
Optimal-Time Queries on BWT-Runs Compressed
Indexes
Takaaki Nishimoto #

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Yasuo Tabei #

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Abstract
Indexing highly repetitive strings (i.e., strings with many repetitions) for fast queries has become
a central research topic in string processing, because it has a wide variety of applications in
bioinformatics and natural language processing. Although a substantial number of indexes for highly
repetitive strings have been proposed thus far, developing compressed indexes that support various
queries remains a challenge. The run-length Burrows-Wheeler transform (RLBWT) is a lossless
data compression by a reversible permutation of an input string and run-length encoding, and it
has received interest for indexing highly repetitive strings. LF and ϕ−1 are two key functions for
building indexes on RLBWT, and the best previous result computes LF and ϕ−1 in O(log log n) time
with O(r) words of space for the string length n and the number r of runs in RLBWT. In this paper,
we improve LF and ϕ−1 so that they can be computed in a constant time with O(r) words of space.
Subsequently, we present OptBWTR (optimal-time queries on BWT-runs compressed indexes), the
first string index that supports various queries including locate, count, extract queries in optimal
time and O(r) words of space.

2012 ACM Subject Classification Theory of computation → Data compression

Keywords and phrases Compressed text indexes, Burrows-Wheeler transform, highly repetitive text
collections

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.101

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2006.05104

1 Introduction

A string index represents a string in a compressed format that supports locate queries
(i.e., computing all the positions at which a given pattern appears in a string). The
FM-index [10, 11] is an efficient string index on a lossless data compression called the
Burrows-Wheeler transform (BWT) [5], which is a reversible permutation of an input string.
In particular, locate queries can be efficiently computed on an FM-index by performing a
backward search, which is an iterative algorithm for computing an interval corresponding to
the query on a suffix array (SA) [19] storing all the suffixes of an input string in lexicographical
order. The FM-index performs locate queries in O(m + occ) time with O(n(log σ

log n + 1
s)) words

of space for a string T of length n, query string of length m, alphabet size σ, parameter s,
and number occ of occurrences of a query in T [3].

A highly repetitive string is a string including many repetitions. Examples include the
human genome, version-controlled documents, and source code in repositories. A significant
number of string indexes on various compressed formats for highly repetitive strings have been
proposed thus far (e.g., SLP-index [8], LZ-indexes [6, 12], BT-indexes [7, 21]). For a large
collection of highly repetitive strings, the most powerful and efficient compressed format is
the run-length (RL) Burrows Wheeler transform (RLBWT) [5], which is a BWT compressed

EA
T
C
S

© Takaaki Nishimoto and Yasuo Tabei;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 101; pp. 101:1–101:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:takaaki.nishimoto@riken.jp
mailto:yasuo.tabei@riken.jp
https://doi.org/10.4230/LIPIcs.ICALP.2021.101
https://arxiv.org/abs/2006.05104
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

101:2 Optimal-Time Queries on BWT-Runs Compressed Indexes

by run-length encoding. Mäkinen et al. [18] presented an RLBWT-based string index, named
the RLFM-index, that solves locate queries by executing a backward search algorithm on
RLBWT. While the RLFM-index can solve locate queries in O(r + n/s) words of space in
O((m + s · occ)(log σ

log log r + (log log n)2)) time for the number r of runs in the RLBWT of T and
parameter s ≥ 1, the size of the index depends on the string length. Recently, Gagie et al. [13]
presented the r-index, which can reduce the space usage of the RLFM-index to one linearly
proportional to the number of runs in RLBWT. The r-index can solve locate queries space
efficiently with only O(r) words of space and in O(m log logw(σ + (n/r)) + occ log logw(n/r))
time for a machine word size w = Θ(log n). If the r-index allows O(r log logw(σ +n/r)) words
of space to be used, it can solve locate queries in the optimal time, O(m + occ). Although
there are other important queries including count query, extract query, decompression and
prefix search for various applications to string processing, no previous string index can
support various queries in addition to locate queries based on RLBWT in an optimal time
with only O(r) words of space. That is, developing a string index for various queries in an
optimal time with O(r) words of space remains a challenge.

Contribution. In this paper, we present OptBWTR (optimal-time queries on BWT-runs
compressed indexes), the first string index that supports various queries including locate,
count, extract queries in optimal time and O(r) words of space for the number r of runs
in RLBWT. LF and ϕ−1 are important functions for string indexes on RLBWT. The best
previous data structure computes LF and ϕ−1 in O(log logw(n/r)) time with O(r) words of
space [13]. In this paper, we present a novel data structure that can compute LF and ϕ−1 in
constant time and O(r) words of space. Subsequently, we present OptBWTR that supports
the following five queries in optimal time and O(r) words of space.

Locate query: OptBWTR can solve a locate query on an input string in O(r) words of
space and O(m log logw σ + occ) time, which is optimal for strings with polylogarithmic
alphabets (i.e., σ = O(polylog n)).
Count query: OptBWTR can return the number of occurrences of a query string on
an input string in O(r) words of space and O(m log logw σ) time, which is optimal for
polylogarithmic alphabets.
Extract query: OptBWTR can return substrings starting at a given position book-
marked beforehand in a string in O(1) time per character and O(r + b) words of space,
where b is the number of bookmarked positions. Resolving extract queries is sometimes
called the bookmarking problem [12, 9].
Decompression: OptBWTR decompresses the original string of length n in optimal
time (i.e., O(n)). This is the first linear-time decompression algorithm for RLBWT in
O(r) words of working space.
Prefix search: OptBWTR can return the strings in a set D that include a given pattern
as their prefixes in optimal time (i.e., O(m + occ′)) and O(r′) words of space, where occ′

is the number of output strings and r′ is the number of runs in the RLBWT of a string
made by concatenating the strings in D.

The state-of-the-art string indexes for each type of query are summarized in Table 1.
This paper is organized as follows. In Section 2, we introduce the important notions used

in this paper. Section 3 presents novel data structures for computing LF and ϕ−1 in constant
time. Section 4 presents a data structure supporting a modified version of a backward
search on RLBWT. The backward search leverages the two data structures introduced in
Section 3. Sections 5 and 6 present OptBWTR that supports all five queries mentioned
above by leveraging the modified backward search, LF, and ϕ−1.

T. Nishimoto and Y. Tabei 101:3

Table 1 Summary of space and time for (i) locate and (ii) count queries, (iii) extract queries
(a.k.a the bookmarking problem), (iv) decompression of BWT or RLBWT and (v) prefix searches
for each query, where n is the length of the input string T , m is the length of a given string
P , occ is the number of occurrences of P in T , σ is the alphabet size of T , w = Θ(log n) is the
machine word size, r is the number of runs in the RLBWT of T , s is a parameter, g is the size of a
compressed grammar deriving T , b is the number of input positions for the bookmarking problem,
G = max{1, log∗ g − log∗(g

b
− b

g
)}, D is a set of strings of total length n, occ′ is the number of strings

in D such that each string has P as a prefix and r′ is the number of runs in the RLBWT of a string
made by concatenating the strings in D.

(i) Locate query Space (words) Time
RLFM-index [18] O(r + n/s) O((m + s · occ)(log σ

log log r
+ (log log n)2))

r-index [13] O(r) O(m log logw(σ + (n/r)) + occ log logw(n/r))
O(r log logw(σ + (n/r))) O(m + occ)

O(rw logσ logw n) O(⌈m log(σ)/w⌉ + occ)
OptBWTR O(r) O(m log logw σ + occ)

(ii) Count query Space (words) Time
RLFM-index [18] O(r) O(m(log σ

log log r
+ (log log n)2))

r-index [13] O(r) O(m log logw(σ + (n/r)))
O(r log logw(σ + (n/r))) O(m)

O(rw logσ logw n) O(⌈m log(σ)/w⌉)
OptBWTR O(r) O(m log logw σ)

(iii) Extract query Space (words) Time per character Overhead
Gagie et al.[12] O(g + b log∗ n) O(1) -
Gagie et al.[13] O(r log(n/r)) O(log(σ)/w) O(log(n/r))

Cording et al.[9] O((g + b)G) O(1) -
OptBWTR O(r + b) O(1) -

(iv) Decompression Space (words) Time
Lauther and Lukovszki [17] O(n(log log n + log σ)/w) O(n)

Golynski et al.[14] O((n log σ)/w) O(n log log σ)
Predecessor queries [4] O(r) O(n log logw(n/r))

OptBWTR O(r) O(n)
(v) Prefix search Space (words) Time

Compact trie [20] (n log σ)/w + O(|D|) O(m + occ′)
Z-fast trie [2] (n log σ)/w + O(|D|) expected O(⌈ m log(σ)

w
⌉ + log m + log log σ + occ′)

Packed c-trie [25] (n log σ)/w + O(|D|) expected O(⌈ m log(σ)
w

⌉ + log log n + occ′)
c-trie++ [26] (n log σ)/w + O(|D|) expected O(⌈ m log(σ)

w
⌉ + log logσ w + occ′)

OptBWTR O(r′ + |D|) O(m + occ′)

2 Preliminaries

Let Σ = {1, 2, . . . , σ} be an ordered alphabet of size σ, T be a string of length n over Σ, and
|T | be the length of T . Let T [i] be the i-th character of T (i.e., T = T [1], T [2], . . . , T [n])
and T [i..j] be the substring of T that begins at position i and ends at position j. For two
strings, T and P , T ≺ P means that T is lexicographically smaller than P . Let ε be the
empty string, i.e., |ε| = 0. We assume that (i) σ = nO(1) and (ii) the last character of
string T is a special character $ not occurring on substring T [1..n − 1] such that $ ≺ c holds
for any character c ∈ Σ \ {$}. For two integers, b and e (b ≤ e), interval [b, e] is the set
{b, b + 1, . . . , e}. Occ(T, P) denotes all the occurrence positions of a string P in a string T ,
i.e., Occ(T, P) = {i | i ∈ [1, n−|P |+1] s.t. P = T [i..(i+ |P |−1)]}. A count query on a string
T returns the number of occurrences of a given string P in T , i.e., |Occ(T, P)|. Similarly, a
locate query on string T returns all the starting positions of P in T , i.e., Occ(T, P).

ICALP 2021

101:4 Optimal-Time Queries on BWT-Runs Compressed Indexes

A rank query rank(T, c, i) on a string T returns the number of occurrences of a character
c in T [1..i], i.e., rank(T, c, i) = |Occ(T [1..i], c)|. A select query select(T, c, i) on a string T

returns the i-th occurrence of c in T (i.e., it returns the smallest integer j ≥ 1 such that
|Occ(T [1..j], c)| = i) if T contains c; otherwise it returns −1. Assume that T [b..e] contains
a character c for an interval [b, e] ⊆ [1, n]. Let b̂ and ê be the first and last occurrences
of a character c in T [b..e] (i.e., b̂ = min{i | i ∈ [b, e] s.t. T [i] = c} and ê = max{i | i ∈
[b, e] s.t. T [i] = c}). Then, we can compute b̂ and ê by the following lemma.

▶ Lemma 1. The following statements hold: (i) T [b..e] contains a character c if and only
if rank(T, c, e) − rank(T, c, b − 1) ≥ 1 holds. (ii) b̂ = select(T, c, rank(T, c, b − 1) + 1) and
ê = select(T, c, rank(T, c, e)) hold if T [b..e] contains c.

A suffix array (SA) of a string T is an integer array of size n such that SA[i] stores
the starting position of the i-th suffix of T in lexicographical order. Formally, SA is a
permutation of [1, n] such that T [SA[1]..n] ≺ · · · ≺ T [SA[n]..n] holds. Each value in SA is
called an sa-value.

The suffix array interval (sa-interval) of a string P is an interval [b, e] ⊆ [1, n] such
that SA[b..e] represents all the occurrence positions of P in string T , i.e., Occ(T, P) =
{SA[b], SA[b + 1], . . . , SA[e]}. The sa-interval of the empty string ε is defined as [1, n].

LF is a function that returns the position with sa-value SA[i] − 1 on SA (i.e., SA[LF(i)] =
SA[i] − 1) for a given integer i ∈ [1, n] if SA[i] ̸= 1; otherwise, it returns the position with
sa-value n (i.e., SA[LF(i)] = n). ϕ−1 [15] is a function that returns SA[i + 1] for a given
sa-value SA[i] ∈ [1, n] (i.e., ϕ−1(SA[i]) = SA[i + 1]) if i ̸= n; otherwise, it returns SA[1].

We will use base-2 logarithms throughout this paper unless indicated otherwise. Our
computation model is a unit-cost word RAM with a machine word size of w = Θ(log n)
bits. We evaluate the space complexity in terms of the number of machine words. A bitwise
evaluation of space complexity can be obtained with a log n multiplicative factor.

2.1 Rank-select data structure
We describe a set {c1, c2, . . . , cσ′} and function γ for a string T . c1, c2, . . . , cσ′ are all the
distinct characters in T , i.e., {c1, c2, . . . , cσ′} = {T [i] | i ∈ [1, |T |]} (c1 < c2 < · · · < cσ′). The
function γ returns the rank of a given character c ∈ Σ in a string T ; i.e., γ(T, c) = j if there
exists an integer j such that c = cj holds; otherwise γ(T, c) = −1.

A rank-select data structure R(T) consists of three data structures Rrank, Rselect, and
Rmap. Rrank is a rank data structure for solving a rank query on a string T in O(log logw σ)
time and with O(|T |) words of space [4]. Rselect consists of σ′ arrays H1, H2, . . . , Hσ′ . The
size of Hj is |Occ(T, cj)| for each j ∈ {1, 2, . . . , σ′}, and Hj [i] stores select(T, cj , i) for each
i ∈ [1, |Occ(T, cj)|]. Rmap is a deterministic dictionary [24] storing the mapping function γ

for T . The deterministic dictionary can compute γ(T, c) for a given character c in constant
time, and its space usage is O(σ′) words. The space usage of the rank-select data structure
is O(|T |) words in total, because σ′ ≤ |T | holds. We can compute a given select query
select(T, c, i) in two steps: (i) compute j = γ(T, c); and (ii) return −1 if j = −1 or |Hj | < i;
otherwise, return Hj [i]. Hence, the rank-select data structure can support rank and select
queries on T in O(log logw σ) and O(1) time, respectively.

2.2 BWT and run-length BWT (RLBWT)
The BWT [5] of a string T is a string L of length n built by permuting T as follows: (i)
all n circular strings of T (i.e., T [1..n], T [2..n]T [1], T [3..n]T [1..2], . . ., T [n]T [2..n − 1]) are
sorted in lexicographical order; (ii) L[i] is the last character at the i-th circular string in

T. Nishimoto and Y. Tabei 101:5

i SA LF F L
1 15 10 $ baababaabaaba b
2 7 11 a abaabab$baaba b
3 10 12 a abab$baababaa b
4 2 13 a ababaabaabab$ b
5 13 14 a b$baababaabaa b
6 5 15 a baabaabab$baa b
7 8 2 a baabab$baabab a
8 11 3 a bab$baababaab a
9 3 4 a babaabaabab$b a
10 14 5 b $baababaabaab a
11 6 6 b aabaabab$baab a
12 9 7 b aabab$baababa a
13 1 1 b aababaabaabab $
14 12 8 b ab$baababaaba a
15 4 9 b abaabaabab$ba a

Sorted circular strings

Figure 1 Table illustrating the BWT (L), SA, LF function, F, and the sorted circular strings of
T = baababaabaabab$.

the sorted order for i ∈ [1, n]. Similarly, F is a string of length n such that F [i] is the first
character at the i-th circular string in the sorted order. Formally, let L[i] = T [SA[LF(i)]] and
F [i] = T [SA[i]].

Let C be an array of size σ such that C[c] is the number of occurrences of characters
lexicographically smaller than c ∈ Σ in string T i.e., C[c] = |{i | i ∈ [1, n] s.t. T [i] ≺ c}|. The
BWT has the following property. For any integer i ∈ [1, n], LF(i) is equal to the number of
characters that are lexicographically smaller than the character L[i] plus the rank of L[i] on
the BWT. Thus, LF(i) = C[c] + rank(L, c, i) holds for c = L[i]. This is because LF(i) < LF(j)
if and only if either of the following conditions holds: (i) L[i] ≺ L[j] or (ii) L[i] = L[j] and
i < j for two integers 1 ≤ i < j ≤ n.

Let [b, e] be the sa-interval of a string P and [b′, e′] be the sa-interval of cP for a character
c. Then, the following relation holds between [b, e] and [b′, e′] on the BWT L.

▶ Lemma 2 (e.g., [10]). Let b̂ and ê be the first and last occurrences of c in L[b..e] (i.e.,
b̂ = min{i | i ∈ [b, e] s.t. L[i] = c} and ê = max{i | i ∈ [b, e] s.t. L[i] = c}). Then,
b′ = LF(b̂), e′ = LF(ê), and SA[b′] = SA[b̂] − 1 hold if P and cP are substrings of T .

Figure 1 illustrates the BWT, SA, LF function, F , L and sorted circular strings of a string
T = baababaabaabab$. For example, let P = ab, c = b. Then [b, e] = [5, 9], [b′, e′] = [14, 15],
b̂ = 5, and ê = 6 (see also Figure 1). Moreover, b′ = LF(b̂) and e′ = LF(ê) hold by Lemma 2.

The RLBWT of T is a BWT encoded by run-length encoding; i.e., it is a partition of L into
r substrings rlbwt(L) = L1, L2, . . . , Lr such that each substring Li is a maximal repetition of
the same character in L (i.e., Li[1] = Li[2] = · · · = Li[|Li|] and Li−1[1] ̸= Li[1] ̸= Li+1[1]).
Each Li is called a run. Let ℓi be the starting position of the i-th run of BWT L, i.e.,
ℓ1 = 1, ℓi = ℓi−1 + |Li−1| for i ∈ [2, r]. Let ℓr+1 = n + 1. The RLBWT is represented
as r pairs (L1[1], ℓ1), (L2[1], ℓ2), . . ., (Lr[1], ℓr) using 2r words. For example, rlbwt(L) =
bbbbbb, aaaaaa, $, aa for BWT L illustrated in Figure 1. The RLBWT is represented as
(b, 1), (a, 7), ($, 13), and (a, 14).

Let δ be a permutation of [1, r] satisfying LF(ℓδ[1]) < LF(ℓδ[2]) < · · · < LF(ℓδ[r]). The LF
function has the following properties on RLBWT.

ICALP 2021

101:6 Optimal-Time Queries on BWT-Runs Compressed Indexes

▶ Lemma 3 (e.g., Lemma 2.1 in [16]). The following two statements hold: (i) Let x be the
integer satisfying ℓx ≤ i < ℓx+1 for some i ∈ [1, n]. Then, LF(i) = LF(ℓx) + (i − ℓx); (ii)
LF(ℓδ[1]) = 1 and LF(ℓδ[i]) = LF(ℓδ[i−1]) + |Lδ[i−1]| for all i ∈ [2, r].

Proof. (i) Let y = (i − ℓx) and c = L[ℓx + (i − ℓx)]. LF(ℓx + y) = C[c] + rank(L, c, ℓx + y)
holds by the BWT property. rank(L, c, ℓx + y) = rank(L, c, ℓx) + y holds because the x-th
run Lx is a repetition of the character c. Hence LF(ℓx + y) = C[c] + rank(L, c, ℓx + y) =
C[c] + rank(L, c, ℓx) + y = LF(ℓx) + y holds. By i = ℓx + y, LF(i) = LF(ℓx) + (i − ℓx) holds.

(ii) Clearly, LF(ℓδ[1]) = 1. Next, LF(ℓδ[i]) = LF(ℓδ[i−1]) + |Lδ[i−1]| holds for any i ∈ [2, r],
because (a) the LF function maps the interval [ℓδ[i], ℓδ[i] + |Lδ[i]| − 1] into the interval
[LF(ℓδ[i]), LF(ℓδ[i]) + |Lδ[i]| − 1] by Lemma 3(i) for any i ∈ [1, r], (b) LF is a bijection from
[1, n] to [1, n], and (c) LF(ℓδ[1]) < LF(ℓδ[2]) < · · · < LF(ℓδ[r]) holds. ◀

The sequence u1, u2, . . ., ur+1 consists of sa-values such that (i) {u1, u2, . . ., ur} =
{SA[ℓ1 + |L1| − 1], SA[ℓ2 + |L2| − 1], . . . , SA[ℓr + |Lr| − 1]}, and (ii) u1 < u2 < · · · < ur. Let
δ′ be a permutation of [1, r] satisfying ϕ−1(uδ′[1]) < ϕ−1(uδ′[2]) < · · · < ϕ−1(uδ′[r]), and let
ur+1 = n + 1. ϕ−1 has the following properties on RLBWT.

▶ Lemma 4 (Lemma 3.5 in [13]). The following three statements hold: (i) Let x be the integer
satisfying ux ≤ i < ux+1 for some integer i ∈ [1, n]. Then ϕ−1(i) = ϕ−1(ux) + (i − ux); (ii)
ϕ−1(uδ′[1]) = 1 and ϕ−1(uδ′[i]) = ϕ−1(uδ′[i−1]) + d for all i ∈ [2, r], where d = uδ′[i−1]+1 −
uδ′[i−1]; (iii) u1 = 1.

Proof. (i) Lemma 4(i) clearly holds for i = ux. We show that Lemma 4(i) holds for i ̸= ux (i.e.,
i > ux). Let st be the position with sa-value ux+t for an integer t ∈ [1, y] (i.e., SA[st] = ux+t),
where y = i − ux. st is not the ending position of a run (i.e., (ux + t) ̸∈ {u1, u2, . . . , ur}),
and thus, two adjacent positions st and st + 1 are contained in an interval [ℓv, ℓv + |Lv| − 1]
on SA (i.e., st, st + 1 ∈ [ℓv, ℓv + |Lv| − 1]), which corresponds to the v-th run Lv of L. The
LF function maps st into st−1, where s0 is the position with sa-value ux. LF also maps
st + 1 into st−1 + 1 by Lemma 3(i). The two mapping relationships established by LF
produce y equalities ϕ−1(SA[s1]) = ϕ−1(SA[s0]) + 1, ϕ−1(SA[s2]) = ϕ−1(SA[s1]) + 1, . . .,
ϕ−1(SA[sy]) = ϕ−1(SA[sy−1]) + 1. The equalities lead to ϕ−1(SA[sy]) = ϕ−1(SA[s0]) + y,
which represents ϕ−1(i) = ϕ−1(ux) + (i − ux) by SA[sy] = i, SA[s0] = ux, and y = i − ux.

(ii) Clearly, ϕ−1(uδ′[1]) = 1. ϕ−1(uδ′[i]) = ϕ−1(uδ′[i−1])+d holds for any i ∈ [2, r], because
(a) ϕ−1 maps the interval [uδ′[i], uδ′[i]+d−1] into the interval [ϕ−1(uδ′[i]), ϕ−1(uδ′[i])+d−1] by
Lemma 4(i) for any i ∈ [1, r], (b) ϕ−1 is a bijection from [1, n] to [1, n], and (c) ϕ−1(uδ′[1]) <

ϕ−1(uδ′[2]) < · · · < ϕ−1(uδ′[r]) holds.
(iii) Let p be the integer satisfying Lp = $. Then there exists an integer q′ such that uq′

is the sa-value at position ℓp, because the length of Lp is 1. Hence, u1 = uq′ = 1 holds. ◀

Here, we give an example of Lemma 3. In Figure 1, (ℓ1, ℓ2, ℓ3, ℓ4) = (1, 7, 13, 14) and
(LF(ℓ1), LF(ℓ2), LF(ℓ3), LF(ℓ4)) = (10, 2, 1, 8). Hence, LF(3) = LF(ℓ1) + (3 − ℓ1) = 12 and
LF(8) = LF(ℓ2) + (8 − ℓ2) = 3 hold by Lemma 3(i).

Next, we give an example of Lemma 4. In Figure 1, (u1, u2, u3, u4) = (1, 4, 5, 9) and
(ϕ−1(u1), ϕ−1(u2), ϕ−1(u3), ϕ−1(u4)) = (12, 15, 8, 1). Hence ϕ−1(3) = ϕ−1(u1)+(3−u1) = 14
and ϕ−1(8) = ϕ−1(u3) + (8 − u3) = 11 hold by Lemma 4(i).

3 Novel data structures for computing LF and ϕ−1 functions

In this section, we present two new data structures for computing LF and ϕ−1 functions in
constant time with O(r) words of space. Our key idea is to (i) divide the domains and ranges
of two functions into at least r non-overlapping intervals on RLBWT and (ii) compute two

T. Nishimoto and Y. Tabei 101:7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[3, 6] [7, 13]

[1, 7] [12, 15]

Input intervals

Output intervals

[14, 15]

[8, 9] 10 11

1 2

Input intervals

Output intervals

[3, 6] [7, 13]

[1, 7] [12, 15]

[14, 15]

[8, 9] 10 11

1 2

Input intervals

Output intervals

[3, 6] [9, 13]

[3, 7] [12, 15]

[14, 15]

[8, 9] 10 11

1 2

[1, 2]

[7, 8]

G(I0
out)

G(I1
out)

Figure 2 Left figure illustrates input and output intervals created by I = (1, 10), (2, 11), (3, 12),
(7, 1), (14, 8). The i-th input and output intervals are connected by a black line. Right figure
illustrates two permutation graphs G(Iout

0) and G(Iout
1) for I.

functions for each domain and range by a linear search in constant time. First, we introduce
a notion named disjoint interval sequence that is used for a function with non-overlapping
intervals for its domain and range. Then, we present a move query for computing a function
on each disjoint interval sequence and a novel data structure for efficiently computing move
queries. Finally, we show that LF and ϕ−1 can be computed on two disjoint interval sequences
using move queries.

3.1 Disjoint interval sequence and move query
Let I = (p1, q1), (p2, q2), . . . , (pk, qk) be a sequence of k pairs of integers. We introduce a
permutation π of [1, k] and sequence d1, d2, . . . , dk for I. π satisfies qπ[1] ≤ qπ[2] ≤ · · · ≤ qπ[k],
and di = pi+1 − pi for i ∈ [1, k], where pk+1 = n + 1. We call the sequence I a disjoint
interval sequence if it satisfies the following three conditions: (i) p1 = 1 < p2 < · · · < pk ≤ n

holds, (ii) qπ[1] = 1, and (iii) qπ[i] = qπ[i−1] + dπ[i−1] holds for each i ∈ [2, k].
We call the two intervals [pi, pi + di − 1] and [qi, qi + di − 1] the i-th input and output

intervals of the disjoint interval sequence I, respectively, for each i ∈ [1, k]. The input
intervals [p1, p1 + d1 − 1], [p2, p2 + d2 − 1], . . ., [pk, pk + dk − 1] do not overlap, i.e., [pi, pi +
di − 1] ∩ [pj , pj + dj − 1] = ∅ holds for any pair of two distinct integers i, j ∈ [1, k]. Hence,
the union of the input intervals is equal to the interval [1, n], i.e.,

⋃k
i=1[pi, pi + di − 1] = [1, n].

Similarly, the output intervals [q1, q1 + d1 − 1], [q2, q2 + d2 − 1], . . ., [qk, qk + dk − 1]) do not
overlap, and their union is equal to [1, n].

A move query Move(I, i, x) returns a pair (i′, x′) on a disjoint interval sequence I for a
position i ∈ [1, n] and the index x of the input interval of I containing the position i (i.e., x

is the integer satisfying i ∈ [px, px + dx − 1]). Here, i′ = qx + (i − px) and x′ is the index of
the input interval of I containing i′. We can represent a bijective function using a disjoint
interval sequence and move query. Formally, let fI(i) = i′ for an integer i ∈ [1, n], where i′ is
the first value of the pair outputted by Move(I, i, x). fI maps the j-th input interval into
the j-th output interval (i.e., fI(i) = qj + (i − pj) for i ∈ [pj , pj + dj − 1]). Hence, fI is a
bijective function from [1, n] to [1, n].

In Figure 2, the left figure illustrates the input and output intervals of the disjoint
interval sequence I = (1, 10), (2, 11), (3, 12), (7, 1), (14, 8), where n = 15. The input
intervals created by I are [1, 1], [2, 2], [3, 6], [7, 13], and [14, 15]. The output intervals created
by I are [10, 10], [11, 11], [12, 15], [1, 7], and [8, 9]. For example, Move(I, 3, 3) = (12, 4),
Move(I, 5, 3) = (14, 5), and Move(I, 8, 4) = (2, 2).

ICALP 2021

101:8 Optimal-Time Queries on BWT-Runs Compressed Indexes

3.2 Move data structure
In this section, we present a data structure called move data structure for computing move
queries in constant time. To do so, we introduce three notions, i.e., the permutation graph,
split interval sequence, and balanced interval sequence. A permutation graph G(I) is a
directed graph for a disjoint interval sequence I. The number of nodes in G(I) is 2k, and the
nodes correspond one-by-one with the input and output intervals of I. Each input interval
[pi, pi + di − 1] has a single outgoing edge pointing to the output interval [qj , qj + dj − 1]
containing pi; i.e., j is the integer satisfying pi ∈ [qj , qj + dj − 1]. Hence, G(I) has k edges.
We say that I is out-balanced if every output interval has at most three incoming edges.

A split interval sequence Iout
t is a disjoint interval sequence for a disjoint interval sequence

I and an integer t ≥ 0. Let Iout
0 = I. For t ≥ 1, we define Iout

t using Iout
t−1 and two integers j, d

if Iout
t−1 is not out-balanced. Let (i) Iout

t−1 = (p′
1, q′

1), (p′
2, q′

2), . . . , (p′
k′ , q′

k′), (ii) j be the smallest
integer such that the j-th output interval of Iout

t−1 has at least four incoming edges in G(Iout
t−1),

and (iii) d be the largest integer satisfying |[qj , qj + d − 1] ∩ {p1, p2, . . . , pk′}| = 2. Then,
Iout

t is defined as (p′
1, q′

1), (p′
2, q′

2), . . ., (p′
j−1, q′

j−1), (p′
j , q′

j), (p′
j + d, q′

j + d), . . ., (p′
k′ , q′

k′). In
other words, Iout

t is created by splitting the j-th pair (p′
j , q′

j) of Iout
t−1 into two pairs (p′

j , q′
j)

and (p′
j + d, q′

j + d). Let τ ≥ 0 be the smallest integer such that Iout
τ is out-balanced.

In Figure 2, the right figure illustrates two permutation graphs G(Iout
0) and G(Iout

1), where
I is the disjoint interval sequence illustrated in the left figure, i.e., I = (1, 10), (2, 11), (3, 12),
(7, 1), (14, 8). The fourth output interval [1, 7] of Iout

0 has four incoming edges, and the other
output intervals have at most one incoming edge in G(Iout

0). Hence, Iout
1 = (1, 10), (2, 11),

(3, 12), (7, 1), (9, 3), (14, 8) holds by j = 4 and d = 2. Iout
1 is out-balanced, and hence τ = 1

holds.
The split interval sequence has the following four properties for each t ∈ [0, τ]: (i) Iout

t

consists of k + t pairs. (ii) Iout
t consists of at least 2t pairs. (iii) Let d′

i = p′
i+1 − p′

i for
i ∈ [1, k′] and p′

k′+1 = n + 1. Both output intervals [q′
j , q′

j + d − 1] and [q′
j + d, q′

j + d′
j − 1]

have at least two incoming edges in G(Iout
t). (iv) Let fI and f t

I be the two bijective functions
represented by I and Iout

t , respectively. Then, fI(i) = f t
I(i) holds for i ∈ [1, n]. Formally, we

obtain the second property from the following lemma.

▶ Lemma 5. |Iout
t | ≥ 2t holds for any t ∈ [0, τ].

Proof. Let Q(Iout
t−1) be the set of the starting positions of input intervals in G(Iout

t−1) (i.e.,
Q(Iout

t−1) = {p′
1, p′

2, . . . , p′
k′}). Then Q(Iout

t) = Q(Iout
t−1) ∪ {p′

j + d} holds from the definition of
Iout

t . Next, let Edge2(Iout
t−1) be the set of output intervals such that each output interval has at

least two incoming edges in G(Iout
t−1), i.e., Edge2(Iout

t−1) = {[q′
i, q′

i+d′
i−1] | i ∈ [1, k′] s.t. |[q′

i, q′
i+

d′
i − 1] ∩ Q(Iout

t−1)| ≥ 2}, where d′
i = p′

i+1 − p′
i. [q′

i, q′
i + d′

i − 1] ∈ Edge2(Iout
t) holds if

[q′
i, q′

i +d′
i −1] ∈ Edge2(Iout

t−1) for any integer i ∈ [1, k′]\{j}. This is because (i) [q′
i, q′

i +d′
i −1]

is also an output interval of Iout
t , and (ii) ([q′

i, q′
i +d′

i −1]∩Q(Iout
t−1)) ⊆ ([q′

i, q′
i +d′

i −1]∩Q(Iout
t))

holds by Q(Iout
t−1) ⊆ Q(Iout

t). [q′
j , q′

j + d − 1], [q′
j + d, q′

j+1 − 1] ∈ Edge2(Iout
t) also holds by

the third property of Iout
t . Hence, we obtain an inequality |Edge2(Iout

t)| ≥ |Edge2(Iout
t−1)| + 1

for any integer t ∈ [1, τ]. The inequality |Edge2(Iout
t)| ≥ |Edge2(Iout

t−1)| + 1 guarantees that
|Edge2(Iout

t)| ≥ t holds for any integer t ∈ [0, τ]. The inequality |Edge2(Iout
t)| ≥ t indicates

that Iout
t consists of at least 2t pairs, because each output interval in Edge2(Iout

t) has at least
two incoming edges from distinct input intervals. Hence, Lemma 5 holds. ◀

A balanced interval sequence B(I) is defined as Iout
τ for a disjoint interval sequence I.

We obtain the lemma below from the four properties of Iout
τ .

T. Nishimoto and Y. Tabei 101:9

▶ Lemma 6. Let fI and fB(I) be the two bijective functions represented by I and B(I),
respectively for a disjoint interval sequence I of length k. The following three statements
hold: (i) |B(I)| ≤ 2k, (ii) B(I) is out-balanced, and (iii) the two disjoint interval sequences
I and B(I) represent the same bijective function, i.e., fI(i) = fB(I)(i) for i ∈ [1, n].

Proof. (i) We obtain an inequality τ ≤ k from the first and second properties of Iout
t ,

because k + t ≥ 2t must hold for any t ∈ [0, τ]. Hence, Iout
τ consists of at most 2k pairs;

i.e., |B(I)| ≤ 2k holds. (ii) Iout
τ is out-balanced, and thus, B(I) is out-balanced. (iii)

fI(i) = f0
I (i) = f1

I (i) = · · · = fτ
I (i) = fB(I)(i), and thus, fI(i) = fB(I)(i) for i ∈ [1, n]. ◀

The move data structure F (I) is built on a balanced interval sequence B(I) = (p1, q1),
(p2, q2), . . ., (pk′ , qk′) for a disjoint interval sequence I, and it supports move queries on B(I).
The move data structure consists of two arrays Dpair and Dindex of size k′. Dpair[i] stores the
i-th pair (pi, qi) of B(I) for each i ∈ [1, k′]. Dindex[i] stores the index j of the input interval
containing qi. Hence, the space usage is O(k′) words in total.

Now let us describe an algorithm for solving a move query Move(B(I), i, x) = (i′, x′) on
B(I), where x and x′ are the indexes of the two input intervals of B(I) containing i and
i′, respectively, and i′ = qx + (i − px). The algorithm consists of three steps. In the first
step, the algorithm computes i′ = qx + (i − px). In the second step, the algorithm finds the
x′-th input interval by a linear search on the input intervals of B(I). Let b = Dindex[x]. The
linear search starts at the b-th input interval [pb, pb+1 − 1], reads the input intervals in the
left-to-right order, and stops if the input interval containing position i′ is found (i.e., the
x′-th input interval). The linear search is always successful (i.e., x′ ≥ b), because i′ ≥ qx

holds. In the third step, the algorithm returns the pair (i′, x′). The running time of the
algorithm is O(x′ − b + 1) in total.

The running time is computed as follows. Let ibeg and iend be the indexes of the first
and last input intervals that are connected to the x-th output interval in G(B(I)). The x-th
output interval has at most three incoming edges, and hence, iend − ibeg + 1 ≤ 3 holds. Since
b is the index of an input interval that overlaps the x-th output interval, ibeg − 1 ≤ b ≤ iend.
Similarly, ibeg − 1 ≤ x′ ≤ iend. Therefore, x′ − b ≤ 3 and we can solve the move query in
constant time.

3.3 Computing LF and ϕ−1 functions using move data structures
Here, we show that we can compute the LF function using a move data structure. Recall that
ℓi is the starting position of the i-th run on BWT L for i ∈ [1, r], and δ is the permutation of
[1, r] introduced in Section 2.2. The sequence ILF is defined as r pairs (ℓ1, LF(ℓ1)), (ℓ2, LF(ℓ2)),
. . ., (ℓr, LF(ℓr)). ILF satisfies the three conditions of a disjoint interval sequence by Lemma 3,
i.e., (i) ℓ1 = 1 < ℓ2 < · · · < ℓr ≤ n, (ii) LF(ℓδ[1]) = 1, and (iii) LF(ℓδ[i]) = LF(ℓδ[i−1])+|Lδ[i−1]|
holds for each i ∈ [2, r]. Hence ILF is a disjoint interval sequence.

Let fLF be the bijective function represented by the disjoint interval sequence ILF. Then,
fLF(i) = LF(ℓx) + (i − ℓx) holds, where x is the integer such that ℓx ≤ i < ℓx+1 holds. On
the other hand, we have LF(i) = LF(ℓx) + (i − ℓx) by Lemma 3(i). Hence, fLF and LF are
the same function, i.e., LF(i) = fLF(i) for i ∈ [1, n].

Let F (ILF) be the move data structure built on the balanced interval sequence B(ILF)
for ILF. By Lemma 6, the move data structure requires O(r) words of space, and LF(i) = i′

holds for a move query Move(B(I), i, x) = (i′, x′) on B(ILF). Hence, we have proven the
following theorem.

ICALP 2021

101:10 Optimal-Time Queries on BWT-Runs Compressed Indexes

b b b b b b a a a a a a $ a aL

L’ b b b b b b a a a a a a $ a a

Lfirst b b a $ a

[b..e]

[b..e]^ ^

p1 p2 p3 p4 p5
i j

jî
^

Figure 3 Example of modified toehold lemma.

▶ Theorem 7. Let x and x′ be the indexes of the two input intervals of B(ILF) containing
an integer i ∈ [1, n] and LF(i), respectively. We can compute LF(i) and x′ in constant time
by using F (ILF) and (i, x).

Similarly, we can show that we can compute ϕ−1 by using a move data structure.
A sequence ISA consists of r pairs (u1, ϕ−1(u1)), (u2, ϕ−1(u2)), . . ., (ur, ϕ−1(ur)), where
u1, u2, . . . , ur are the integers introduced in Section 2.2. ISA has the following three properties:
(i) u1 = 1 < u2 < · · · < ur ≤ n holds by Lemma 4(iii), (ii) ϕ−1(uδ′[1]) = 1 by Lemma 4(ii),
and (iii) ϕ−1(uδ′[i]) = ϕ−1(uδ′[i−1]) + (uδ′[i−1]+1 − uδ′[i−1]) holds by Lemma 4(ii) for each
i ∈ [2, r], where δ′ is the permutation of [1, r] introduced in Section 2.2. Hence, ISA satisfies
the three conditions of a disjoint interval sequence by Lemma 4.

Let fSA be the bijective function represented by the disjoint interval sequence ISA. Then
fSA(i) = ϕ−1(ux) + (i − ux) holds, where x is the integer such that ux ≤ i < ux+1 holds. On
the other hand, ϕ−1(i) = ϕ−1(ux) + (i − ux) holds by Lemma 4(i). Hence fSA and ϕ−1(i)
are the same function.

Let F (ISA) be the move data structure built on the balanced interval sequence B(ISA)
for ISA. Then, the result of a move query on B(ISA) contains ϕ−1(i) for i ∈ [1, n], and hence,
we have proven (i) of the following theorem.

▶ Theorem 8. Let x, x′, x̂ be the indexes of the three input intervals of B(ISA) containing
an integer i ∈ [1, n], ϕ−1(i), and i − 1, respectively. Then, the following two statements hold:
(i) We can compute ϕ−1(i) and x′ in constant time using data structure F (ISA) and the pair
(i, x). (ii) We can compute the index x̂ using F (ISA) and (i, x).

Proof. (ii) Let B(ISA) = (p1, q1), (p2, q2), . . ., (pk′ , qk′). The x-th input interval is [px, px+1 −
1], which contains i. x̂ = x holds if px ̸= i; otherwise, x̂ = x − 1. We can verify px ̸= i holds
in constant time by using F (ISA). ◀

Theorems 7 and 8 indicate that we can compute the position obtained by recursively
applying LF and ϕ−1 to a position i ∈ [1, n] t times in O(t) time if we know the index of
the input interval containing i. For example, let x, x′, x′′, and x′′′ be the indexes of the
four input intervals of B(ILF) containing i, LF(i), LF(LF(i)), and LF(LF(LF(i))), respectively.
LF(LF(LF(i))) can be computed by computing three move queries Move(B(ILF), i, x) =
(LF(i), x′), Move(B(ILF), LF(i), x′) = (LF(LF(i)), x′′), and Move(B(ILF), LF(LF(i)), x′′) =
(LF(LF(LF(i))), x′′′).

4 New data structure for backward searches

Here, we present a modified version of the backward search [10, 1], which we call backward
search query for OptBWTR (BSR query), for computing the sa-interval of cP for a given
string P and character c. To define the BSR query, we will introduce a new tuple: a balanced

T. Nishimoto and Y. Tabei 101:11

sa-interval of a string P is a 6-tuple (b, e, SA[b], i, j, v). Here, (i) [b, e] is the sa-interval of P ;
(ii) i and j are the indexes of the two input intervals of B(ILF) containing b and e, respectively;
(iii) v is the index of the input interval of B(ISA) containing SA[b]. The balanced sa-interval
of P is undefined if the sa-interval of P is ∅ (i.e., P is not a substring of T). The input of
the BSR query is the balanced sa-interval (b, e, SA[b], i, j, v) of a string P and a character c.
The output of the BSR query is the balanced sa-interval (b′, e′, SA[b′], i′, j′, v′) of string cP if
the sa-interval of cP is not the empty set; otherwise BSR outputs a mark ⊥.

Now, we will present a data structure called the BSR data structure. The BSR data
structure supports BSR queries in O(log logw σ) time. It consists of five data structures
F (ILF), F (ISA), R(Lfirst), SA+, and SA+

index. Here, F (ILF) and F (ISA) are the two move
data structures introduced in Section 3.3. Let B(ILF) = (p1, q1), (p2, q2), . . . , (pk, qk). Then
Lfirst is the string satisfying Lfirst = L[p1], L[p2], . . . , L[pk]. R(Lfirst) is a rank-select data
structure built on Lfirst, which is defined in Section 2. R(Lfirst) requires O(|Lfirst|) words
of space, and it supports rank and select queries on Lfirst in O(log logw σ) and O(1) time,
respectively. SA+ is an array of size k such that SA+[x] stores the sa-value at the starting
position of the x-th input interval of B(ILF) for each x ∈ [1, k] (i.e., SA+[x] = SA[px]). Let
B(ISA) = (p′

1, q′
1), (p′

2, q′
2), . . . , (p′

k′ , q′
k′). SA+

index is an array of size k such that SA+
index[x]

stores the index y of the input interval of B(ISA) containing the position SA+[x] (i.e., y is
the integer satisfying SA+[x] ∈ [p′

y, p′
y+1 − 1]). The space usage of the five data structures is

O(|B(ILF)| + |B(ISA)|) words, and |B(ILF)|, |B(ISA)| = O(r) holds by Lemma 6(i).
Next, we will present a key observation on BSR queries, which is based on the toehold

lemma (see, e.g., [23, 13, 1]). Let L′ be a sequence of k substrings L[p1..p2 − 1], L[p2..p3 −
1], . . . , L[pk..pk+1 − 1] of BWT L, where pk+1 = n + 1. Then, L′ has the following properties:
(i) L′ represents a partition of L. (ii) Each string of L′ consists of a repetition of the
same character. (iii) Each character Lfirst[t] corresponds to the first character of the t-th
string of L′. (iv) The i-th and j-th strings of L′ contain the b-th and e-th characters of
BWT L, respectively. (v) Let b̂ and ê be the first and last occurrences of c in L[b..e] (i.e.,
b̂ = min{t | t ∈ [b, e] s.t. L[t] = c} and ê = max{t | t ∈ [b, e] s.t. L[t] = c}). Similarly, let î

and ĵ be the indexes of the two strings of L′ containing the b̂-th and ê-th characters of BWT
L, respectively. Then î and ĵ are equal to the first and last occurrences of c in Lfirst[i..j].
We obtain the following relations among the four positions b, b̂, e, and ê by using the above
five properties: (i) b̂ = b if Lfirst[i] = c; otherwise, b̂ = pî. (ii) Similarly, ê = e if Lfirst[j] = c;
otherwise b̂ = pĵ+1 − 1. We call these two relations the modified toehold lemma.

Let v̂ be the index of the input interval of B(ISA) containing position SA[b̂]. v̂ = v

and SA[b̂] = SA[b] hold if b̂ = b; otherwise, v̂ = SA+
index [̂i] and SA[b̂] = SA+ [̂i] by the

modified toehold lemma. We can compute the balanced sa-interval of cP by using F (ILF)
and F (ISA) after computing the six integers b̂, ê, î, ĵ, v̂, SA[b̂], because b′ = LF(b̂), e′ = LF(ê),
and SA[b′] = SA[b̂] − 1 hold by Lemma 2.

Figure 3 illustrates an example of the modified toehold lemma for a BWT L = bbbbbb

aaaaaa$aa. In this example, c = a and L′ = bbb, bbb, aaaaaa, $, aa. (i) k = 5, (ii)
(p1, p2, p3, p4, p5) = (1, 4, 7, 13, 14), (ii) Lfirst = bba$a, (iii) (b, e) = (3, 14), (iv) (b̂, ê) = (7, 14),
(v) (i, j) = (1, 5), and (vi) (̂i, ĵ) = (3, 5). The i-th string of L′ is not a repetition of the
character c, and the î-th string of L′ contains the b̂-th character of L. Hence b̂ = pî = 7
holds by the modified toehold lemma. Similarly, the j-th string of L′ is a repetition of c, and
hence ê = e holds by the modified toehold lemma.

We solve a BSR query in four steps. In the first step, we verify whether Lfirst[i..j] contains
character c by computing two rank queries rank(Lfirst, c, j) and rank(Lfirst, c, i). By Lemma 1(i),
Lfirst[i..j] contains c if rank(Lfirst, c, j) − rank(Lfirst, c, i) ≥ 1; otherwise, cP is not a substring

ICALP 2021

101:12 Optimal-Time Queries on BWT-Runs Compressed Indexes

of T , and hence BSR outputs a mark ⊥. In the second step, we compute two integers î and
ĵ using rank and select queries on the string Lfirst. î = select(Lfirst, c, rank(Lfirst, c, i − 1) + 1)
and ĵ = select(Lfirst, c, rank(Lfirst, c, j)) hold by Lemma 1(ii). In the third step, we compute b̂,
ê, v̂, and SA[b̂] by the modified toehold lemma. In the fourth step, we compute the balanced
sa-interval of cP by processing the six integers b̂, ê, î, ĵ, v̂, SA[b̂], i.e., we compute (i) the pair
(b′, i′) using a move query on B(ILF) for the pair (b̂, î), (ii) the pair (e′, j′) using a move query
on B(ILF) for the pair (ê, ĵ), and (iii) the pair (SA[v′], v′) by Theorem 8(ii). The running
time is O(log logw σ) in total.

5 OptBWTR

Here, we present OptBWTR, which supports optimal-time queries for polylogarithmic
alphabets by leveraging data structures for computing LF and ϕ−1 functions. Let P be a
string of length m in a count or locate query and occ = |Occ(T, P)|. The goal of this section
is to prove the following theorem.

▶ Theorem 9. OptBWTR requires O(r) words, and it supports count and locate queries on
a string T in O(m log logw σ) and O(m log logw σ + occ) time, respectively. We can construct
OptBWTR in O(n + r log r) time and O(r) words by processing the RLBWT of T .

Proof. See the full version of this paper [22] for the proof of the construction time and
working space in Theorem 9. ◀

OptBWTR consists of the five data structures composing the BSR data structure, i.e.,
F (ILF), F (ISA), R(Lfirst), SA+, and SA+

index. First, we present an algorithm for a count query
using OptBWTR that consists of two phases. In the first phase, the algorithm computes
the balanced sa-interval of P by iterating BSR query m times. The input of the i-th BSR
query is the (m − i + 1)-th character of P (i.e., P [m − i + 1]) and the balanced sa-interval
of P [m − i + 2..m] for each i ∈ [1, m]. Here, P [m + 1..m] is defined as the empty string ε.
The balanced sa-interval of ε is (1, n, n, 1, |B(ILF)|, |B(ISA)|), because (i) the sa-interval of
the empty string is [1, n], and (ii) SA[1] = n. The i-th BSR query outputs the balanced
sa-interval of P [m − i + 1..m] if P [m − i + 1..m] is a substring of T ; otherwise it outputs a
mark ⊥. If a BSR query outputs ⊥, the pattern P does not occur in T . In this case, the
algorithm stops and returns 0 as the solution for the count query. In the second phase, the
algorithm returns the length of the sa-interval [b, e] of P (i.e., e − b + 1) as the solution for
the count query, because occ = e − b + 1 holds. The sa-interval of P is contained in the
balanced sa-interval of P ; hence, the running time is O(m log logw σ) in total.

Next, we present an algorithm for a locate query using OptBWTR. Assume that we
already computed the balanced sa-interval of P by the algorithm for the count query. Let
vt be the index of the input interval of B(ISA) containing SA[b + t] for t ∈ [0, e − b]. Then
SA[b + 1..e] can be computed by computing (e − b) move queries Move(B(ISA), SA[b], v0) =
(SA[b+1], v1), Move(B(ISA), SA[b+1], v1) = (SA[b+2], v2), . . ., Move(B(ISA), SA[e−1], ve−b) =
(SA[e], ve−b+1) on B(ISA). The first sa-value SA[b] and the index v0 are stored in the balanced
sa-interval of P .

The algorithm for a locate query also consists of two phases. In the first phase, the
algorithm computes the balanced sa-interval of P by iterating BSR query m times. In the
second phase, it computes (e − b) move queries Move(B(ISA), SA[b], v0), Move(B(ISA), SA[b +
1], v1), . . ., Move(B(ISA), SA[e − 1], ve−b) by using the move data structure F (ISA), and
outputs SA[b..e]. Hence, we can solve a locate query in O(m log logw σ + occ) time.

T. Nishimoto and Y. Tabei 101:13

6 Applications

In this section, we show that OptBWTR can support extract, decompression, and prefix
search queries in optimal time.

Extract query. Let a string T of length n have b marked positions i1, i2, . . . , ib ∈ [1, n]. An
extract query (also called the bookmarking problem) is to return substring T [ij ..ij + d − 1]
for a given integer j ∈ [1, b] and d ∈ [1, n − ij + 1].

We will use FL function to solve extract queries. FL is the inverse function of LF
function, i.e., FL(LF(i)) = i holds for i ∈ [1, n]. We will also use the function FLx and
integers h1, h2, . . . , hb. FLx(i) returns the position obtained by recursively applying the FL
function to a given integer i x times, i.e., FL0(i) = i and FLx(i) = FLx−1(FL(i)) for x ≥ 1.
hj is the position with sa-value ij on SA (i.e., SA[hj] = ij). The FL function returns the
position with the sa-value y + 1 on SA for a given position with sa-value y, and hence
T [ij ..ij + d − 1] = F [FL0(hj)], F [FL1(hj)], . . . , F [FLd−1(hj)] holds for j ∈ [1, b], where F is
the string described in Section 2.2. We can construct a data structure of O(r) words to
compute FL function in constant time by modifying Theorem 7 and can solve an extract
query in linear time by using the data structure. See the full version of this paper [22] for
details of our data structure for solving extract queries.

▶ Theorem 10. There exists a data structure of O(r + b) words that solves the bookmarking
problem for a string T and b positions i1, i2, . . . , ib (1 ≤ i1 < i2 < · · · < ib ≤ n). This data
structure supports an exact query in constant time per character. We can construct the data
structure in O(n) time and O(r + b) words of space by processing the RLBWT and positions
i1, i2, . . . , ib.

Proof. See the full version of this paper [22]. ◀

Decompression of RLBWT. We apply Theorem 10 to T [1..n] with marked position 1.
Then, our data structure for extract queries can return the string T in O(n) time (i.e., the
data structure can recover T from the RLBWT of T in linear time to n). The O(n) time
decompression is the fastest among other decompression algorithms on compressed indexes
in O(r) words of space, as the following theorem shows.

▶ Theorem 11. We can compute the characters of T in left-to-right order (i.e., T [1], T [2],
. . ., T [n]) in O(n) time and O(r) words of space by processing the RLBWT of string T .

Prefix search. The prefix search for a set of strings D = {T1, T2, . . . , Td} returns the
indexes of the strings in D that include a given string P as their prefixes (i.e., {i | i ∈
[1, d] s.t. Ti[1..|P |] = P}). We can construct a data structure supporting the prefix search
by combining Theorem 10 with compact trie [20].

A compact trie for a set of strings D is a trie for D such that all unary paths are collapsed,
and each node represents the string by concatenating labels on the path from the root to the
node. For simplicity, we assume that the set D is prefix-free, i.e., Ti is not a prefix of Ti′ for
any pair of two strings Ti and Ti′ in D. Each leaf in the compact trie represents a distinct
string in D by the assumption. Let v be the node such that (i) P is a prefix of the string
represented by the node and (ii) P is not a prefix of the string represented by its parent.
Then, the leaves under v are the output of the prefix search query for P .

ICALP 2021

101:14 Optimal-Time Queries on BWT-Runs Compressed Indexes

To find v, we decode the string on the path from the root to the node v in linear time
using exact queries for the path. After we find v, we traverse the subtree rooted at v and
output all the leaves in the subtree. This procedure runs in O(|P | + occ′) time, where occ′ is
the number of leaves under the lowest node. See the full version of this paper [22] for the
details of our data structure for solving prefix search queries.

▶ Theorem 12. Let r′ be the number of runs in the RLBWT of a string T containing all the
strings in D = {T1, T2, . . . , Td}. There exists a data structure that supports a prefix search
on D in O(|P | + occ′) time and O(r′ + d) words of space for a string P . The data structure
also returns the number of the strings in D that include P as their prefixes in O(|P |) time.

Proof. See the full version of this paper [22]. ◀

7 Conclusion

We presented OptBWTR, the first string index that can support count and locate queries on
RLBWT in optimal time with O(r) words of space for polylogarithmic alphabets. OptBWTR
also supports extract queries and prefix searches on RLBWT in optimal time for any alphabet
size. In addition, we presented the first decompression algorithm working in optimal time
and O(r) words of working space. This is the first optimal-time decompression algorithm
working in O(r) words of space.

We presented a new data structure of O(r) words for computing LF and ϕ−1 functions in
constant time by using a new data structure named move data structure, provided that we
use an additional input. We also showed that the backward search works in optimal time
for polylogarithmic alphabets with O(r) words of space using the data structure. The two
functions and the backward search are general and applicable to various queries on RLBWT.

The following problems remain open: Does there exist a string index of O(r) words
supporting locate queries in optimal time for any alphabet size? We assume σ = O(polylog n)
for supporting locate queries in optimal time with O(r) words. As mentioned in Section 1, a
faster version of r-index can support locate queries in optimal time with O(r log logw(σ +
(n/r))) words. Thus, improving OptBWTR so that it can support locate queries in optimal
time with O(r) words for any alphabet size is an important future work. For this goal, one
needs to solve a rank query on a string of length Θ(r) in constant time and O(r) words of
space. However, this seems impossible because any data structure of O(r) words requires
Ω(log logw σ) time to compute a rank query on a string of length r [4]. Perhaps, we may be
able to compute the sa-interval of a given pattern in O(m) time and O(r) words of space
without using rank queries. After computing the sa-interval of the pattern, we can solve the
locate query in optimal time by using our data structure for the ϕ−1 function.

References
1 Hideo Bannai, Travis Gagie, and Tomohiro I. Refining the r-index. Theoretical Computer

Science, 812:96–108, 2020.
2 Djamal Belazzougui, Paolo Boldi, and Sebastiano Vigna. Dynamic z-fast tries. In Proceedings

of SPIRE, pages 159–172, 2010.
3 Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent compressed text indexing.

ACM Transactions on Algorithms, 10:23:1–23:19, 2014.
4 Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing

sequences. ACM Transactions on Algorithms, 11:31:1–31:21, 2015.
5 Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm.

Technical report, 1994.

T. Nishimoto and Y. Tabei 101:15

6 Anders Roy Christiansen and Mikko Berggren Ettienne. Compressed indexing with signature
grammars. In Proceedings of LATIN, pages 331–345, 2018.

7 Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro,
and Nicola Prezza. Optimal-time dictionary-compressed indexes. ACM Transactions on
Algorithms, 17:8:1–8:39, 2021.

8 Francisco Claude and Gonzalo Navarro. Improved grammar-based compressed indexes. In
Proceedings of SPIRE, pages 180–192, 2012.

9 Patrick Hagge Cording, Pawel Gawrychowski, and Oren Weimann. Bookmarks in grammar-
compressed strings. In Proceedings of SPIRE, pages 153–159, 2016.

10 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the ACM,
52:552–581, 2005.

11 Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Compressed rep-
resentations of sequences and full-text indexes. ACM Transactions on Algorithms, 3:20,
2007.

12 Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi.
LZ77-based self-indexing with faster pattern matching. In Proceedings of LATIN, pages
731–742, 2014.

13 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal
text searching in BWT-runs bounded space. Journal of the ACM, 67, 2020.

14 Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select operations on large
alphabets: a tool for text indexing. In Proceedings of SODA, pages 368–373, 2006.

15 Juha Kärkkäinen, Giovanni Manzini, and Simon J. Puglisi. Permuted longest-common-prefix
array. In Proceedings of CPM, pages 181–192, 2009.

16 Dominik Kempa. Optimal construction of compressed indexes for highly repetitive texts. In
Proceedings of SODA, pages 1344–1357, 2019.

17 Ulrich Lauther and Tamás Lukovszki. Space efficient algorithms for the Burrows-Wheeler
backtransformation. Algorithmica, 58:339–351, 2010.

18 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of
highly repetitive sequence collections. Journal of Computational Biology, 17:281–308, 2010.

19 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22:935–948, 1993.

20 Donald R. Morrison. PATRICIA – practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM, 15:514–534, 1968.

21 Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theoretical Computer
Science, 762:41–50, 2019.

22 Takaaki Nishimoto and Yasuo Tabei. Optimal-time queries on BWT-runs compressed indexes.
CoRR, abs/2006.05104, 2021. arXiv:2006.05104.

23 Alberto Policriti and Nicola Prezza. LZ77 computation based on the run-length encoded BWT.
Algorithmica, 80:1986–2011, 2018.

24 Milan Ruzic. Constructing efficient dictionaries in close to sorting time. In Proceedings of
ICALP, pages 84–95, 2008.

25 Takuya Takagi, Shunsuke Inenaga, Kunihiko Sadakane, and Hiroki Arimura. Packed compact
tries: A fast and efficient data structure for online string processing. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, 100-A:1785–1793,
2017.

26 Kazuya Tsuruta, Dominik Köppl, Shunsuke Kanda, Yuto Nakashima, Shunsuke Inenaga, Hideo
Bannai, and Masayuki Takeda. c-trie++: A dynamic trie tailored for fast prefix searches. In
Proceedings of DCC, pages 243–252, 2020.

ICALP 2021

http://arxiv.org/abs/2006.05104

	1 Introduction
	2 Preliminaries
	2.1 Rank-select data structure
	2.2 BWT and run-length BWT (RLBWT)

	3 Novel data structures for computing LF and inverse phi functions
	3.1 Disjoint interval sequence and move query
	3.2 Move data structure
	3.3 Computing LF and inverse phi functions using move data structures

	4 New data structure for backward searches
	5 OptBWTR
	6 Applications
	7 Conclusion

