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Abstract
A t-spanner of a graph G = (V, E) is a subgraph H = (V, E′) that contains a uv-path of length at
most t for every uv ∈ E. It is known that every n-vertex graph admits a (2k − 1)-spanner with
O(n1+1/k) edges for k ≥ 1. This bound is the best possible for 1 ≤ k ≤ 9 and is conjectured to be
optimal due to Erdős’ girth conjecture.

We study t-spanners for t ∈ {2, 3} for geometric intersection graphs in the plane. These spanners
are also known as t-hop spanners to emphasize the use of graph-theoretic distances (as opposed to
Euclidean distances between the geometric objects or their centers). We obtain the following results:
(1) Every n-vertex unit disk graph (UDG) admits a 2-hop spanner with O(n) edges; improving upon
the previous bound of O(n log n). (2) The intersection graph of n axis-aligned fat rectangles admits
a 2-hop spanner with O(n log n) edges, and this bound is the best possible. (3) The intersection
graph of n fat convex bodies in the plane admits a 3-hop spanner with O(n log n) edges. (4) The
intersection graph of n axis-aligned rectangles admits a 3-hop spanner with O(n log2 n) edges.
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1 Introduction

Graph spanners were introduced by Awerbuch [7] and by Peleg and Schäffer [54]. A spanner
of a graph G is a spanning subgraph H with bounded distortion between graph distances in
G and H. For an edge-weighted graph G = (V, E), a spanning subgraph H is a t-spanner
if dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V , where dH and dG are the shortest-path distances
in H and G, respectively. The parameter t ≥ 1 is the stretch factor of the spanner. A long
line of research is devoted to finding spanners with desirable features, which minimize the
number of edges, the weight, or the diameter; refer to a recent survey by Ahmed et al. [2].

In abstract graphs, all edges have unit weight. In a graph G of girth g, any proper
subgraph H has stretch at least g − 1. In particular, a complete bipartite graph does not
have any subquadratic size t-spanner for t < 3. The celebrated greedy spanner by Althöfer
et al. [3] finds, for every n-vertex graph and parameter t = 2k − 1, a t-spanner with O(n1+ 1

k )
edges; and this bound matches the lower bound from the Erdős girth conjecture [31].
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Geometric Setting: Euclidean and Metric Spanners. Given a set P of n points in a
metric space (M, δ), consider the complete graph G on P where the weight of an edge uv

is the distance δ(u, v). If M has doubling dimension d (e.g., Euclidean spaces of constant
dimension) the greedy algorithm by Althöfer et al. [3] constructs an (1 + ε)-spanner with
ε−O(d)n edges [45]. Specifically, every set of n points in Rd admits a (1 + ε)-spanner with
O(ε−dn) edges, and this bound is the best possible [45].

Gao and Zhang [38] considered data structures for approximating the weighted distances
in unit disk graphs (UDG), which are intersection graphs of unit disks in R2. Importantly, the
weight of an edge is the Euclidean distance between the centers. They designed a well-speared
pair-decomposition (WSPD) of size O(n log n) for an n-vertex UDG. For the unit ball graphs
in doubling dimensions, Eppstein and Khodabandeh [30] construct (1 + ε)-spanners which
also have bounded degree and total weight O(w(MST )), generalizing earlier work in Rd by
Damian et al. [23]; see also [46]. Fürer and Kasiviswanathan [37] construct a (1 + ε)-spanner
with O(ε−2n) edges for the intersection graph of n disks of arbitrary radii in R2.

Hop-Spanners for Geometric Intersection Graphs. Unit disk graphs (UDG) were the first
geometric intersection graphs for which the hop distance was studied (i.e., the unweighted
version), motivated by applications in wireless communication. Spanners in this setting
are often called hop-spanners to emphasize the use of graph-theoretic distance (i.e., hop
distance), as opposed to the Euclidean distance between centers.

For an n-vertex UDG G, Yan et al. [57] constructed a subgraph H with O(n log n) edges
and dH(u, v) ≤ 3dG(u, v) + 12, which is a 15-hop spanner. Catusse et al. [19] showed that
every n-vertex UDG admits a 5-hop spanner with at most 10n edges (as well as a noncrossing
O(1)-spanner with O(n) edges). Biniaz [9] improved this bound to 9n. Dumitrescu et al. [28]
recently showed that every n-vertex UDG admits a 5-hop spanner with at most 5.5n edges,
a 3-hop spanner with at most 11n edges, and a 2-hop spanner with O(n log n) edges. In this
paper, we improve the bound on the size of 2-hop spanners to O(n), and initiate the study
of minimum 2-hop spanners of other classes of geometric intersection graphs.

Our Contributions.
1. Every unit disk graph on n vertices admits a 2-hop spanner with O(n) edges (Theorem 2

in Section 2). This bound is the best possible; and it generalizes to intersection graphs of
translates of a convex body in the plane (shown in the full version of the paper).

2. The intersection graph of n axis-aligned fat rectangles in R2 admits a 2-hop spanner
with O(n log n) edges (Theorem 15 in Section 3). This bound is the best possible: We
establish a lower bound of Ω(n log n) for the size of 2-hop spanners in the intersection
graph of n homothets of any convex body in the plane (Theorem 19 in Section 4).

3. The intersection graph of n fat convex bodies in R2 admits a 3-hop spanner with O(n log n)
edges (shown in the full version of the paper).

Related Previous Work. While our upper bounds are constructive, we do not attempt to
minimize the number of edges in a k-spanner for a given graph. The minimum k-spanner
problem is to find a k-spanner H of a given graph G with the minimum number of edges.
This problem is NP-hard [16, 54] for all 2 ≤ k ≤ o(log n); already for planar graphs [10, 41].
It is also hard to approximate up to a factor of 2(log1−ε n)/k, for 3 ≤ log1−2ε n and ε > 0,
assuming NP ̸⊆ BPTIME(2polylog(n)) [25]; see also [27, 29, 42]. On the positive side, Peleg
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and Krtsarz [43] gave an O(log(m/n))-approximation for the minimum 2-spanner problem
for graphs G with n vertices and m edges; see also [20]. There is an O(n)-time algorithm for
the minimum 2-spanner problem over graphs of maximum degree at most four [17].

Classical graph optimization problems (which are often hard and hard to approximate)
typically admit better approximation ratios or are fixed-parameter tractable (FPT) for
geometric intersection graphs. Three main strategies have been developed to take advantage
of geometry: (i) Divide-and-conquer strategies using separators and dynamic programming [4,
8, 24, 18, 34, 35, 36, 47]; (ii) Local search algorithms [14, 21, 40, 51]; and (iii) Bounded
VC-dimension and the ε-net theory [1, 6, 13, 53, 50, 52]. It is unclear whether separators
and local search help find small k-hop spanners. Small hitting sets and ε-nets help finding
large cliques in geometric intersection graphs, and this is a tool we use, as well.

Relation to Edge Clique and Biclique Covers. A 2-hop spanner H of a graph G = (V, E)
is union of stars S such that every edge in E is induced by a star in S. Thus the minimum
2-spanner problem is equivalent to minimizing the sum of sizes of stars in S. As such, the
2-spanner problem is similar to the minimum dominating set and minimum edge-clique
cover problems [32, 49]. In particular, the size of a 2-hop spanner is bounded above by
the minimum weighted edge clique cover, where the weight of a clique Kt is t − 1 (i.e.,
the size of a spanning star). Recently, de Berg et al. [24] proposed a divide-and-conquer
framework for optimization problems on geometric intersection graphs. Their main technical
tool is a weighted separator theorem, where the weight of a separator is W =

∑
i w(ti) for

a decomposition of the subgraph induced by the separator into cliques Kti
, and sublinear

weights w(t) = o(t). For 2-hop spanners, however, each clique Kt requires a star with t − 1
edges, so the weight function would be linear w(t) = t − 1.

Every biclique (i.e., complete bipartie graph) Ks,t admits a 3-hop spanner with s + t − 1
edges (as a union of two stars). Hence an edge biclique cover, with total weight W and weight
function w(Ks,t) = s+t, yields a 3-hop spanners with at most W edges. Every n-vertex graph
has an edge biclique cover of weight O(n2/ log n), and this bound is tight [33, 56]. (In contrast,
every n-vertex graph has a 3-hop spanner with O(n3/2) edges [3].) Better bounds are known
for semi-algebraic graphs, where the edges are defined in terms of semi-algebraic relations
of bounded degree. For instance, an incidence graph between n points and m hyperplanes
in Rd admits an edge biclique cover of weight O((mn)1−1/d + m + n) [5, 11, 55]. Recently,
Do [26] proved that a semi-algebraic bipartite graph on m + n vertices, where the vertices are
points in Rd1 and Rd2 , resp., has an edge biclique cover of weight Oε(m

d1d2−d2
d1d2−1 +εn

d1d2−d1
d1d2−1 +ε +

m1+ε + n1+ε) for any ε > 0. For d1 + d2 ≤ 4, this result yields nontrivial 3-hop spanners.
For a UDG with m = n unit disks, d1 = d2 = 2 gives a 3-hop spanner with W ≤ Oε(n4/3+ε)
edges. But for the intersection graph of arbitrary disks in R2, d1 = d2 = 3 gives Oε(n3/2+ε),
which is worse than the default O(n3/2) guaranteed by the greedy algorithm [3].

Representation. Our algorithms assume a geometric representation of a given intersection
graphs (it is NP-hard to recognize UDGs [12], disk graphs [39, 48], or box graphs [44]). Given
a set of geometric objects of bounded description complexity, the intersection graph and the
hop distances can easily be computed in polynomial time. Chan and Skrepetos [22] designed
near-quadratic time algorithms to compute all pairwise hop-distances in the intersection graph
of n geometric objects (e.g., balls or hyperrectangles in Rd). In a UDG, the hop-distance
between a given pair of disks can be computed in optimal O(n log n) time [15].

SoCG 2022
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2 Two-Hop Spanners for Unit Disk Graphs

In this section, we prove that every n-vertex UDG has a 2-hop spanner with O(n) edges. The
proof hinges on a key lemma, Lemma 1, in a bipartite setting. A unit disk is a closed disk of
unit diameter in R2; two unit disks intersect if and only if their centers are at distance at
most 1 apart. For finite sets A, B ⊂ R2, let U(A, B) denote the unit disk graph on A ∪ B,
and let G(A, B) denote the bipartite subgraph of U(A, B) of all edges between A and B.

▶ Lemma 1. Let P = A ∪ B be a set of n points in the plane such that diam(A) ≤ 1,
diam(B) ≤ 1, and A (resp., B) is above (resp., below) the x-axis. Then there is a subgraph
H of U(A, B) with at most 5n edges such that for every edge ab of G(A, B), H contains a
path of length at most 2 between a and b.

We construct the graph H in Lemma 1 incrementally: In each step, we find a subset
W ⊂ A ∪ B, together with a subgraph H(W ) of at most 5|W | edges that contains a uv-path
of length at most 2 for every edge uv between u ∈ W and v ∈ N(W ) (cf. Lemma 5); and
then recurse on P \ W . We show that

⋃
W H(W ) is a 2-hop spanner for U(A, B).

Section 2.1 establishes a technical lemma about the interaction pattern of disks in the
bipartite setting. One step of the recursion is presented in Section 2.2. The proof of Lemma 1
is in Section 2.3. Lemma 1, combined with previous work [9, 19, 28] that reduced the problem
to a bipartite setting, implies the main result of this section.

▶ Theorem 2. Every n-vertex unit disk graph has a 2-hop spanner with O(n) edges.

Proof. Let P be a set of centers of n unit disks in the plane, and let G = (P, E) be the
UDG on P . Consider a tiling of the plane with regular hexagons of diameter 1, where
each point in P lies in the interior of a tile. A tile τ is nonempty if τ ∩ P ̸= ∅. Clearly
diam(P ∩ τ) ≤ diam(τ) = 1. For each nonempty tile τ , let Sτ be a spanning star on P ∩ τ .

For each pair of tiles, σ and τ , at distance at most 1 apart, Lemma 1 yields a graph
Hσ,τ := G(A, B) ⊂ G for A = P ∩ σ and B = P ∩ τ with 5(|P ∩ σ| + |P ∩ τ |) edges. Let
H be the union of all stars Sτ and all graphs Hσ,τ . It is easily checked that H is a 2-hop
spanner of G: Indeed, let uv ∈ E. If u and v are in the same tile τ , then Sτ contains uv or
a uv-path of length 2. Otherwise u and v are in different tiles, say σ and τ , at distance at
most 1, and Hσ,τ contains uv or a uv-path of length 2.

It remains to bound the number of edges in H. The union of all stars Sτ is a spanning
forest on P , which has at most n − 1 edges. Every tile σ is within unit distance from 18 other
tiles [9]. The total number of edges in Hσ,τ over all pairs of tiles is

∑
σ,τ 5(|P ∩σ|+ |P ∩τ |) ≤

18
∑

σ 5(|P ∩ σ|) = 90n. Overall, H has less than 91n edges, as required. ◀

2.1 Properties of Unit-Disk Hulls
Let A ⊂ R2 be a finite set of points above the x-axis. Let D be the set of all unit disks with
centers on or below the x-axis. Let M(A) be the union of all unit disks D ∈ D such that
A ∩ int(D) = ∅, and let hull(A) = R2 \ int(M(A)); see Fig. 1.

For every p ∈ R2 above the x-axis, let X(p) denote its vertical projection onto ∂hull(A);
this is well defined by Lemma 3(1) below. Let L(p) and R(p) denote the points in A∩∂hull(A)
immediately to the left and right of X(p) if such a point exists; that is, L(p) (resp., R(p)) is
the point in A ∩ ∂hull(A) with the largest (resp., smallest) x-coordinate that still satisfies
L(p)x ≤ X(p)x (resp., R(p)x ≥ X(p)x).
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x

A

∂hull(A)

M(A)

hull(A)

L(p)

R(p)
X(p)

p

D

D′

Figure 1 A point set A (red), region M(A) (light blue), and hull(A) (pink). A point p ∈ A in a
disk D ∈ D, its vertical projection X(p) ∈ ∂hull(A), and the two adjacent points L(p), R(p) ∈ A.

▶ Lemma 3. For every finite set A ⊂ R2 above the x-axis, the following holds:
1. ∂hull(A) is an x-monotone curve.
2. For every D ∈ D, the intersection D ∩ ∂hull(A) is connected (possibly empty).
3. For every D ∈ D and every p ∈ A, if p ∈ D, then D contains X(p). Further, L(p) or

R(p) exists, and D contains L(p) or R(p) (possibly both).
4. Let D, D′ ∈ D. Suppose that ∂D intersects ∂hull(A) at points with x-coordinates x1 and

x2, and ∂D′ intersects ∂hull(A) at points with x-coordinates x′
1 and x′

2. If x1 ≤ x′
1 ≤

x′
2 ≤ x2, then D′ ∩ hull(A) ⊂ D ∩ hull(A).

The proof (in the full version of the paper) is a straightforward extension of previous
results [28, Lemma 4].

2.2 One Incremental Step
Let A and B be finite point sets above and below the x-axis, respectively, and let P = A ∪ B.
For every point p ∈ R2, let N(p) ⊂ P denote the points in P on the opposite side of
the x-axis within unit distance from p; refer to Fig. 2. For a point set S ⊂ R2, let
N(S) =

⋃
p∈S N(p). Suppose that a unit circle centered at p ∈ A intersects ∂hull(B) at

points p1, p2 ∈ R2; or a unit circle centered at p ∈ B intersects ∂hull(A) at points p1, p2 ∈ R2.
Define I(p) = N(N(p)) \ (N(p1) ∪ N(p2)); see Fig. 2 for an example.

▶ Lemma 4. Let P = A ∪ B be a finite set of points in the plane such that A (resp., B) is
above (resp., below) the x-axis. For every p ∈ P , N(I(p)) ⊂ N(p).

Proof. We may assume w.l.o.g. that p ∈ A. Let v ∈ I(p), and let Dv (resp., Dp) denote
the unit disk centered on v (resp., p). As v ∈ N(N(p)), Dv contains some point u ∈ N(p).
Clearly, Dp contains u. By Lemma 3(3), Dv and Dp contain X(u). As Dp ∩ hull(B) has
endpoints p1 and p2, Lemma 3(1)–(2) implies that X(u) has x-coordinate between p1 and
p2. By definition of I(P ), Dv ∩ hull(B) does not contain either p1 or p2, so it only contains
points between p1 and p2. By Lemma 3(4), N(v) ⊂ N(p). ◀

We construct a spanner by repeatedly applying the following lemma:

▶ Lemma 5. Let P = A ∪ B be a set of n points in the plane such that diam(A) ≤ 1,
diam(B) ≤ 1, and A (resp., B) is above (resp., below) the x-axis. Then there exists a
nonempty subset W ⊂ P and a graph H(W ) with the following properties:

SoCG 2022
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x

A

∂hull(A)

hull(A)

B

∂hull(B)

p1

p2

p

N(p)

N(p1)

N(p2) = {p}

I(p)

hull(B)

Figure 2 A point p ∈ A and its neighbors N(p) ⊂ B. The unit circle centered at p intersecting
∂hull(B) at p1 and p2. The sets N(p1), N(p2), and I(p).

1. H(W ) is a subgraph of U(A, B);
2. H(W ) contains at most 5|W | edges;
3. for every edge ab in the neighborhood of W in G(A, B), H(W ) contains an ab-path of

length at most 2.

Proof. Let m ∈ R2 be the point that maximizes |N(m)| (breaking ties arbitrarily) and let
k = |N(m)|. Notice that m might not be in P . By Lemma 3(3), every point in N(m) is
within unit distance of L(m) or R(m); and L(m), R(m) ∈ P . Thus there exists a point v ∈ P

such that |N(v)| ≥ k/2.
Now let p ∈ P be the point that maximizes |N(p)|; and note that |N(p)| ≥ k/2. Let

W = N(p) ∪ I(p) ∪ {p}. Let H(W ) be the spanning star centered at p connected to all points
in N(N(p)) and to all points in N(p). We verify that H(W ) has the required properties:
1. Every point in N(p) is within unit distance of p. As p ∈ A and N(N(p)) ⊂ A, every

point in N(N(p)) is within unit distance of p. Thus H(W ) is a subgraph of U(A, B).
2. By definition of k, |N(p1)| ≤ k and |N(p2)| ≤ k. Thus, |N(N(p))| ≤ 2k + |I(p)|. Further,

|W | = |N(p)| + |I(p)| ≥ k/2 + |I(p)|. Thus |N(N(p))| ≤ 4|W |. The spanning star H(W )
has |N(N(p))| + |N(p)| − 1 edges, so it has at most 5|W | edges.

3. For every v ∈ N(p), all neighbors of v are in N(N(p)) by the definition of N(.), so
the spanning star contains a path of length at most 2 to each neighbor. For every
v ∈ I(p) ∪ {p}, all neighbors of v are in N(p) by Lemma 4, so the spanning star contains
a path of length at most 2 to each neighbor. ◀

2.3 Proof of Lemma 1
We can now construct a sparse 2-hop spanner in the bipartite setting. We restate Lemma 1.

▶ Lemma 1. Let P = A ∪ B be a set of n points in the plane such that diam(A) ≤ 1,
diam(B) ≤ 1, and A (resp., B) is above (resp., below) the x-axis. Then there is a subgraph
H of U(A, B) with at most 5n edges such that for every edge ab of G(A, B), H contains a
path of length at most 2 between a and b.

Proof. Apply Lemma 5 to find a subset W ⊂ P and a subgraph H(W ). Let H be the
union of H(W ) and the spanner constructed by recursing on P \ W . Since H is the union of
subgraphs of U(A, B), it is itself a subgraph of U(A, B).
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Stretch analysis. Suppose a ∈ A and b ∈ B are neighbors in G(A, B). We assume w.l.o.g.
that a was removed before or at the same time as b during the construction of H as part of
some subset W . Then H includes a subgraph H(W ) that, by construction, connects a to all
neighbors that have not yet been removed (including b) by paths of length at most 2.

Sparsity analysis. Each subgraph H(W ) in H is responsible for removing some set of points
W and has at most 5|W | edges. Charge 5 edges to each of the |W | points removed. As each
point is removed exactly once, H contains at most 5n edges. ◀

3 Two-Hop Spanners for Axis-Aligned Squares

For intersection graphs of n unit disks, we found 2-hop spanners with O(n) edges in Section 2.
This bound does not generalize to intersection graphs of disks of arbitrary radii, as we
establish a lower bound of Ω(n log n) in Section 4. Here, we construct 2-hop spanners with
O(n log n) edges for such graphs under the L∞ norm (where unit disks are really unit squares).
The result also holds for axis-aligned fat rectangles.

We prove a linear upper bound for the 1-dimensional version of the problem (Section 3.1),
and then address axis-aligned fat rectangles in the plane (Section 3.2). The fatness of a set
s ⊂ R2 is the ratio ϱout/ϱin between the radii of a minimum enclosing disk and a maximum
inscribed disk of s. A collection S of geometric objects is α-fat if the fatness of every s ∈ S

is at most α; and it is fat, for short, if it is α-fat for some α ∈ O(1).

3.1 Two-Hop Spanners for Interval Graphs
Let G(S) be the intersection graph of a set S of n closed segments in R. Assume w.l.o.g. that
G(S) is connected: otherwise, we can apply this construction to each connected component.

We partition
⋃

S into a collection of disjoint intervals I = {I1, . . . , Im} as follows. Let
I0 = {p0} be the interval containing only the leftmost point in

⋃
S, and let k := 1. While

pk−1 lies to the left of the rightmost point in
⋃

S, let pk be the rightmost point of any
segment in S that intersects pk−1; let Ik = (pk−1, pk]; and set k := k + 1. As G(S) is
connected, this process terminates. For every k ∈ {1, . . . , m}, define the covering segment ck

to be some segment that intersects pk−1 and has right endpoint pk; see Fig. 3. Notice that
by construction of Ik, ck is guaranteed to exist, and Ik ⊂ ck.

c1

I1

c2

I2 I3

c3

I4

c4

p0 p1 p2 p3 p4

Figure 3 A set of segments S, with
⋃

S partitioned into intervals I = {I1, . . . , I4}. Each Ik ∈ I

is contained in some covering segment ck ∈ S.

▶ Lemma 6. The set of intervals I defined above has the following properties:

1. I is a partition of
⋃

S;
2. every segment s ∈ S intersects at most 2 intervals in I;
3. if two segments a, b ⊂

⋃
S intersect (with a, b not necessarily elements of S), then there

is some interval in I that intersects both segments.

SoCG 2022



30:8 Hop-Spanners for Geometric Intersection Graphs

The proof is straightforward; see the full version of the paper.

▶ Theorem 7. Every n-vertex interval graph admits a 2-hop spanner with at most 2n edges.

Proof. We construct the 2-hop spanner H as the union of stars. For every interval Ik ∈ I,
construct a star Hk centered on the covering segment ck with an edge to every segment that
intersects Ik. As Ik ⊂ ck, every segment that intersects Ik also intersects ck, so there is an
edge between the two segments in G(S). Define H =

⋃m
k=1 Hk.

Stretch analysis. Suppose s1, s2 ∈ S intersect. By Lemma 6(3), s1 ∩ s2 intersects some
interval Ik. Thus, the star Hk ⊂ H connects s1 and s2 by a path of length at most 2.

Sparsity analysis. Suppose the star Hk ⊂ H has j edges. The corresponding interval Ik ∈ I
intersects j + 1 segments in S. Charge 1 edge to each of the segments intersecting Ik. By
Lemma 6(2), each of the n segments in S is charged at most twice. ◀

▶ Corollary 8. The intersection graph of a set of n axis-aligned rectangles in R2 that all
intersect a fixed horizontal or vertical line admits a 2-hop spanner with at most 2n edges.

3.2 Two-Hop Spanners for Axis-Aligned Fat Rectangles
Let G(S) be the intersection graph of a set S of n axis-aligned α-fat closed rectangles in the
plane. For every pair of intersecting rectangles a, b ∈ S, select some representative point in
a ∩ b. Let C(S) denote the set comprising the representatives for all intersections.

Setup for a Divide & Conquer Strategy. We recursively partition the plane into slabs
by splitting along horizontal lines. The recursion tree P is a binary tree, where each node
P ∈ P stores a slab, denoted slab(P ), that is bounded by horizontal lines bP and tP on the
bottom and top, respectively. The node P also stores a subset S(P ) ⊂ S of (not necessarily
all) rectangles in S that intersect slab(P ).

Let the inside set In(P ) ⊂ S(P ) be the set of rectangles contained in int(slab(P )). Let
the bottom set B(P ) ⊂ S(P ) be rectangles that intersect the line bP , the top set T (P ) ⊂ S(P )
be the rectangles that intersect tP , and the across set A(P ) = B(P ) ∩ T (P ); see Fig. 4.

bP

tP

slab(P )

Figure 4 A horizontal slab(P ) is bounded by bP and tP . Rectangles in the inside set In(P )
(green), bottom set B(P ) (red), top set T (P ) (blue), and across set A(P ) = B(P ) ∩ T (P ) (purple).
Some red and blue fat rectangles are shown only partially, in a small neighborhood of slab(P ).

We define the root node Pr to have a slab large enough to contain all rectangles in
S, and define S(Pr) = S. We define the rest of the space partition tree recursively. Let
P ∈ P. Define C(P ) ⊂ C(S) to be the set C(S) ∩ int(slab(P )). If C(P ) = ∅, then P is a
leaf and has no children. Otherwise, P has two children P1 and P2. Let cP be a horizontal
line with at most half the points in C(P ) on either side. Let slab(P1) (resp., slab(P2)) be
the slab bounded by bP and cP (resp., cP and tP ); and let S(P1) ⊂ S(P ) \ A(P ) (resp.,
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S(P2) ⊂ S(P ) \ A(P )) be the set of rectangles that intersect this slab, excluding rectangles
in A(P ). Notice that no rectangles in A(P ) appear in the children of P , whereas rectangles
in the sets In(P ), B(P ) \ A(P ), and T (P ) \ A(P ) appear in one or both of the children.

Spanner Construction. We construct a spanner H(S) for G(S) as the union of subgraphs
H(P ) for each node P in the space partition tree.

We construct H(P ) such that there is a path of length at most 2 between every rectangle
s ∈ A(P ) and every rectangle in S(P ) that s intersects. Every edge in G(S(P )) requiring
such a path involves a rectangle in B(P ), a rectangle in T (P ), or a rectangle in In(P ). We
construct three subgraphs to deal with these three categories of edges.

By Corollary 8, we can construct a subgraph HB(P ) of G(B(P )) with at most 2 |B(P )|
edges that is a 2-hop spanner for B(P ). Similarly, we can construct a 2-hop spanner HT (P )
for G(T (P )) with 2 |T (P )| edges. As all rectangles in A(S) intersect bP , we can apply
Corollary 8 to construct a 2-hop spanner H ′

In(P ) with at most 2 |A(P )| edges for G(A(P )).
To construct HIn(P ), we partition

⋃ (
A(P ) ∩ slab(P )

)
analogously to the 1-dimensional case.

Recall that by Lemma 6(1), the line segment
⋃ (

A(P ) ∩ bP

)
can be partitioned into

intervals Ik, each of which is contained in some covering segment ck ∈ A(P ). As every
s ∈ A(P ) is an axis-aligned rectangle that spans two horizontal lines bP and tP , the segments
in Ik can be extended upward to form axis-aligned rectangles Îk, each with an associated
covering rectangle ĉk ∈ S corresponding to the covering segment ck in the 1-dimensional case.
Let Î denote the set of all 2-dimensional intervals Îk.

We construct HIn(P ) from H ′
In(P ) using these intervals. For every s ∈ In(P ), if s intersects

some Îk ∈ Î, add an edge between s and ĉk to H ′
In(P ). Let H(P ) = HB(P )∪HT (P )∪HIn(P ).

Stretch and Weight Analysis. We start with a technical lemma (Lemma 9), which is used
in the stretch and weight analysis for the graph H(P ) of a single node P ∈ P (Lemma 10).
Notice that the intervals in Î act similarly to the 1-dimensional intervals in I: in particular,
Lemma 6 carries over, with Ik replaced by Îk, and with the line segment

⋃
S replaced by

the region
⋃ (

A(P ) ∩ slab(P )
)
.

▶ Lemma 9. Let w denote the smallest width of any rectangle in S(P ), where the width
of a rectangle s ∈ A(P ) is the length of s ∩ bP . Then for any k ∈ N, the union of any 2k

contiguous intervals in Î has width at least kw.

Proof. By construction, every covering rectangle ĉk intersects Îk and Îk−1. By Lemma 6(2),
ĉk does not intersect any other intervals in Î. Thus, ĉl ⊂ Îk−1 ∪ Îk. This means that every
pair of intervals has width at least w. As there are k disjoint pairs of intervals in a set
containing 2k contiguous intervals, such a set must have width at least kw. ◀

▶ Lemma 10. The subgraph H(P ) has the following properties:
1. for every edge ab ∈ G(P ) with a ∈ A(P ), H(P ) contains an ab-path of length at most 2;
2. H(P ) contains O(α2 |S(P )|) edges.

Proof.
1. Every b ∈ S(P ) is in B(P ), T (P ), or In(P ). If b ∈ B(P ), then the claim follows from the

definition of HB(P ) and the fact that HB(P ) is a subgraph of H(P ). Similarly, the claim
holds when b ∈ T (P ).
Suppose b ∈ In(P ). By Lemma 6(3), if there is an edge ab in G(P ) then both a and b

intersect some interval Îk. By construction of HIn(P ), there is an edge between a and ck

and between b and ck (or else either a or b is equal to ck) and so there is a path of length
at most 2 between a and b in HIn(P ). As HIn(P ) is a subgraph of H(P ), this proves the
claim.

SoCG 2022
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2. By construction, HB(P ) contains 2 |B(P )| edges, HB(P ) contains 2 |T (P )| edges, and
H ′

In(P ) contains 2 |A(P )| edges.
We now bound the number of edges that are added to H ′

In(P ) to produce HIn(P ). Let h

be the distance between bP and tP . Every rectangle a ∈ A(P ) has width at least Ω( h
α ),

as a is α-fat and has height at least h. Further, notice that every rectangle b ∈ In(P ) has
width less than αh, as otherwise it would cross bP or tP .
Let Îl, Îr ∈ Î, resp., be the leftmost and rightmost intervals that b intersects. As these
intervals are interior-disjoint, the intervals between Îl and Îr (if any exist) must have
a total length less than αh; otherwise, b could not intersect both. By Lemma 9, any
consecutive 2α2 intervals (all of length at least h/α) have width at least αh. Thus, b can
intersect at most 2α2 − 1 intervals other than Îl and Îr.
By construction, this implies that b ∈ In(P ) adds at most O(α2) edges to H ′

In during the
construction of HIn. Thus, HIn has at most 2|A(P )| + α2|In(P )| edges. As In(P ), B(P ),
T (P ), and A(P ) are all subsets of S(P ), H(P ) has at most O(α2|S(P )|) edges. ◀

We prove that H(S) =
⋃

P ∈P H(P ) has O(α2n log n) edges and that it is a 2-hop spanner.
We begin by considering the size. While some H(P ) may contain many edges, we bound the
total size of H(S) by showing that every rectangle in S is involved in O(log n) subproblems.

▶ Lemma 11. For every rectangle s ∈ S, the following hold:
1. there are O(log n) nodes P ∈ P where s ∈ In(P );
2. there are O(log n) nodes P ∈ P where s ∈ B(P ) \ A(P ); symmetrically, there are O(log n)

nodes P ∈ P where s ∈ T (P ) \ A(P );
3. there are O(log n) nodes P ∈ P where s ∈ A(P ).

Proof. Notice that for any k, the slabs of nodes at level k in the space partition tree have
pairwise disjoint interiors. Since S contains n rectangles, there are at most

(
n
2
)

intersections
in G(S). Thus, |C(S)| ≤

(
n
2
)
, and so the tree has O(log n) levels.

1. For every level k ∈ N in the space partition tree, there is only one node P where s ∈ In(P ).
Suppose for the sake of contradiction that s ∈ In(P1) and s ∈ In(P2) with P1 and P2 in
the same level and P1 ̸= P2. By the definition of In(.), s is contained in slab(P1) and in
slab(P2). As these slabs are disjoint, this is impossible. Summation over O(log n) levels
of the recursion tree completes the proof.

2. For every level k ∈ N in the tree, consider the node P with the highest slab such that
slab(P ) ∩ s ̸= ∅. Notice that s ∈ B(P ) and s /∈ T (P ), so s ∈ B(P ) \ A(P ). Any other
node P ′ in this level that s intersects lies strictly below P (as nodes within a level have
pairwise disjoint slab interiors) and s is connected, so s ∈ B(P ′) only if s ∈ T (P ′). Thus,
P is the only node in level k where s ∈ B(P ) \ A(P ). A symmetric argument proves that
there is only one P per level where s ∈ T (P ) \ A(P ).

3. For every level k ∈ N in the tree, there are at most two nodes P such that s ∈ A(P ).
Suppose for the sake of contradiction that there exist distinct P1, P2, and P3 at level k

such that s ∈ A(P1) ∩ A(P2) ∩ A(P3). The interiors of the corresponding slabs are disjoint,
so we may assume w.l.o.g. that P1 lies below P2, which lies below P3. As s is connected,
it intersects bP and tP for every node P between P1 and P3. In particular, s must be in
A(P ) for the sibling P of P2. Then s is also in A(P ′) for the parent P ′ of P2. This is a
contradiction – if s were in the A set of the parent of P2, it would not have been added to
the set S(P2) ⊂ S(P ′) \ A(P ′) of rectangles for the child. ◀

▶ Corollary 12. For every s ∈ S, there are O(log n) nodes P ∈ P where s ∈ S(P ).
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Proof. This follows from the fact that for every node P , S(P ) is the union of the four sets
mentioned in Lemma 11: S(P ) = In(P ) ∪ (B(P ) \ A(P )) ∪ (T (P ) \ A(P )) ∪ A(P ). ◀

▶ Lemma 13. H(S) has O(α2n log n) edges.

Proof. For every node P , H(P ) has O(α2 |S(P )|) edges by Lemma 10. Charge O(α2) edges
to each rectangle in S(P ). By Corollary 12, each rectangle is charged at most O(log n) times,
and so H(S) has at most O(α2n log n) edges. ◀

▶ Lemma 14. H(S) is a 2-hop spanner for G(S).

Proof. Let ab be an edge in G(S). As the rectangles a and b intersect, there is some point
p ∈ C(S) that lies in a ∩ b. Since p is not in the interior of any slab at the leaf level, a
horizontal line of the space partition contains p. Assume w.l.o.g. that this line is bP for
some node P . If both a and b are present in S(P ), then HB(P ) contains an ab-path of
length at most 2. Otherwise, there is some node P ′ for which both a and b are in S(P ′) but
either a or b is not in the set for either child of P ′. Assume w.l.o.g. that a was removed.
By construction, a rectangle is removed exactly when it is in A(P ′). By Lemma 10, H(P ′)
contains an ab-path of length at most 2. As H(S) =

⋃
P ∈P H(P ), this proves that H(S)

contains such a path. ◀

The previous two lemmata prove the following theorem.

▶ Theorem 15. The intersection graph of every set of n axis-aligned α-fat rectangles in the
plane admits a 2-hop spanner with O(α2n log n) edges.

4 Lower Bound Constructions

In this section, we define a class of graphs for which any 2-hop spanner has at least Ω(n log n)
edges, then show that these graphs can be realized as the intersection graph of n homothets
of any convex body in the plane.

Construction of F (h). For every h ∈ N, we construct a graph F (h), which contains 2h(h+1)
vertices. The vertex set is V = {0, . . . , 2h − 1} × {0, . . . , h}. For each vertex v = (x, i), we
call i the level of v. For each level i ∈ {0, . . . , h}, partition the vertices with level less than
or equal to i into 2i groups of 2h−i(i + 1) consecutive vertices based on their x-coordinates.
In particular, for every level i ∈ {0, . . . , h}, let {0, . . . , 2h − 1} =

⋃2i−1
k=1 Xk,i, where Xk,i =

{2h−ik, 2h−ik + 1, . . . , 2h−i(k + 1) − 1}. This defines groups Vk,i = Xk,i × {0, . . . , i} for
k ∈ {0, . . . , 2i − 1}. Notice that (x, ℓ) ∈ Vk,i for k = ⌊x/2i⌋ and i ≥ ℓ. Finally, add edges to
the graph F (h) such that every group Vk,i is a clique; see Fig. 5.

We show that any 2-hop spanner for F (h) with n = 2h(h + 1) vertices has Ω(2hh2) =
Ω(n log n) edges. We do this by first showing that a 2-hop spanner contains Ω(2h−ih) edges
in each clique induced by a group Vk,i, and these edges are distinct from the edges required
by any other group. This result follows from the following lemma:

▶ Lemma 16. Suppose that the vertex set of the complete graph K2n is partitioned into two
sets A and B each of size n, and call edges between A and B bichromatic. Then every 2-hop
spanner of K2n contains n bichromatic edges.

Proof. Let S be a 2-hop spanner for K2n. If every vertex in A is incident to a bichromatic
edge in S, then clearly S contains at least |A| = n bichromatic edges. Otherwise, there is
some a ∈ A that has no direct edges to B in S. For every b ∈ B, S contains a 2-hop path
between a and b, that is, a path (a, ab, b) for some ab ∈ A. The edges abb are bichromatic
and distinct for all b ∈ B, so S contains at least |B| = n bichromatic edges. ◀
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V0,0

V0,1 V1,1

V0,2 V1,2 V2,2 V3,2

Figure 5 Vertices of F (2) grouped by cliques Vk,i.

▶ Lemma 17. For all h ∈ N, F (h) has n = 2h(h + 1) vertices and Ω(n log n) edges.

Proof. Notice that every Xk,i, for i < h, can be written as X2k,i+1 ∪ X2k+1,i+1. Accordingly,
we can partition Vk,i into two sets of equal size:

Vk,i =
(

X2k,i+1 × {0, . . . , i}
)

∪
(

X2k+1,i+1 × {0, . . . , i}
)

.

Call edges that cross between these two sets Vk,i-bichromatic.
We claim that the set of Vk,i-bichromatic edges and Vk′,i′ -bichromatic edges are disjoint

unless k′ = k and i′ = i. If i = i′, then the claim follows from the fact that Vk,i and Vk′,i

are disjoint. Otherwise, assume w.l.o.g. that i < i′. Notice that either Xk′,i′ is contained
within X2k,i+1 or X2k+1,i+1, or it is disjoint from both. The Vk,i-bichromatic edges cross
from X2k,i+1 to X2k+1,i+1 while Vk′,i′ -bichromatic edges stay within Xk′,i′ , so the edge sets
must be disjoint.

Let S be a 2-hop spanner of F (h). Each vertex set Vk,i contains 2h−i(i + 1) vertices,
so the partition described above involves two sets of size 2h−i−1(i + 1). As Vk,i is a clique,
Lemma 16 implies that S contains at least 2h−i−1(i + 1) Vk,i-bichromatic edges. Every
level i contains 2i groups Vk,i, so S contains at least 2h−1(i + 1) bichromatic edges in
each level. Summation over all h levels (excluding the level where i = h) yields at least∑h−1

i=0 2h−1(i + 1) = Ω(2hh2) = Ω(n log n) edges. ◀

Geometric Realization of F (h). We realize F (h) as the intersection graph of a set S(h) of
homothets of any convex body for all h ∈ N. The construction is recursive. To construct
S(h+1), we form two copies of S(h) to realize vertices in the first h levels, then add homothets
to realize the vertices in level h + 1.

▶ Lemma 18. For every convex body C ⊂ R2 and every h ∈ N, the n-vertex graph F (h) can
be realized as the intersection graph of a set S(h) of n homothets of C.

Proof. Let C be a convex body (i.e., a compact convex set with nonempty interior) in the
plane. Let o ∈ ∂C be an extremal point of C. Then there exists a (tangent) line L such
that C ∩ L = {o}. Assume w.l.o.g. that o is the origin, L is the x-axis, and C lies in the
upper halfplane. We construct S(h) recursively from S(h − 1). Let s(a, i) ∈ S(h) denote the
homothet that represents the vertex (a, i) ∈ F (h). We maintain two invariants: (I1) for every
a ∈ {0, . . . , 2h − 1}, there is some point pa on the x-axis such that every s(a, i) ∈ S(h) is
tangent to the x-axis and intersects the x-axis exactly at pa; and (I2) whenever s1, s2 ∈ S(h)
intersect, s1 ∩ s2 has nonempty interior.
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Construction. F (0) has a single vertex (0, 0) and no edges, so it can be represented as the
single convex body C with the extremal point o on the x-axis.

We now construct S(h) from S(h − 1); see Fig. 6. By invariant (I2), there is some ε > 0
such that for every s ∈ S(h − 1), translating s by ε in any direction does not change the
intersection graph. Duplicate S(h−1) to form the sets S1(h−1) and S2(h−1), and translate
every homothet in S2(h−1) by ε in the positive x direction. Let S′(h) = S1(h−1)∪S2(h−1).
Notice that for every clique Vk,i in F (h−1), there is a corresponding clique in the intersection
graph of S′(h) that contains both the vertices in the clique Vk,i realized by S1(h − 1) and
the vertices in the clique Vk,i realized by S2(h − 1).

The x-axis is still tangent to all s ∈ S′(h), and there are 2h distinct points on the x-axis
that intersect some s ∈ S′(h). Each point pa has a neighborhood that intersects only the
homothets in S′(h) that contain pa, since every convex body that does not contain pa has
a positive distance from pa by compactness. For each pa, add a homothetic copy Ca of C

completely contained within that neighborhood, tangent to the x-axis and containing pa.
Let S(h) be the union of S′(h) and these Ca.

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

L

Figure 6 Realization of F (2) with homothets of squares, all tangent to L. Each homothet is
labeled with the vertex of F (2) that is represents.

Correctness. For 0 ≤ i < h, let the homothet s1(a, i) ∈ S1(h − 1) represent (2a, i) in F (h),
and let the homothet s2(a, i) ∈ S2(h − 1) represent (2a + 1, i) in F (h). Let the homothets
Ca represent (a, h) ∈ F (h).

This correspondence implies that, for all 0 ≤ i < h, vertices in the clique Vk,i in F (h)
have been realized by homothets corresponding to a clique V⌊ k

2 ⌋,i in S1(h − 1) or S2(h − 1).
By construction of S(h), any two such homothets intersect. Similar reasoning applies in the
opposite direction: any intersection between two homothets in S′ corresponds to an edge in
some clique in F (h). When i = h, notice that every Ca intersects exactly the homothets in
S′(h) that intersect pa, which by assumption were the homothets representing points with
the same x-coordinate. Thus, any clique Vk,h in F (h) is represented in S(h), and there are
no edges involving Ca that do not correspond to such a clique in F (h). ◀

The previous two lemmata imply the following theorem.

▶ Theorem 19. For every convex body C ⊂ R2, there exists a set S of n homothets of C

such that every 2-hop spanner for the intersection graph of S has Ω(n log n) edges.
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5 Outlook

We have shown that every n-vertex UDG admits a 2-hop spanner with O(n) edges; and this
bound generalizes to the intersection graphs of translates of any convex body in the plane
(see the full paper). The proof crucially relies on new results on the α-hull of a planar point
set. It remains an open problem whether these results generalize to higher dimensions, and
whether unit ball graphs admit 2-hop spanners with Od(n) edges in Rd for any d ≥ 3.

We proved that the intersection graph of n axis-aligned squares in R2 admits a 2-hop
spanner with O(n log n) edges, and this bound is the best possible. However, it is unclear
whether the upper bound generalizes to Euclidean disks of arbitrary radii (or to fat convex
bodies) in the plane. For fat convex bodies and for axis-aligned rectangles, we obtained 3-hop
spanners with O(n log n) and O(n log2 n) edges, respectively. However, it is unclear whether
the logarithmic factors are necessary. Do these intersection graphs admit weighted edge
biclique covers of weight O(n)? In general, we do not even know whether a linear bound can
be established for any constant stretch: Is there a constant t ∈ N for which every intersection
graph of n disks or rectangles admits t-hop spanner with O(n) edges?

Finally, it would be interesting to see other classes of intersection graphs (e.g., for strings
or convex sets in R2, set systems with bounded VC-dimension or semi-algebraic sets in Rd)
for which the general bound of O(n1+1/⌈t/2⌉) edges for t-hop spanners can be improved.
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