternative constant factor approximation algorithm. Although our algorithm
follows a similar high level approach of using small diameter decomposition of GS , we give
an alternative proof which significantly simplifies the arguments of [21].

Constant Approximation for Obstacle-removal
Our algorithm is based on formulating and rounding a standard LP for labeled odd cycle
transversal on a labeled intersection graph GS . Let 0 ≤ xi ≤ 1 be an indicator variable that
denotes whether obstacle Si is included to the solution or not. The LP formulation which
will be referred as Hit-odd-cycles-LP can be written as follows:

min
∑

Si∈S
xi subject to:

∑
Sj∈C

xj ≥ 1 for all odd-labeled cycles C ∈ GS

Although this LP has exponentially many constraints, it can be solved in polynomial
time using the ellipsoid method with the polynomial time algorithm for minimum weight odd
labeled cycle in GS (Lemma 4) as separation oracle. The next step is to round the fractional
solution x̂ = x1, x2, . . . , xn obtained from solving the Hit-odd-cycles-LP. We will need
some background on small diameter decomposition of graphs.

Small Diameter Decomposition. Given a graph G = (V, E) and a distance function
d : V → R+ associated with each vertex, we can define the distance of each edge as
d(e) = d(v) + d(w) for every edge e = (v, w) ∈ E. We can then extend the distance function
to any pair of vertices d(u, v) as the shortest path distance between u and v in the edge-
weighted graph with distance values of edges as edge weights. We use the following result of
Lee [17] for the special case of region intersection graph over planar graphs.

▶ Lemma 9. Let G = (V, E) be a node-weighted intersection graph of connected regions in
the plane, then for every ∆ > 0 there exists a set X ⊆ V of |X| = O(1/∆) ·

∑
d(v) vertices

such that the diameter of G − X is at most ∆ in the metric d. Moreover, such a set X can
be computed in polynomial time.

For the sake of convenience, we assume that GS does not contain an obstacle Si with a
self-loop, because if so, we must always include Si to the solution. Let G∗

S be the underlying
unlabeled graph obtained by removing labels and multi-edges from GS . Since G∗

S is simply
the intersection graph of connected regions in the plane, it is easy to show that G∗

S is a
region intersection graph over a planar graph (See also Lemma 4.1 [21] for more details.)

N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:9

Algorithm: Hit-Odd-Cycles. With small diameter decomposition for G∗
S in place, the

rounding algorithm is really simple.
Assign distance values to vertices of G∗

S = (S, E) as d(Si) = xi, where xi is the fractional
solution obtained from solving Hit-Odd-Cycle-LP.
Apply Lemma 9 on graph G∗

S with diameter ∆ = 1/2. Return the set of vertices X

obtained from applying the lemma as solution.

It remains to show that the set X ⊆ S returned above indeed hits all the odd labeled
cycles in GS . Define a ball B(c, R) = {v ∈ V : d(c, v) < R − d(v)/2} with center c, radius
R and distance metric d defined before. Intuitively, B(c, R) consists of the vertices that lie
strictly inside the radius R ball drawn with c as center.

▶ Lemma 10. X hits all odd labeled cycles in GS .

Proof. The proof is by contradiction. Let C be an odd labeled cycle such that C ∩ X = ∅.
Then C must be contained in a single connected component κ of GS − X. Let v1 be an
arbitrary vertex of C and consider a ball B = B(v1, 1/2) of radius 1/2 centered at v1. We
have κ ⊆ B due to the choice of diameter ∆. Consider the shortest path tree T of ball B

rooted at v1 using the distance function d(e) in the unlabeled graph G∗
S . For every edge

(u, v) ∈ T assign the label lab(e) of e = (u, v) ∈ GS . If multiple labeled edges exist between
u and v, choose one arbitrarily.

Now consider the induced subgraph G′
S = GS [B] which is a connected labeled intersection

graph of obstacles in the ball B. Moreover, T is a spanning tree of G′
S , and G′

S contains an
odd-labeled cycle because κ ⊆ G′

S . Applying Lemma 5 gives us an odd-labeled cycle C ∈ G′
S

that contains exactly one edge e ̸∈ T . The cost of this cycle is cost(C) < 1/2 + 1/2 = 1. This
contradicts the constraint of Hit-Odd-Cycle-LP corresponding to C. ◀

We conclude with the main result for this section.

▶ Theorem 11. There exists a polynomial time constant factor approximation algorithm for
Obstacle-removal.

5 Generalized Points-separation

So far, we have focused on separating a pair of points s, t in the plane. In this section, we
consider the more general problem where we are given a set S of n obstacles, a set of points
A and a set P = {(s1, t1), . . . , (sp, tp)} of p pairs of points in A which we want to separate.
First we show how to extend the labeled intersecting graph GS to p source-destination pairs
and that the optimal solution subgraph GS [SOPT] exhibits a “nice” structure. Then we
exploit this structure to obtain an 2O(p2)nO(p) exact algorithm for Generalized Points-
separation. Since p = O(k2), this algorithm runs in polynomial time for any fixed k,
resolving an open question of [5]. Using a more sophisticated approach, we later show how
to improve the running time to 2O(p)nO(k).

5.1 A 2O(p2)nO(p) Algorithm
Recall the construction of the labeled intersection graph GS for a single point pair (s, t) from
Section 3. The label lab(e) ∈ {0, 1} of each edge e ∈ GS denotes the parity of edge e with
respect to reference curve π connecting s and t. As we generalize the graph GS = (S, E) to
p point pairs, we extend the label function lab : E → {0, 1}p as a p-bit binary string that
denotes the parity with respect to reference curve πi connecting si and ti for all i ∈ [p]. We
will use labi(e) to denote the i-th bit of lab(e).

SoCG 2022

52:10 Algorithms for Point Separation and Obstacle Removal

Generalized Label Intersection Graph.
For each (si, ti) ∈ P and each S ∈ S that contains at least one of si or ti, we add a self
loop e on S with labi(e) = 1 and labj(e) = 0 for all j ̸= i.
For every pair of intersecting obstacles S, S′ and a p-bit string ℓ ∈ {0, 1}p:

Let Π = {πi | si, ti ̸∈ S ∪ S′} be the set of reference curves that do not have endpoints
in S ∪ S′.
We add an edge e = (S, S′) with lab(e) = ℓ if there exists a plane curve connecting
ref(S) and ref(S′) contained in S ∪ S′ that crosses all reference curves πi ∈ Π with
parity consistent with label ℓ. That is, the curve crosses πi and odd (resp. even)
number of times if i-th bit of ℓ is 1 (resp. 0).

Similar to the one pair case, we can build an unlabeled graph G′ with vertex set S ×{0, 1}p

and edges between them based on the arrangement Arr(S ∪ S′ ∪ π1 ∪ . . . πp). Using this
graph, we can obtain the following lemma.

▶ Lemma 12. The generalized label intersection graph GS with p-bit labels can be constructed
in 2O(p)nO(1) time.

Suppose we define GS(i) to be the image of GS induced by the labeling labi : E → {0, 1}.
Specifically, we obtain GS(i) from GS by replacing label of each edge by the i-th bit labi(e),
followed by removing parallel edges that have the same label. Observe that GS(i) is precisely
the graph obtained by applying algorithm from Section 3 with reference curve πi. We say
that a subgraph G′

S ⊆ GS is well-behaved if G′
S(i) contains an odd labeled cycle for all i ∈ [p].

The following lemma can be obtained by applying Lemma 3 for every pair (si, ti) ∈ P .

▶ Lemma 13. A set of obstacles S ′ ⊆ S separate all point pairs in P iff GS [S ′] is well-behaved.

We will prove the following important property of well-behaved subgraphs of GS .

▶ Lemma 14. Let G ⊆ GS be an inclusion minimal well-behaved subgraph of GS . Then
there exists a set Vc ⊆ V (G) of connector vertices such that G consists of the vertex set Vc

and a set of K chains (path of degree 2 vertices) with endpoints in Vc. Moreover, |Vc| ≤ 4p

and |K| ≤ 5p.

Proof. Since G is an inclusion minimal well-behaved subgraph, it does not contain a proper
subgraph that is also well-behaved. Therefore, G does not contain a vertex of degree at most
1 because such vertices and edges adjacent to them cannot be part of any cycle. Suppose G

has r connected components C1, . . . , Cr. We fix a spanning tree Tj of Cj for each j ∈ [r]. We
construct the set Vc by including every vertex of degree three or more to Vc. The components
Cj that do not contain a vertex of degree three must be a simple cycle because G does not
have degree-1 vertices. For every such Cj , we include vertices adjacent to the only non-tree
edge of Cj . It is easy to verify that G consists of K chains connecting vertices in Vc.

Let E0 be the set of non-tree edges, that are edges not in Tj for some j ∈ [r]. We claim
that |E0| ≤ p. Since G is well-behaved, G(i) consists an odd-labeled cycle for all i ∈ [p].
Using Lemma 5, and the spanning tree Tj of the component containing that odd labeled cycle,
we can transform into an odd-labeled cycle that uses at most one non-tree edge. Repeating
this for all pairs, we can use at most p edges from E0. If |E0| > p, then we would have a
proper subgraph of G with at most p edges that is also well-behaved, which is not possible
because G was chosen to be inclusion minimal. Therefore |E0| ≤ p.

The graph G only contains vertices of degree 2 or higher, hence each leaf node of the
trees T1, . . . , Tr must be adjacent to some edge in E0. Therefore, the number of leaf nodes is
at most 2p, and so the number of nodes of degree three or above in T1, . . . , Tr is also at most

N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:11

2p. Observe that the vertices in Vc are either adjacent to some edge in E0 or have degree
three or more in some tree Tj . The number of both these type of vertices is at most 2p,
which gives us |Vc| ≤ 4p. Finally, we bound |K|, the number of chains. Note that each edge
of G belongs to exactly one chain in K. Therefore, the number of chains containing at least
one edge in E0 is at most p, because |E0| ≤ p. All the other chains that do not have any
edge in E0, are contained in the trees T1, . . . , Tr. It follows that these chains do not form
any cycle, and thus their number is less than |Vc|. This gives us |K| ≤ 5p. ◀

It is easy to see that if S ′ ⊆ S is an optimal set of obstacles separating all pairs in P ,
then there exists an inclusion minimal well-behaved subgraph G of GS [S ′] that satisfies the
property of Lemma 14. Observe that the K chains of graph G are vertex disjoint, so for
every chain Kt connecting vertices Si, Sj ∈ Vc that has lab(Kt) = ℓ, an optimal solution
will always choose the walk in GS that has label ℓ and has fewest vertices. To that end, we
will need the following simple lemma which is a generalization of the algorithm to compute
shortest odd cycle in GS with 1-bit labels.

▶ Lemma 15. Given a labeled graph GS = (S, E) with labeling lab : E → {0, 1}p, the shortest
walk between any pair of vertices Si, Sj with a fixed label ℓ ∈ {0, 1}p can be computed in
2O(p)nO(1) time.

Algorithm: Separate-Point-Pairs.
1. For every pair of vertices Si, Sj ∈ S and every label ℓ ∈ {0, 1}p, precompute the shortest

walk connecting Si, Sj with label ℓ in GS using Lemma 15.
2. For all possible sets Vc ⊆ S and ways of connecting Vc by K chains:

For all (2p)5p = 2O(p2) possible labeling of K chains:
a. Let G ⊆ GS be the labeled graph consisting of vertices Vc and chains Kt ∈ K

replaced by shortest walk between endpoints of Kt with label lab(Kt), already
computed in Step 1.

b. Check if the graph G is well-behaved. If so, add its vertices as one candidate
solution.

3. Return the candidate vertex set with smallest size as solution.

Precomputing labeled shortest walks in Step 1 takes at most 2O(p)nO(p) time. The total
number of candidate graphs G is nO(p) · pO(p) · 2O(p2), and checking if it is well behaved can
be done in nO(1) time. We have the following result.

▶ Theorem 16. Generalized Points-separation for connected obstacles in the plane
can be solved in 2O(p2)nO(p) time, where n is the number of obstacle and p is the number of
point-pairs to be separated.

▶ Corollary 17. Point-Separation for connected obstacles in the plane can be solved in
2O(k4)nO(k2) time, where n is the number of obstacles and k is the number of points. This is
polynomial in n for every fixed k.

5.2 Faster Algorithms for Points-separation
Recall that the labeled graph GS constructed in the previous section consisted of labels that
are p-bit binary strings. As a result, the running time has a dependence of nO(p) which in
worst case could be nO(k2), for example, in the case of Points-separation when P consists
of all point pairs. In this section, we describe an alternative approach that builds a labeled
intersection graph whose labels are k-bit strings. Using this graph and the notion of parity

SoCG 2022

52:12 Algorithms for Point Separation and Obstacle Removal

partitions, we obtain an 2O(p)nO(k) algorithm for Generalized Points-separation which
gets rid of the nO(k2) dependence for Points-separation. Due to lack of space, we describe
our approach at a high level and defer the details to the full paper.

The construction of graph GS is almost the same as before, except that now we choose
the reference curves πi differently. In particular, let A = {a1, a2, . . . , ak} be the set of points
and P be a set of pairs (ai, aj) of points we want to separate. We pick an arbitrary point
o in the plane, and for each i ∈ [k], we fix a plane curve with endpoints ai and o as the
reference curve πi. For an edge e, the parity of crossing with respect to πi defines the i-th
bit of lab(e). The graph GS constructed in this fashion has k-bit labels and will be referred
as k-labeled graph.

Let G be a k-labeled graph. For a cycle (or a path) γ in G with edge sequence (e1, . . . , er),
we define parity(γ) =

⊕r
t=1 lab(et) and denote by parityi(γ) the i-th bit of parity(γ) for i ∈ [k].

Here the notation “⊕” denotes the bitwise XOR operation for binary strings. Also, we
define Φ(γ) as the partition of [k] consisting of two parts I0 = {i : parityi(γ) = 0} and
I1 = {i : parityi(γ) = 1}. Next, we define an important notion called parity partition.

▶ Definition 18 (parity partition). Let G be a k-labeled graph. The parity partition induced
by G, denoted by ΦG, is the partition of [k] such that i, j ∈ [k] belong to the same part of ΦG

iff parityi(γ) = parityj(γ) for every cycle γ in G.

We say a k-labeled graph G is P -good if for all (i, j) ∈ P , i and j belong to different parts
in ΦG. The notion of P -goodness in k-labeled graphs is similar to well-behaved property of
subgraphs G′

S that we defined in Lemma 13 except that the latter is defined using p reference
curves. We prove the following lemma that establishes a characterization of obstacles that
separate all point pairs in P called P -separators using P -goodness.

▶ Lemma 19. A subset S ′ ⊆ S is a P -separator iff the induced subgraph GS [S ′] is P -good.

Similar to Lemma 14, one can show that there exists a P -good subgraph with 4k vertices
and 5k edges. Applying the algorithm Separate-Point-Pairs from previous section gives
an improved bound of 2k2

nO(k). Improving the running time to 2O(p)nO(k) require further
nontrivial efforts. We defer the details to full version and state our main results.

▶ Theorem 20. Generalized Point-Separation for connected obstacles in the plane can
be solved in 2O(p)nO(k) time, where n is the number of obstacles, k is the number of points,
and p is the number of point-pairs to be separated.

▶ Corollary 21. Point-Separation for connected obstacles in the plane can be solved in
2O(k2)nO(k) time, where n is the number of obstacles and k is the number of points.

Even Faster Algorithm for Pseudo-Disk Obstacles. If the obstacles in S are pseudo-disks
then we can further improve the dependence on n to be nO(

√
k). To this end, the key

observation is the following analog of Lemma 19 for pseudo-disk obstacles.

▶ Lemma 22. Suppose S consists of pseudo-disk obstacles. Then a subset S ′ ⊆ S is a
P -separator iff there is a subgraph of the induced subgraph GS [S ′] that is planar and P -good.

The planarity of subgraph GS [S ′] allows us to efficiently enumerate the candidate sets using
the planar separator theorem. We state our main result for such obstacles.

▶ Theorem 23. Generalized Point-Separation for pseudo-disk obstacles in the plane
can be solved in 2O(p)kO(k)nO(

√
k) time, where n is the number of obstacles, k is the number

of points, and p is the number of point-pairs to be separated.

N. Kumar, D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 52:13

▶ Corollary 24. Point-Separation for pseudo-disk obstacles in the plane can be solved in
2O(k2)nO(

√
k) time, where n is the number of obstacles and k is the number of points.

5.3 Hardness of Points-separation
We complement our algorithmic results for Points-separation with almost matching
hardness bounds assuming the Exponential Time Hypothesis (ETH). We obtain the follow-
ing results by reductions from Partitioned Subgraph Isomorphism [19] and Planar
Multiway Cut [20] respectively.

▶ Theorem 25. Unless ETH fails, a Points-separation instance (S, A) for general obstacles
cannot be solved in f(k)no(k/ log k) time where n = |S| and k = |A|.

▶ Theorem 26. Unless ETH fails, a Points-separation instance (S, A) with pseudodisk
obstacles cannot be solved in f(k)no(

√
k) time where n = |S| and k = |A|.

References
1 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(sqrt(log

n)) approximation algorithms for min uncut, min 2cnf deletion, and directed cut problems. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 573–581, 2005.

2 Paul Balister, Zizhan Zheng, Santosh Kumar, and Prasun Sinha. Trap coverage: Allowing
coverage holes of bounded diameter in wireless sensor networks. In IEEE INFOCOM 2009,
pages 136–144. IEEE, 2009.

3 Sayan Bandyapadhyay, Neeraj Kumar, Subhash Suri, and Kasturi Varadarajan. Improved
approximation bounds for the minimum constraint removal problem. Computational Geometry,
90:101650, 2020.

4 Sergey Bereg and David G. Kirkpatrick. Approximating barrier resilience in wireless sensor
networks. In Proc. of 5th ALGOSENSORS, volume 5804, pages 29–40, 2009.

5 S. Cabello and P. Giannopoulos. The complexity of separating points in the plane. Algorithmica,
74(2):643–663, 2016.

6 David Yu Cheng Chan and David G. Kirkpatrick. Approximating barrier resilience for
arrangements of non-identical disk sensors. In Proc. of 8th ALGOSENSORS, pages 42–53,
2012.

7 David Yu Cheng Chan and David G. Kirkpatrick. Multi-path algorithms for minimum-colour
path problems with applications to approximating barrier resilience. Theor. Comput. Sci.,
553:74–90, 2014.

8 E. Eiben and I. Kanj. How to navigate through obstacles? In Proc. of 45th ICALP, 2018.
9 Eduard Eiben, Jonathan Gemmell, Iyad A. Kanj, and Andrew Youngdahl. Improved results

for minimum constraint removal. In Proc. of 32nd AAAI, pages 6477–6484, 2018.
10 Eduard Eiben and Iyad Kanj. A colored path problem and its applications. ACM Trans.

Algorithms, 16(4):47:1–47:48, 2020.
11 Eduard Eiben and Daniel Lokshtanov. Removing connected obstacles in the plane is FPT. In

Proc. of 36th SoCG, volume 164, pages 39:1–39:14, 2020.
12 Lawrence H. Erickson and Steven M. LaValle. A simple, but NP-Hard, motion planning

problem. In Proc. of 27th AAAI, 2013.
13 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.
14 Matias Korman, Maarten Löffler, Rodrigo I. Silveira, and Darren Strash. On the complexity

of barrier resilience for fat regions and bounded ply. Comput. Geom., 72:34–51, 2018.
15 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools

for kernelization. Journal of the ACM (JACM), 67(3):1–50, 2020.

SoCG 2022

52:14 Algorithms for Point Separation and Obstacle Removal

16 Santosh Kumar, Ten-Hwang Lai, and Anish Arora. Barrier coverage with wireless sensors.
Wirel. Networks, 13(6):817–834, 2007.

17 James R. Lee. Separators in region intersection graphs. In Proc. of 8th ITCS, volume 67,
pages 1–8, 2017.

18 Daniel Lokshtanov, NS Narayanaswamy, Venkatesh Raman, MS Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms (TALG), 11(2):1–31, 2014.

19 Dániel Marx. Can you beat treewidth? In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07), pages 169–179. IEEE, 2007.

20 Dániel Marx. A tight lower bound for planar multiway cut with fixed number of terminals. In
International Colloquium on Automata, Languages, and Programming, pages 677–688. Springer,
2012.

21 Saket Saurabh Neeraj Kumar, Daniel Lokshtanov and Subhash Suri. A constant factor
approximation for navigating through connected obstacles in the plane. In Proc. 32nd SODA,
2021.

	1 Introduction
	2 Preliminaries
	3 Labeled Intersection Graph of Obstacles
	4 Application to Obstacle-removal
	5 Generalized Points-separation
	5.1 A 2^{O(p^2)} n^{O(p)} Algorithm
	5.2 Faster Algorithms for Points-separation
	5.3 Hardness of Points-separation

