Small Circuits Imply Efficient Arthur-Merlin
Protocols

Michael Ezra &

Department of Computer Science, Technion, Haifa, Israel

Ron D. Rothblum &

Department of Computer Science, Technion, Haifa, Israel

—— Abstract

The inner product function (x,y) = >, ziy; mod 2 can be easily computed by a (linear-size) ACY (@)
circuit: that is, a constant depth circuit with AND, OR and parity (XOR) gates. But what if we
impose the restriction that the parity gates can only be on the bottom most layer (closest to the
input)? Namely, can the inner product function be computed by an ACP circuit composed with a
single layer of parity gates? This seemingly simple question is an important open question at the
frontier of circuit lower bound research.

In this work, we focus on a minimalistic version of the above question. Namely, whether the
inner product function cannot be approrimated by a small DNF augmented with a single layer of
parity gates. Our main result shows that the existence of such a circuit would have unexpected
implications for interactive proofs, or more specifically, for interactive variants of the Data Streaming
and Communication Complexity models. In particular, we show that the existence of such a small
(i-e., polynomial-size) circuit yields:

1. An O(d)-message protocol in the Arthur-Merlin Data Streaming model for every n-variate, degree
d polynomial (over GF(2)), using only o (d) - log(n) communication and space complexity. In
particular, this gives an AM[2] Data Streaming protocol for a variant of the well-studied triangle
counting problem, with poly-logarithmic communication and space complexities.

2. A 2-message communication complexity protocol for any sparse (or low degree) polynomial,
and for any function computable by an AC?(®) circuit. Specifically, for the latter, we obtain
a protocol with communication complexity that is poly-logarithmic in the size of the AC’()
circuit.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Circuits Complexity, Circuit Lower Bounds, Communication Complexity,
Data Streaming, Arthur-Merlin games, Interactive Proofs

Digital Object Identifier 10.4230/LIPIcs.ITCS.2022.67
Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/127/download [47]

Acknowledgements We thank Yuval Ishai, Eyal Kushilevitz and Or Meir for very useful discussions

and comments.

1 Introduction

Understanding the expressive power of bounded depth circuits is a central goal in complexity
theory, with the hope of eventually answering fundamental questions, such as NP ¢ P/poly or
P ¢ NC;. Seminal works from the 80’s showed that the parity function cannot be computed
by ACO circuits - that is, constant-depth polynomial-size circuits with unbounded fan-in AND,
OR and NOT gates [23, 2, 29]. Razborov and Smolensky [44, 51] took the next step forward
by considering the class AC’(®), which extends AC® by allowing also (unbounded fan-in)
parity gates, and showed that this class cannot compute the majority or modp functions.
Most recently, Williams [54] separated the class ACC’, in which the circuit is further allowed
to use arbitrary modp gates, from the class NEXP of non-deterministic exponential-time
computations (see also the recent exciting sequence of works [18, 53, 16, 17, 42]).
? Michael Ezra and Ron D. Rothblu.m;

37 icensed under Creative Commons License CC-BY 4.0
13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Editor: Mark Braverman; Article No. 67; pp. 67:1-67:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:michaelezra@campus.technion.ac.il
mailto:rothblum@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.ITCS.2022.67
https://eccc.weizmann.ac.il/report/2021/127/download
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2

Small Circuits Imply Efficient Arthur-Merlin Protocols

Despite these results, we are still far from understanding the power of constant-depth
circuits. For example, it is easy to construct an AC%(®) circuit for computing the inner
product function: simply take the parity of the respective point-wise products. On the other
hand, if we do not allow parity gates, then it is easy to show a lower bound. A natural
question that arises is whether a similar lower bound holds if we augment the AC® circuit
with a single layer of parity gates immediately after the input layer. The resulting circuit
class is called an AC of parities (and is sometimes denoted by AC%;). Recently, there has
been growing interest in whether this circuit class can compute the inner product function
34, 45, 48, 3, 20, 19, 9, 22].

Interestingly, an exponential lower bound for the inner product function is known [31] for
the special case in which the AC? circuit has depth 2.! Namely, a DNF of parities, denoted
by DNFg. For depth 3 circuits (on top of the parity layer), only a relatively weak (quadratic)
lower bound is known [19]. Lastly, for general AC% circuits, an exponential lower bound is
known [22] only for the very restricted case in which the number of parity gates is linear.?

Even for the case of DNFs, the lower bound arising from the work of Jackson [31] only
rules out an (almost) ezact DNFg for computing the inner product function. Thus, a question
(posed explicitly by Cohen and Shinkar [20]) that seems just beyond the reach of current
techniques is:

“Does there exist a small DNF of parities that approrimates
the inner product function?”

We refer to the assumption that a positive answer holds for this question as the IP,€DNFg
hypothesis (in the actual theorem statements below we use a quantitatively precise version
of the assumption). In this work, we study the ramifications of the IP,EDNFg hypothesis,
with the belief that these results develop our understanding of the hypothesis or could even
bring us closer to the eventual goal of refuting it.

Recently, in a work of Huang et al. [30], it was shown that a positive answer to the
IP,EDNFg4 hypothesis implies a small AC%, for the inner product function (in the worst case).
Still, proving or refuting the hypothesis remains beyond the grasp of current techniques.

1.1 Our Results

We show that a positive answer to the IP,€DNFg hypothesis implies (unexpected) efficient
interactive (Arthur-Merlin) protocols for a large class of problems (in different models to
be described below). We note that the quantitative parameters of the resulting protocols
seem to be far more efficient than expected. Thus, these results fall in line with our belief
that the IP,EDNFg hypothesis is false. Moreover, these results also form a new approach
for refuting the IP,€DNFg hypothesis through Arthur-Merlin lower bounds, in the sense
that progress in finding Arthur-Merlin lower bounds can be applied, using our results, to
refute the IP,€DNFg hypothesis. While finding lower bounds for Arthur-Merlin protocols is
a notoriously difficult problem (e.g., in communication complexity), all of our protocols go
through efficient Holographic-Interactive protocols, where Arthur-Merlin lower bounds are
known [28].

L This bound was tightened by Cohen and Shinkar [20], who gave a lower bound that exactly matches the
known upper bound.

2 In fact, their result holds for the more general case in which an arbitrary (i.e., not necessarily linear)
preprocessing step is done first on the two parts of the input separately.

M. Ezra and R. D. Rothblum

The models that we consider are “Arthur-Merlin” variants of the standard Data Streaming
and the Communication Complexity models. In order to describe these variants, we first
recall the standard definitions of Data Streaming and Communication Complexity models
and then explain how they are extended to Arthur-Merlin variants, by giving the relevant
parties access to an all-powerful (but untrusted) prover.

Recall that in the standard Data Streaming Model (popularized by [4]), a bounded space
algorithm is required to compute a certain function of the inputs by using the least amount
of space. The algorithm gets the input bits as a sequence of bits (stream), in the sense that
after seeing a bit in the sequence, the algorithm no longer has access to the bits that preceded
it (unless these were stored in its memory). In the standard Communication Complexity
Model [55], there are two parties, called Alice and Bob, who are trying to evaluate a function
f on their joint input. That is, Alice and Bob are given inputs z and y, respectively, and
need to jointly compute the value f(x,y), while transmitting the least amount of bits.

We focus on the Arthur-Merlin (AM) variant of these models, where the parties are
also assisted by an untrusted prover, often referred to as Merlin, who sees all inputs (and
has unlimited computational resources). The parties are allowed to make a short public
coin interaction with Merlin, before (deterministically) running the standard protocol. The
interaction is of the AM (Arthur-Merlin) type in the sense that the messages to Merlin
consist of only fresh random coins, and in particular, do not depend on the input bits nor on
previous messages that were exchanged. Beyond the coins that were revealed to Merlin in the
interaction, the parties are not allowed to toss any additional coins. Throughout this work
we use the notation AM[k] to refer to AM protocols with k messages exchanged between the
parties.

1.1.1 The AM Data Streaming Model

In the AM Data Streaming Model [21, 13, 27, 11, 12, 14, 52, 15], we allow the bounded space
algorithm processing the stream, to interact with the untrusted prover Merlin, who sees the
entire input (and is not space bounded). Many of these works differ in the exact form of the
interaction. For example, does the small-space verifier get full access to messages sent by the
prover, or merely streaming access? In this work we consider the following natural model,
which we refer to as the AM[k] Data Streaming model:

1. In the first phase, the verifier engages in a k-message public-coin interactive protocol
with the prover (starting with a verifier message). At the end of this phase the verifier
holds a transcript 7.

2. In the second phase, the verifier is allowed to process the input stream in a bit-by-bit
manner. The verifier’s computation in this phase is allowed to depend on the transcript
7 that it saw. We emphasize that the verifier in this phase is deterministic.

3. After processing the stream, the verifier decides whether to accept or reject.

As usual, we require that there is a strategy for Merlin to convince the streaming verifier to

accept true statements, but the verifier rejects any false statements (with high probability)

even if Merlin cheats. Naturally, we require the space complexity of the verifier to be small
and the communication with the prover to be short as well (since otherwise Merlin can
provide the entire input!).

3 The verifier could in principle toss additional coins in the first phase to be used in the second phase, but
we count this as an additional message. This is motivated by the definition of the classical complexity
class AM which does not allow Arthur additional coin tosses after seeing Merlin’s message.

67:3

ITCS 2022

67:4

Small Circuits Imply Efficient Arthur-Merlin Protocols

As our first result, assuming the existence of a small DNF of parities for the inner product,
we construct (multi-round) AM Data Streaming protocol for any function f that can be
computed by a low-degree polynomial (over GF(2)).

» Theorem 1 (Informally stated (see Theorem 9)). Assume that there exists a DNF of parities
of size S, that computes the inner product function on % + € fraction of the inputs, for some
constant € > 0. Then, there exists an AM[2d] Data Streaming protocol with O (d) - log(S)
proof length, space complexity and randomness complexity, for every degree d polynomial
over GIF(2).

When S is polynomial and d is (super) constant, the protocol has poly-logarithmic proof and
space complexities. This should be contrasted with approaches based on (super) constant-
round versions of the celebrated sumcheck protocol [40], which have polynomial proof-length.

We also emphasize that (as usual in this context) here and throughout this work, we do
not consider the computational complexity of the verifier and only focus on the space and
communication complexities.

Application: A Streaming Protocol for Counting Triangles Mod 2. We also point out an
interesting implication of Theorem 1 to a variant of the well studied Triangle-Count problem.
In the Triangle-Count problem, a streaming algorithm is required to count (or sometimes
just approximate) the number of triangles (i.e., cliques of three vertices) in an undirected
(simple) graph. A large body of work has studied this problem in the streaming context in
general [7, 33, 10, 39, 36, 32, 41, 8, 35], and in particular when the streaming algorithm is
assisted by a prover [12, 52, 15]. There are two main variants of the Triangle-Count problem,
which differ in the exact form that the input is given to the streaming algorithm. In the
first variant, studied in [7, 10, 39, 41, 35], the edges are given in an adjacency-list format.
Namely, first, the edges connected to the first vertex appear in the stream, then the edges
that are connected to the second vertex, and so on. In the second variant (also referred to
as the dynamic updates variant), studied in [7, 33, 10, 36, 32, 41, 8], the stream consists of
dynamic additions (and sometime also deletions) of edges, in an arbitrary order.

We consider a variant of the Triangle-Count problem, denoted by @ Triangle, where the
goal is to compute the parity of the number of triangles in the graph. We consider in which
the graph is given as a stream of its edges, where each edge appears in the stream exactly
once. We note that the MA complexity* of @ Triangle is well understood: for every proof
length p and verifier space complexity s, it holds that s-p = Q(n?) [12, 52].° Also, a matching
quadratic upper bound is known for (almost) any combination of s -p = O(n?) [52, 15]. On
the other hand, this problem has no known (non-trivial) upper or lower bounds in the AM
setting.

Assuming the IP,EDNFg hypothesis, we show an efficient AM protocol for € Triangle.
Our protocol has space complexity and proof length that are poly-logarithmic in the circuit
size (regardless of the specific order of the edges in the stream).

» Theorem 2 (AM Streaming for @ Triangle, informally stated (see Theorem 11)). Assume
that there exists a DNF of parities of size S that computes the inner product function on %—}—e
fraction of the inputs, for some constant € > 0. Then, there exists an AM[2] Data Streaming
protocol for @ Triangle with polylog (S (n?’)) proof length and space complexity.

4 Loosely speaking, in an MA model, first the prover sends a proof message. Then, the verifier gets the
input as a stream, and conducts a (randomized) streaming computation.

5 The lower bound is not stated explicitly for this problem, but follows from the fact that it holds for the
case that the graph is promised to contain exactly one triangle or be triangle-free.

M. Ezra and R. D. Rothblum

Indeed, assuming that S is polynomial, the protocol of Theorem 2 has poly-logarithmic
proof length and space complexity.

1.1.2 AM Communication Complexity

We next describe our results in the (AM) Communication Complexity model. In the AM
Communication Complexity Model [37, 1, 24, 38, 25], Alice and Bob are allowed to also
conduct a public-coin interaction with the prover Merlin, who sees both of their inputs, but
is non trustworthy. The parties communicate using a broadcast channel, namely, each of the
parties is exposed to all the messages sent by Merlin, and all the random coins tossed by
Alice and Bob. For sake of simplicity, we can assume that Alice and Bob do mot interact,
since Merlin can simply provide all messages that they would have exchanged had they
interacted (and the two parties can check that the communication is consistent with what
they would have sent). As above, we require that Merlin will convince both Alice and Bob of
the correctness of true statements, but no matter what Merlin does, with high probability
either Alice or Bob will reject false statements.

It is not hard to show that any Data Streaming protocol can be transformed into a
Communication Complexity protocol, for the same problem, as follows: Alice starts running
the data streaming algorithm until the algorithm finishes processing her portion of the input
(i-e., at the midpoint). She then transmits to Bob her memory state. Bob continues the
emulation using his portion of the input. The communication complexity of the resulting
protocol is therefore at most the space complexity of the streaming algorithm.

Thus, Theorem 1 immediately implies an AM communication complexity protocol for
low-degree polynomials as well. Interestingly, however, we are able to achieve significantly
better parameters by constructing an AM Communication Complexity protocol directly. In
particular, we construct a one-round protocol, which can also be extended to a protocol for
any function that is decidable by an /—\CO(@) circuit. Lastly, we also note that while the
protocol in Theorem 1 depends on the degree of the polynomial, the protocol in Theorem 3
depends only on the number of monomials, and therefore can also be applied to high-degree,
but sparse, polynomials.

» Theorem 3 (Informally stated (see Theorem 7 and Corollary 8)). Assume that there exists a
DNF of parities of size S that computes the inner product function on % + € fraction of the
inputs, for some constant € > 0. Then, there exist:

An AM[2] Communication Complexity protocol with O (log (S(2N)))) communication

complexity, for every function f that can be expressed as a polynomial (over GIF(2)) with
N monomials.

In particular, if f is a degree d polynomial over 2n input bits, the AM[2] protocol has
communication complexity O (1og (S (2 : (2n)d))).

An AM[2] Communication Complezity protocol with O (log (S (2p°1yl°g(T)))) communica-
tion complexity, for any function that is decidable by an ACO(EB) circuit of size T.

Note that the protocols in Theorem 3 are 2-message protocols, whereas the protocol in
Theorem 1 require a large number of rounds of interaction. One could potentially reduce the
number of rounds using (a suitable variant of) the round collapse theorem [6] (see also [46,
Lemma 4.6]). However, we emphasize that Theorem 3 gives significantly better parameters
than round collapsing the protocol of Theorem 1. For example, if S = poly(n), by applying
a round collapse to our data streaming results, we get an AM[2] Communicating Complexity

protocol with O (logd n) communication complexity for degree d polynomials. In contrast,

67:5

ITCS 2022

67:6

Small Circuits Imply Efficient Arthur-Merlin Protocols

our explicit protocol of Theorem 3 has a linear (rather than exponential) dependence on the
degree d. This improvement allows us to extend the explicit Communication Complexity
protocol for low degree (or sparse) polynomials, also for any function that is decidable by an
ACO(@) circuit. Interestingly, we do not know how to obtain a non-trivial result of the same
flavor from the protocol in Theorem 1.

1.2 Technical Overview

In this section, we present the main methods and techniques that used in our work. For the
full details and proofs, please refer to the technical sections in the full version [47].

Our main technical step is to construct, assuming that the IP,€DNFg hypothesis holds,
a special type of proof-system for computing the inner product function, called a Holographic
Interactive Proof (HIP) - a notion introduced in the work of Gur and Rothblum [28] (inspired
by a similar model for PCPs, introduced by Babai et al. [5]). An HIP is defined similarly to
a standard interactive proof, except that the verifier, rather than being given access to the
main input explicitly, is given oracle access to an encoding of the input. The hope is that
the redundancy provided by the encoding will allow the verifier to run in sub-linear time.
Hence, the main complexity resources that we focus on are the query complexity, which is the
number of bits that the verifier reads from the encoding, and the communication complexity,
which is the total number of bits exchanged with the prover. We focus specifically on an
AM[2] variant, where the verifier first sends random coins r to the prover, who responds with
a message 7, called the proof. The verifier then decides deterministically, based on the input
queries, random string r and proof m, whether to accept or reject.

Let us assume therefore that there exists a DNF of parities C' of size S that approximates
the inner product function. We use C' to design an AM[2] HIP for verifying inner product
claims. The input encoding that we will use in the HIP corresponds to the parity layer of the
circuit C, and is therefore a linear function. This point is crucial for our results.

1.2.1 An AMJ2]-HIP for Inner Product Claims

As our first step, we construct a simple HIP for verifying that the inner product of two strings
is equal to 1 and which only works for most inputs. This falls short of our eventual goal
which is to check general inner products and over worst-case inputs. Nevertheless, we present
this HIP as it will serve as an important ingredient in our construction.

Step 1: Verifying one-sided claims, on the average. Recall that C is a DNF of parities
that approximates the inner product function. A simple one-round HIP protocol for verifying
whether f(xz) =1 on a given input = can be established as follows: the prover sends an index
of a satisfied clause (such an index exists if and only if f(z) = 1), and the verifier checks
whether the clause is indeed satisfied, by reading the bits in the clause from the input’s
encoding. Note that the proof-system is holographic as the verifier reads each bit in the
clause by making a single query to the output of the parity layer. The communication is
log(S) and the query complexity is bounded by the maximal width of the clauses.

Since we seek small query complexity, we would like to ensure that the DNF has small

width. To do so we observe that each clause in a DNF of parities can be viewed as a system of
1

o7
system with rank at least . Therefore, a natural idea is to remove all of the wide clauses.

When doing so one should first make sure that the equations forming the clause are linearly
independent, which can be easily done (by choosing a maximal set of linearly independent

linear equations. Also, note that with probability at most a random input satisfies a linear

M. Ezra and R. D. Rothblum

equations). Thus, after eliminating linear dependencies, we remove all clauses with width
Q(log S). Since we only removed clauses, the new circuit disagrees with f(x) only if = satisfies
one of the removed clauses. Since we only removed clauses of rank greater than O(log S), by
the union bound and setting the constant in the big-O to be large enough, the probability

that an input x satisfies one of the removed clauses is at most 2()(1sog 5y = pOI;(5 = o(1).

Overall we have constructed an HIP that can verify whether an inner product of two
strings is 1 on most inputs, with O(log S) proof length, and O(log S) query complexity. As
noted before, our next step is to convert this protocol — which works in the average case —
into a protocol that can verify any inner product claim.

Self-correction of the inner product function. As an initial observation, we observe that
the self-correction property of linear functions can be extended also to the inner product
function (this can also be viewed as a special case of locally decoding the Reed-Muller code
over GF(2), see [26]). For any input strings z, y, and vectors u, v’ which are taken at random,
it holds that

(z,2y)y =(z@uydv)®(zdu,v)® (u,ydv) ® (u,v), (1)

where (a,b) denotes the inner product of strings a,b € {0,1}". Note that the terms on the
right-hand side of Equation (1), are inner products over different (correlated) random inputs.
Also, recall that the “simple” protocol that was described previously, can verify inner product
claims about random inputs with high probability over the inputs. Thus, at first glance it
may seem sufficient to use Equation (1), and verify the random claims using our average-case
protocol. Unfortunately, by moving to claims over inner products of random inputs we will
also need the ability to verify whether an inner product is 0, while so far we only have an
HIP for “1-claims”. Therefore, instead of using Equation (1) directly, we present a generic
compiler that extends the self-correction property of Equation (1) also to the case where
there is a protocol that can only verify most of the 1-claims (a similar idea was used also in
the works of Shaltiel and Umans [49, 50]). In this compiler, we rely on the fact that in our
HIP the prover can’t convince the verifier to accept a false 1-claim (with high probability over
the inputs). For simplicity, we outline this compiler with respect to protocols for the inner
product function but in the technical sections, we extend this argument to any homogeneous
multilinear mapping.

Step 2: Self-correction with one-sided errors. In order to use Equation (1), we need
to verify also the O-claims on the right-hand side of Equation (1). Observe, that since
Equation (1) gives inner product claims of (individually) random inputs, then, in expectation,
about half will be 0’s and half will be 1’s.

Thus, since (with high probability) a cheating prover cannot lie on false 1-claim, it will
likely have to generate false O-claims and therefore skew the distribution of 0 vs. 1 claims.
In order to detect this, we simply repeat the experiment sufficiently many times (using
independent coin tosses) and checking the empirical average value of the prover’s claims. To
sum up, given a ground protocol that works only on most 1-claims, the compiler produces
the following protocol: the verifier uses Equation (1) several times, each time with fresh
random strings. At each iteration, the prover sends the values of the random inner products
on the right-hand side of Equation (1), while having the verifier check only the 1-claims, by
using the ground protocol, and blindly accepting the 0-claims. At the end of the interaction,
the verifier checks whether the average value of all the prover’s claims is close enough to
the expectation of the inner product function. If the average is close enough, the verifier
infers that the prover is honest. Otherwise, the verifier infers that the prover lies, and thus it
rejects.

67:7

ITCS 2022

67:8

Small Circuits Imply Efficient Arthur-Merlin Protocols

Lastly, in order to reduce the randomness complexity to O (logn) randomness complexity,
we use a standard technique, due to Newman [43], for reducing the randomness complexity
(using non-uniformity). We show that this technique works also in the context of AM-HIPs.

An alternate approach. We find it also instructive to describe another approach for dealing
with the 0-claims in Equation (1), and explain the reason we decided not to use it. The
idea here is to show a random self-reduction from a 0-claim to a 1-claim. This can be done
by embedding the input strings x and y into longer random string strings z’ and y’, while
ensuring that the (z',y") = 1 (z,y).

The reason we decided not to follows this approach is that it changes the input size. In
particular, it would mean that the verifier in the HIP would need to access a different linear
transformation then that in the bottom layer of the DNF.

1.2.2 From HIP to Communication Complexity (Proving Theorem 3)

Our key idea in proving to construct an AM Communication Complexity protocol for sparse
polynomials is the observation that a polynomial can be viewed as a linear combination
of its monomials. In the communication complexity setting, each monomial is a product
between a subset of Alice’s input bits, and a subset of Bob’s input bits. Thus, we can view
the evaluation of the polynomial f(z,y) = > . omial (a,5) Ta " Ya, Where zo = [l;cq z: and
Ys = [lep s as an inner product between the strings (za) and (ys).

Thus, in order to solve the problem, it suffices to construct an AM Communication
Complexity protocol for computing the inner product function. Such a protocol follows easily
from our HIP for inner products - since each query that the HIP verifier makes, is a linear
query to the joint input (z,y), it can be emulated by having Alice and Bob compute and
share their individual contributions.

The second part of Theorem 3 now follows easily by observing that every degree d
polynomial over GF(2) can have at most n¢ monomials, and by applying the polynomial
approximation method of Razborov and Smolensky [44, 51] (where the choice of the random
polynomial can be made by the verifier as part of its first step in the protocol).

1.2.3 From HIP to Data Streaming (Proving Theorem 1)

Unfortunately, our approach for computing sparse polynomials that worked in the commu-
nication complexity setting, fails in the streaming setting. The issue is that each monomial
consists of a product of multiple input bits. Therefore, the polynomial’s monomials induce
an inner product between a coefficient vector, and a tensor of the input, rather than the
input in its basic form. While it is relatively easy to make queries to an encoding of the
input by a streaming verifier, it is not clear at all how to make queries to an encoding of a
tensor of the input.

Nevertheless, our starting point is the above observation that a polynomial can be
expressed as a certain inner product. In more details, a degree d polynomial P : {0,1}" —
{0,1} (over the field GIF(2)) can be viewed as a linear combination of its monomials, each
of which is a product between a coeflicient and a product of d input bits. Therefore, there
exists a function Coefp : [n]¢ — {0,1} that depends only on P, such that:

Px)= @ @ -wp, - xj,- Coefp(ii,. .., ja). (2)

J1seesja€ln]

M. Ezra and R. D. Rothblum

The basic idea of the protocol is to iteratively use the HIP protocol for inner product
claims (henceforth, the ground HIP protocol), to gradually reduce a claim about the right-hand
side of Equation (2), to claims that don’t depend on the inputs - that is, claims that depend
only the structure of the specific code that the HIP uses, and the structure of the polynomial
P. Since the resulting claims do not depend on the input, the verifier will be able to check
them without additional communication or queries.

Inspired by the celebrated sumcheck protocol of Lund et al. [40], we construct a d-round
AM-HIP protocol, so that in the i-th round we reduce a set of claims over d — (i — 1) input
variables, to a set of claims that depend on only d — ¢ input variables. The i-th round starts
with claims of the form:

@ (B(i_l) (jl,...,jifl) -:Eji ~l‘ji+1 ---.’I?jd -Coefp(jh...,jd)) :b(i_l), (3)

where 31 is a function that depends only on the structure of the linear code that the base
HIP protocol uses. Our goal is to end the round with multiple claims of the form:

@ B(i)(jl, e 7ji) . .Z‘jiJrl H ~a?jd . COEfp(jl, e ,jd) = b(z)

Observe that by changing the order of summation in Equation (3), we can rewrite each
claim as:

P =.- < B BV Grdia) @, -y, Coefp(h, Jd))) =00 (4)
ji€[n] J1seidi—1€ln],

The claims in Equation (4) are an inner product between z and the truth table of a
function that depends on only d — ¢ inputs variables. Thus, by applying the ground HIP
protocol, we get multiple claims on the encoding of x, and multiple claims on the encoding
of the truth table of a function that depends on d — i variables. The claims on the encoding
of x can be verified using the HIP verifier’s oracle queries. Regarding the second class of
queries, since the code is linear, the t-th claim is of the form of

Dr-G) B BV G dicn) g wg, - Coefp (s ja)) = b1,
Jle[’ﬂ] J1sees ji—1€lnl,
Jigdsees jq€ln]

where the (7;,.)’s correspond to the coefficients of the base code T'. By changing the order of
summation again, and defining 8%} (..., ji) = .2 (j:) - B~ (j, -, jim1) we get claims
of the form:

@ (Bt(,l; (jlv cee 7]1) K TR P Coefp(jh s 7jd)) = bgga

jl,...jde[n]

where the BAt(Zz, (J1,--.,7i) don’t depend on the input variables. Note that we got new claims
that depend on d — i input variables, as required.

Avoiding a complexity blowup. Although the above idea seems promising, we have one
additional issue to deal with. In contrast to the traditional sumcheck protocol which generates

a single claim in the end of each round, our ground HIP protocol produces multiple claims.%

6 Recall that the query complexity is roughly logarithmic in the size of our DNF of parities.

67:9

ITCS 2022

67:10

Small Circuits Imply Efficient Arthur-Merlin Protocols

As a result, the number of times we need to use the ground HIP protocol grows by a at least
a constant factor in each round, and overall becomes (at least) exponential in d. In order
to reduce the dependence on d to linear, at the beginning of each round we combine claims
together by taking random linear combinations. This method lets us preserve the number of
queries after each round, and thus achieve a linear dependence on d.

On the approximation factor. The (roughly) % approximation factor required in all of
our results, stems from the use of Equation (1). Recall that the verifier needs to check
all the 1-claims on the right-hand side of Equation (1) with a success probability greater
than % Leveraging the fact that one of the terms on the right-hand side of Equation (1) is
independent of the input strings, we only have three terms to check. As a result, we must
have a circuit that computes all the three terms correctly with probability greater than %
By union bounding over these three terms, we get that the circuit must compute a random
input incorrectly with probability at most %, which sets the approximation limitation to %.
A potential approach for improving the approximation factor is to rely on locally list, and
we leave this possibility to future work.

1.2.4 Counting Triangles Mod 2 (Theorem 2)

Lastly, we give the outline of the streaming protocol for the € Triangle problem. To do so
we leverage the fact that @ Triangle can be expressed as a degree 3 polynomial over GF(2)
and apply the streaming protocol of Theorem 1.

In more detail, let {I(uﬂ,)}uﬂ, be a set of indicator variables where I,) is 1 if and only
if the edge (u,v) appears in the graph. We can express the parity of the number of triangles
in the graph, by evaluating the following degree 3 polynomial:

P@TRI(Iel yeee 7Ien2) = @ I(v,u) : I(u,w) ’ I(w,v)~
v<u<we(n]

Thus, by applying our streaming protocol for low degree polynomials from Theorem 1, we
derive an AM[6] Data streaming protocol for € Triangle. Lastly, in order to derive a one-
round protocol, we use the round collapsing technique of Babai and Moran [6] for reducing
the number of rounds in public coin interactions.

2 Our Results

In the following section we present the formal version of our results. We start by introducing
some notations. Then, we present our results in the AM Holographic Interactive Proof, AM
Communication Complexity, and AM Data Streaming models, in that order. The full proofs
of our results along with the formal definitions of the different models are available in the
full version of this paper [47].

2.1 Preliminaries

By AM[k]-DS, AM[k]-CC and AM[k]-HIP we denote the k-message AM Data Streaming, AM
Communication Complexity and AM Holographic Interactive protocols, respectively.

By IP2(x,y) we denote the inner product function (over the field GF(2)), that is,
IP2(2,y) = @iem)Ti - ¥i- And by Lip we denote its corresponding language:

» Definition 4. (Ljp language).

e < {(@.9.0) € 00,1} x {01} x {01} : IPaa,y) = b

M. Ezra and R. D. Rothblum

DNF o T Circuits

For a linear transformation T, we denote by DNF o T the circuit that is a composition of some
circuit that computes the transformation T, with a DNF circuit (disjunction of clauses). We
note that since T is linear, these circuits are a particular type” of a DNF of parties, where the
parity gates are only allowed to compute the function T. We use this notation to point out
the connection between the specific function the parity layer of the circuit in the IP,€DNFg
hypothesis computes and the linear code our Holographic verifier makes queries to.

2.2 Holographic Interactive Proof for Inner Product Claims

As described in Section 1.2, all our protocols are based on a special type of proof-system for
computing the inner product function, called a Holographic Interactive Proof. Assuming the
IP,EDNFg4 hypothesis, our first step in our work is to construct an efficient (non-uniform)
AM[2]-HIP protocol for checking inner product claims.

» Lemma 5. (AM[2]-HIP for Ljp). Fiz an integer n, and a parameter € € (0,1/6]. Let
T:{0,1}°" — {0, 1}"/ be some linear code. Suppose there exists a DNF o T circuit C' of
size S that computes IPy(x,y) on at least g + € fraction of the inputs. Then, there exists an
AM[2]-HIP protocol for Lip, with proof length log (S) -0 (%), randomness complezity O(logn)
and log (S) - 0] (%) queries to the bits of T(z,y).

Using standard transformations from AM-HIP to AM-CC and AM-DS we also derive
AM-CC and AM-DS protocols for the inner product function.

» Corollary 6. (AM[2]-DS and AM[2]-CC for Lip). Let n,n’ € N, and € € (0,1/6]. Let

T : {0, 1}2n — {0, 1}n/ be some linear code. Suppose there exists a DNF o T circuit C of size

S that computes IPy on at least a % + € fraction of the inputs. Then,

1. There exists an AM[2]-DS protocol for Lip, with proof length log (S) - 9] (E%), randomness
complezity O(logn) and verifier space complezity log (S) - 9) (e%)

2. There exists an AM[2]-CC protocol for the function |Py(x,y) with log (S) - O (%) commu-
nication complexity.

2.3 An AM[2] Communication Complexity Protocol

Our next results focus on the AM Communication Complexity model. Assuming the
IP,€EDNFg hypothesis, we first construct an efficient AM[2]-CC protocol for low degree
polynomials.

» Theorem 7. Fiz integers n, N and a parameter ¢ € (0,1/6]. Let T : {0,1}*" — {0, l}n/
be some linear code. Suppose there exists a DNF o T circuit C' of size S = S(2N) that
computes the function |Po(x,y) on at least a % + € of the N-bit length inputs. Then, for any
polynomial P : {0,1}" — {0,1} with N monomials, and for any b € {0, 1}, there exists an

. def 1 P(‘T7 y) =b . ~
AM[2]-CC protocol for the function Py(x,y) = {O o/w with log (S(2N)) -0 (%)
communication complexity, where Merlin (the prover) gets the inputs x,y € {0,1}", Alice

gets x and Bob gets y.

7 Namely, DNF circuits with an additional layer of parity (XOR) gates which can be applied only directly
on the input gates.

67:11

ITCS 2022

67:12

Small Circuits Imply Efficient Arthur-Merlin Protocols

Then, relying on the celebrated works of Razborov and Smolensky [44, 51] which showed a
general technique to approximate ACO(@) circuit by a distribution of randomized low degree
polynomials, we also construct an AM[2]-DS protocol for every language that is decidable by
an ACY(@) circuit.

» Corollary 8. Fix an integer n, and let e € (0,1/6]. Suppose that for any k there exists
a linear transformation T : {0,1}2* — {0,1}**) and a DNF o T circuit C' of size So(2k)
that computes the function IPy(z,y) on at least a % + € of the k-bit length inputs. Then,
there exists a constant ¢ such that for any function f : {0,1}2" — {0,1} that is computed by
an ACO(EB) circuit of size S and depth d > 2, there exists an AM[2]-CC protocol for f with

log (SO(Q(C'IOg”'logd S))> -0 (6%) communication complezity.

2.4 An AM[2d] Streaming Protocol

Lastly, we focus on the Data Streaming model. Our main result in the streaming model is
the construction of a (multi-round) AM Data Streaming protocol for low degree polynomials,
assuming that the IP,€DNFg hypothesis holds.

» Theorem 9. Fiz an integer n, and let € € (0,1/6]. Let T : {0,1}*" — {0, 1}n/ be some
linear code. Suppose there exists a DNF o T circuit C of size S that computes the function
IP2(z,y) on at least a % + € fraction of the n-bit length inputs. Then, for any d degree
polynomial P : {0,1}"™ — {0,1}, and for any b € {0,1}, there exists an AM[2d]-DS protocol
for the language L = {z € {0,1}" | P(z) = b} withlog(S)-O (%) randomness complewity,
proof length and space complexity.

We also point out an interesting implication of Theorem 9 to a variant of the well studied
Triangle-Count problem, called the @ Triangle. In the € Triangle the verifier is required to
count the parity of the number of triangles (i.e. cliques with three vertices) in an undirected
(simple) graph G = (V, E).

» Definition 10. Let G = (V, E) be an undirected simple graph such that V. C [n] and
E C [n] x [n]. In the @ Triangle problem, the edges in E are given as a stream in some
arbitrary order, where each edge appears in the stream exactly once. The goal is to output
the parity of the number of triangles (i.e. cliques of size 3) in G.

Our last result shows that the existence of a sufficiently small DNF o T circuit that
approximates the inner product function, yields an efficient AM[2]-DS protocol for € Triangle.

» Theorem 11. Fiz an integer n and a parameter € € (0,1/6]. Let T : {0, 1}"3 — {0, 1}”/
be a linear code. Suppose there exists a DNF o T circuit C of size S that computes the
function IP2(x,y) on at least a % + € fraction of the n>-bit length inputs. Then, there exists
an AM[2]-DS protocol for @ Triangle with O(logn) randomness, and log® (S)- O (%) verifier
space complexity and proof length.

—— References

[1] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM
Trans. Comput. Theory, 1(1):2:1-2:54, 2009. doi:10.1145/1490270.1490272.

[2] Miklés Ajtai. le—formulae on finite structures. Ann. Pure Appl. Log., 24(1):1-48, 1983.
doi:10.1016/0168-0072(83)90038-6.

https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1016/0168-0072(83)90038-6

M. Ezra and R. D. Rothblum

(4]

(5]

(6]

(7l

(10]

(11]

(12]

(13]

(14]

(15]

Adi Akavia, Andrej Bogdanov, Siyvao Guo, Akshay Kamath, and Alon Rosen. Candidate weak
pseudorandom functions in AC° o mods. In Moni Naor, editor, Innovations in Theoretical
Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14, 201/, pages 251-260. ACM,
2014. doi:10.1145/2554797.2554821.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137-147, 1999. doi:10.1006/jcss.1997.
1545.

Léaszl6 Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking Computations
in Polylogarithmic Time. In Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA, pages 21-31. ACM, 1991. doi:10.1145/103418.103428.

Lészl6é Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254-276, 1988. doi:10.1016/
0022-0000(88)90028-1.

Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In David Eppstein, editor, Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San
Francisco, CA, USA, pages 623-632. ACM/SIAM, 2002. URL: http://dl.acm.org/citation.
cfm?id=545381.545464.

Suman K. Bera and Amit Chakrabarti. Towards tighter space bounds for counting triangles
and other substructures in graph streams. In Heribert Vollmer and Brigitte Vallée, editors,
84th Symposium on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017,
Hannover, Germany, volume 66 of LIPIcs, pages 11:1-11:14. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.11.

Mark Bun, Robin Kothari, and Justin Thaler. Quantum algorithms and approximating
polynomials for composed functions with shared inputs, 2020. arXiv:1809.02254.

Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Christian Sohler. Counting triangles in data streams. In Stijn Vansummeren, editor, Proceedings
of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 26-28, 2006, Chicago, Illinois, USA, pages 253-262. ACM, 2006. doi:10.1145/
1142351.1142388.

Amit Chakrabarti, Graham Cormode, Navin Goyal, and Justin Thaler. Annotations for sparse
data streams. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 687-706. STAM, 2014. doi:10.1137/1.9781611973402.52.

Amit Chakrabarti, Graham Cormode, Andrew McGregor, and Justin Thaler. Annotations in
data streams. ACM Trans. Algorithms, 11(1):7:1-7:30, 2014. doi:10.1145/2636924.

Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh Ven-
katasubramanian. On interactivity in Arthur-Merlin communication and stream computation.
Electron. Colloguium Comput. Complex., 20:180, 2013. URL: http://eccc.hpi-web.de/
report/2013/180.

Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh Ven-
katasubramanian. Verifiable Stream Computation and Arthur-Merlin communication. In
David Zuckerman, editor, 30th Conference on Computational Complexity, CCC 2015, June
17-19, 2015, Portland, Oregon, USA, volume 33 of LIPIcs, pages 217-243. Schloss Dagstuhl -
Leibniz-Zentrum fir Informatik, 2015. doi:10.4230/LIPIcs.CCC.2015.217.

Amit Chakrabarti, Prantar Ghosh, and Justin Thaler. Streaming verification for graph
problems: Optimal tradeoffs and nonlinear sketches. In Jaroslaw Byrka and Raghu Meka,
editors, Approzimation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, volume
176 of LIPIcs, pages 22:1-22:23. Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, 2020.
doi:10.4230/LIPIcs.APPROX/RANDOM. 2020.22.

67:13

ITCS 2022

https://doi.org/10.1145/2554797.2554821
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1145/103418.103428
https://doi.org/10.1016/0022-0000(88)90028-1
https://doi.org/10.1016/0022-0000(88)90028-1
http://dl.acm.org/citation.cfm?id=545381.545464
http://dl.acm.org/citation.cfm?id=545381.545464
https://doi.org/10.4230/LIPIcs.STACS.2017.11
http://arxiv.org/abs/1809.02254
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1137/1.9781611973402.52
https://doi.org/10.1145/2636924
http://eccc.hpi-web.de/report/2013/180
http://eccc.hpi-web.de/report/2013/180
https://doi.org/10.4230/LIPIcs.CCC.2015.217
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.22

67:14

Small Circuits Imply Efficient Arthur-Merlin Protocols

[16]

(17]

18]

(19]

20]

21]

22]

23]

24]

[25]

[26]

27]

(28]

Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds from
non-trivial derandomization. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1-12. IEEE, 2020.
doi:10.1109/F0CS46700.2020.00009.

Lijie Chen and Hanlin Ren. Strong average-case lower bounds from non-trivial derandomization.
In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1327-1334. ACM, 2020.
doi:10.1145/3357713.3384279.

Lijie Chen and R. Ryan Williams. Stronger connections between circuit analysis and circuit
lower bounds, via PCPs of proximity. In Amir Shpilka, editor, 8/th Computational Complexity
Conference, CCC 2019, July 18-20, 2019, New Brunswick, NJ, USA, volume 137 of LIPIcs,
pages 19:1-19:43. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019. doi:10.4230/
LIPIcs.CCC.2019.19.

Mahdi Cheraghchi, Elena Grigorescu, Brendan Juba, Karl Wimmer, and Ning Xie. AC° omoda
lower bounds for the boolean inner product. J. Comput. Syst. Sci., 97:45-59, 2018. doi:
10.1016/j.jcss.2018.04.006.

Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Madhu Sudan, editor,
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, January 14-16, 2016, pages 47-58. ACM, 2016. doi:10.1145/2840728.
2840734.

Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive
proofs. Proc. VLDB Endow., 5(1):25-36, 2011. doi:10.14778/2047485.2047488.

Yuval Filmus, Yuval Ishai, Avi Kaplan, and Guy Kindler. Limits of Preprocessing. In
Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC 2020, July 28-31,
2020, Saarbricken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 17:1-17:22.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.CCC.2020.17.
Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. In 22nd Annual Symposium on Foundations of Computer Science, Nashville,
Tennessee, USA, 28-30 October 1981, pages 260—270. IEEE Computer Society, 1981. doi:
10.1109/SFCS.1981.35.

Dmitry Gavinsky and Alexander A. Sherstov. A separation of NP and conp in multiparty
communication complexity. Theory Comput., 6(1):227-245, 2010. doi:10.4086/toc.2010.
v006a010.

Mika G66s, Toniann Pitassi, and Thomas Watson. The landscape of communication complexity
classes. In loannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 86:1-86:15. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.86.
Parikshit Gopalan, Adam R. Klivans, and David Zuckerman. List-decoding Reed-Muller
codes over small fields. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008,
pages 265-274. ACM, 2008. doi:10.1145/1374376.1374417.

Tom Gur and Ran Raz. Arthur-Merlin streaming complexity. In Fedor V. Fomin, Rusins
Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages, and
Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part I, volume 7965 of Lecture Notes in Computer Science, pages 528-539.
Springer, 2013. doi:10.1007/978-3-642-39206-1_45.

Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of proximity. In
Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Conference,
ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages 39:1-39:43.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2017. doi:10.4230/LIPIcs.ITCS.2017.39.

https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1145/3357713.3384279
https://doi.org/10.4230/LIPIcs.CCC.2019.19
https://doi.org/10.4230/LIPIcs.CCC.2019.19
https://doi.org/10.1016/j.jcss.2018.04.006
https://doi.org/10.1016/j.jcss.2018.04.006
https://doi.org/10.1145/2840728.2840734
https://doi.org/10.1145/2840728.2840734
https://doi.org/10.14778/2047485.2047488
https://doi.org/10.4230/LIPIcs.CCC.2020.17
https://doi.org/10.1109/SFCS.1981.35
https://doi.org/10.1109/SFCS.1981.35
https://doi.org/10.4086/toc.2010.v006a010
https://doi.org/10.4086/toc.2010.v006a010
https://doi.org/10.4230/LIPIcs.ICALP.2016.86
https://doi.org/10.1145/1374376.1374417
https://doi.org/10.1007/978-3-642-39206-1_45
https://doi.org/10.4230/LIPIcs.ITCS.2017.39

M. Ezra and R. D. Rothblum

29]

(30]

(31]

32]

(33]

34]

35]

(36]

37]

(38]

(39]

(40]

41]

42]

Johan Hastad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis,
editor, Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30,
1986, Berkeley, California, USA, pages 6-20. ACM, 1986. doi:10.1145/12130.12132.
Xuangui Huang, Peter Ivanov, and Emanuele Viola. Affine extractors and ACO-Parity. Electron.
Colloquium Comput. Complex., page 137, 2021. URL: https://eccc.weizmann.ac.il/report/
2021/137.

Jeffrey C. Jackson. An efficient membership-query algorithm for learning DNF with respect

to the uniform distribution. J. Comput. Syst. Sci., 55(3):414-440, 1997. doi:10.1006/jcss.

1997.1533.

Madhav Jha, C. Seshadhri, and Ali Pinar. A space efficient streaming algorithm for triangle
counting using the birthday paradox. In Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani,
Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He, Robert L. Grossman, and Ramasamy
Uthurusamy, editors, The 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013, pages 589-597.
ACM, 2013. doi:10.1145/2487575.2487678.

Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting triangles in
graphs. In Lusheng Wang, editor, Computing and Combinatorics, 11th Annual International
Conference, COCOON 2005, Kunming, China, August 16-29, 2005, Proceedings, volume 3595 of
Lecture Notes in Computer Science, pages 710-716. Springer, 2005. doi:10.1007/11533719_72.
Stasys Jukna. On graph complexity. Comb. Probab. Comput., 15(6):855-876, 2006. doi:
10.1017/50963548306007620.

John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova. The complexity of
counting cycles in the adjacency list streaming model. In Dan Suciu, Sebastian Skritek, and
Christoph Koch, editors, Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July
5, 2019, pages 119-133. ACM, 2019. doi:10.1145/3294052.3319706.

Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting arbitrary
subgraphs in data streams. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger
Wattenhofer, editors, Automata, Languages, and Programming - 39th International Colloguium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, volume 7392 of Lecture Notes
in Computer Science, pages 598—609. Springer, 2012. doi:10.1007/978-3-642-31585-5_53.
Hartmut Klauck. Rectangle size bounds and threshold covers in communication complexity.
In 18th Annual IEEE Conference on Computational Complexity (Complexity 2003), 7-10 July

2003, Aarhus, Denmark, pages 118-134. IEEE Computer Society, 2003. doi:10.1109/CCC.

2003.1214415.

Hartmut Klauck. On arthur merlin games in communication complexity. In Proceedings
of the 26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose,
California, USA, June 8-10, 2011, pages 189-199. IEEE Computer Society, 2011. doi:
10.1109/CCC.2011.33.

Mihail N. Kolountzakis, Gary L. Miller, Richard Peng, and Charalampos E. Tsourakakis.
Efficient triangle counting in large graphs via degree-based vertex partitioning. Internet Math.,
8(1-2):161-185, 2012. doi:10.1080/15427951.2012.625260.

Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859-868, 1992. doi:10.1145/146585.146605.
Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms for counting
triangles in data streams. In Tova Milo and Wang-Chiew Tan, editors, Proceedings of
the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 401-411. ACM, 2016.
doi:10.1145/2902251.2902283.

Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime from a new easy witness lemma. SIAM J. Comput., 49(5), 2020. doi:10.1137/
18M1195887.

67:15

ITCS 2022

https://doi.org/10.1145/12130.12132
https://eccc.weizmann.ac.il/report/2021/137
https://eccc.weizmann.ac.il/report/2021/137
https://doi.org/10.1006/jcss.1997.1533
https://doi.org/10.1006/jcss.1997.1533
https://doi.org/10.1145/2487575.2487678
https://doi.org/10.1007/11533719_72
https://doi.org/10.1017/S0963548306007620
https://doi.org/10.1017/S0963548306007620
https://doi.org/10.1145/3294052.3319706
https://doi.org/10.1007/978-3-642-31585-5_53
https://doi.org/10.1109/CCC.2003.1214415
https://doi.org/10.1109/CCC.2003.1214415
https://doi.org/10.1109/CCC.2011.33
https://doi.org/10.1109/CCC.2011.33
https://doi.org/10.1080/15427951.2012.625260
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/2902251.2902283
https://doi.org/10.1137/18M1195887
https://doi.org/10.1137/18M1195887

67:16

Small Circuits Imply Efficient Arthur-Merlin Protocols

(43]
(4]

[45]

[46]

(47]

(48]
(49]
[50]

[51]

[52]

[53]

[54]

[55]

Ilan Newman. Private vs. common random bits in communication complexity. Inf. Process.
Lett., 39(2):67-71, 1991. doi:10.1016/0020-0190(91)90157-D.

Alexander A Razborov. Lower bounds for the size of circuits of bounded depth with basis
{A,®}. Math. notes of the Academy of Sciences of the USSR, 41(4):333-338, 1987.

Guy N. Rothblum. How to compute under AC? leakage without secure hardware. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science, pages 552-569. Springer, 2012. doi:
10.1007/978-3-642-32009-5_32.

Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’18, Palo Alto,
CA, USA, June 1-4, 2013, pages 793-802. ACM, 2013. doi:10.1145/2488608.2488709.
Ron D. Rothblum and Michael Ezra. Small Circuits Imply Efficient Arthur-Merlin Protocols.
Electron. Colloquium Comput. Complex., page 127, 2021. URL: https://eccc.weizmann.ac.
il/report/2021/127.

Rocco A. Servedio and Emanuele Viola. On a special case of rigidity. Electron. Colloquium
Comput. Complex., 19:144, 2012. URL: http://eccc.hpi-web.de/report/2012/144.

Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. J. ACM, 52(2):172-216, 2005. doi:10.1145/1059513.1059516.
Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting and
sampling. Comput. Complex., 15(4):298-341, 2006. doi:10.1007/s00037-007-0218-9.
Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA, pages 77-82. ACM, 1987. doi:
10.1145/28395.28404.

Justin Thaler. Semi-streaming algorithms for annotated graph streams. In Ioannis Chatzigian-
nakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, volume 55 of LIPIcs, pages 59:1-59:14. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.59.

Nikhil Vyas and R. Ryan Williams. Lower bounds against sparse symmetric functions of ACC
circuits: Expanding the reach of #SAT algorithms. In Christophe Paul and Markus Bléser,
editors, 87th International Symposium on Theoretical Aspects of Computer Science, STACS
2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 59:1-59:17. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.STACS.2020.59.
Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1-2:32, 2014.
doi:10.1145/2559903.

Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In Michael J. Fischer, Richard A. DeMillo, Nancy A. Lynch, Walter A.
Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h Annual ACM Symposium on
Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209-213. ACM,
1979. doi:10.1145/800135.804414.

https://doi.org/10.1016/0020-0190(91)90157-D
https://doi.org/10.1007/978-3-642-32009-5_32
https://doi.org/10.1007/978-3-642-32009-5_32
https://doi.org/10.1145/2488608.2488709
https://eccc.weizmann.ac.il/report/2021/127
https://eccc.weizmann.ac.il/report/2021/127
http://eccc.hpi-web.de/report/2012/144
https://doi.org/10.1145/1059513.1059516
https://doi.org/10.1007/s00037-007-0218-9
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://doi.org/10.4230/LIPIcs.ICALP.2016.59
https://doi.org/10.4230/LIPIcs.STACS.2020.59
https://doi.org/10.1145/2559903
https://doi.org/10.1145/800135.804414

	1 Introduction
	1.1 Our Results
	1.1.1 The AM Data Streaming Model
	1.1.2 AM Communication Complexity

	1.2 Technical Overview
	1.2.1 An AM[2]-HIP for Inner Product Claims
	1.2.2 From HIP to Communication Complexity (Proving Theorem 3)
	1.2.3 From HIP to Data Streaming (Proving Theorem 1)
	1.2.4 Counting Triangles Mod 2 (Theorem 2)

	2 Our Results
	2.1 Preliminaries
	2.2 Holographic Interactive Proof for Inner Product Claims
	2.3 An AM[2] Communication Complexity Protocol
	2.4 An AM[2d] Streaming Protocol

