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Abstract
The Suffix Array SA(S) of a string S[1 . . . n] is an array containing all the suffixes of S sorted by
lexicographic order. The suffix array is one of the most well known indexing data structures, and it
functions as a key tool in many string algorithms.

In this paper, we present a data structure for maintaining the Suffix Array of a dynamic string.
For every 1 ≤ k ≤ n, our data structure reports SA[i] in Õ( n

k
) time and handles text modification

in Õ(k) time. Additionally, our data structure enables the same query time for reporting iSA[i],
with iSA being the Inverse Suffix Array of S[1 . . . n].

Our data structure can be used to construct sub-linear dynamic variants of static strings
algorithms or data structures that are based on the Suffix Array and the Inverse Suffix Array.
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1 Introduction

The suffix tree [47] and suffix array [37] have been, arguably, the most powerful and heavily
used tools in Stringology. The suffix tree of string S is a compressed trie of all suffixes of S,
and the suffix array of S corresponds to a pre-order traversal of all the leaves of the suffix
tree of S.

The natural application of the suffix tree is indexing, but it has been used for many
purposes. An incomplete list includes approximate matching [33, 34], parameterized match-
ing [12, 13, 11, 25, 35], efficient compression [50, 51, 2, 48, 22, 42, 39, 14, 9, 1], finding
syntactic regularities in strings [10, 31, 15, 32, 26, 49, 28, 21, 46, 30, 36], and much more.

In the 1990’s the active field of dynamic graph algorithms was started, with the motive
of answering questions on graphs that dynamically change over time. For an overview
see [20]. Recently, there has been a growing interest in dynamic pattern matching. This
natural interest grew from the fact that the biggest digital library in the world - the web - is
constantly changing, as well as from the fact that other big digital libraries - genomes and
astrophysical data, are also subject to change through mutation and time, respectively.

Historically, some dynamic string matching algorithms had been developed. Amir and
Farach [6] introduced dynamic dictionary matching, which was later improved by Amir et
al. [7]. Idury and Scheffer [27] designed an automaton-based dynamic dictionary algorithm.
Gu et al. [24] and Sahinalp and Vishkin [43] developed a dynamic indexing algorithm, where
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a dynamic text is indexed. Amir et al. [8] showed a pattern matching algorithm where the
text is dynamic and the pattern is static. Mehlhorn, Sundar and Uhrig [38] showed how do
dynamically maintain a set of sequences while enabling equality queries.

In the last few years there was a resurgence of interest in dynamic string matching. In
2017 a theory began to develop with its nascent set of tools. Bille et al. [17] investigated
dynamic relative compression and dynamic partial sums. Amir et al. [4] considered the
longest common factor (LCF) problem. They investigated the case after one error. The fully
dynamic LCF problem was tackled by Amir et al. [5], and recently by Charalampopoulos
et al. [18]. Gawrychowski at al. [23] used grammars as a tool for maintaining a dynamic
collection of strings under various basic operations. Tanimura et al. [40] gave a small space
dynamic data structure for longest common extension (LCE) queries.

Throughout all this time, an algorithm for maintaining the suffix tree or suffix array of a
dynamically changing text had been sought. The difficulty is that even a single change in
the text may cause a linear number of suffixes to change position. Thus, although a dynamic
suffix array algorithm would be extremely useful to automatically adapt many static pattern
matching algorithms to a dynamic setting, other techniques had to be sought.

Take for example, one of the initial usages for the suffix tree - indexing. Already in 1994,
Gu et al. [24] used a data structure construction to allow indexing a dynamic text. Their
algorithm can be de-amortized to a Õ(

√
n) time for text update and Õ(m

√
n) time for an

indexing query. This was improved a couple of years later by Sahinalp and Vishkin [43] to
just a polylogarithmic slowdown per operation. The powerful idea of Sahinalp and Vishkin
was a sophisticated renaming technique. Renaming was also the key to most subsequent
efficient dynamic solutions that appeared in the literature.

However, renaming is not a panacea for dynamic algorithms to all the problems that
the suffix tree or array solved in the static setting. Perhaps the key property of the suffix
array is that the suffixes are sorted lexicographically. The powerful renaming and locally
persistent parsing techniques developed thus far do not maintain lexicographic ordering. It is,
thus, no surprise that problems like maintaining the Burrows-Wheeler transform, or finding
the Lyndon word of a substring, do not hitherto have an efficient dynamic version.

The only papers we found in the literature that attempt to compute the suffix array and
Burrows-Wheeler transform on a dynamic text are Salson et al. [44, 45]. These algorithms
are useful in practice, but their asymptotic worst-case complexity is still linear per update.
To our knowledge, our paper provides the first algorithm that maintains the lexicographic
ordering of suffixes in asymptotic worst-case sublinear time.

The contributions of this paper are:
1. We provide the first algorithm for maintaining the suffix array of a dynamic string in

sublinear time. For every 1 ≤ k ≤ n, our algorithm reports the ith entry in the suffix
array, SA[i] in time Õ(nk ) and handles text modification in time Õ(k). Additionally, our
algorithm enables the same query time for reporting iSA[i] with iSA being the Inverse
Suffix Array of S[1 . . . n].

2. We define a simple and efficient new data structure, which we call the k-Words Tree.
This data structure is what powers the algorithm.

3. Our algorithm provides immediate sublinear algorithms to various important problems
for which there is no known dynamic algorithm. Examples are computing the Burrows-
Wheeler transform, and finding the Lyndon root of a given text substring.

This paper is organized as follows: Section 2 gives basic definitions and terminology. In
Section 3, the k-Words Tree data structure is defined. Section 4 provides the algorithm for
the inverse suffix array of a dynamic text, and Section 5 describes and analyses the algorithm
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for dynamic suffix array maintenance. We conclude in Section 6 with algorithms for problems
that had no efficient dynamic algorithms till now, and where such algorithms are immediately
derived from our dynamic suffix array algorithm.

2 Preliminaries

We begin with basic definitions and notation generally following [19].
Let S = S[1]S[2] . . . S[n] be a string of length |S| = n over an ordered alphabet Σ. By λ we

denote an empty string. For two positions i, j ∈ [1 . . . n], we denote by S[i . . . j] = S[i] . . . S[j]
the factor (sometimes called substring, and sometimes word) of S that starts at position i
and ends at position j (S[i . . . j] = λ for j < i). We recall that a prefix of S is a factor that
starts at position 1 (S[1 . . . j]) and a suffix is a factor that ends at position n (S[i . . . n]). We
denote the reverse string of S by SR, i.e. SR = S[n]S[n− 1] . . . S[1].

Let Y be a string of length m with 0 < m ≤ n. We say that there is an occurrence of Y
in S, or, more simply, that Y occurs in S, if Y is a factor of S. Every occurrence of Y can
be characterised by a starting position in S. Thus we say that Y occurs in position i in S if
Y = S[i . . . i+m− 1].

We say that a string S of length n has a period p, for some 1 ≤ p ≤ n
2 if S[i] = S[i+ p] for

every i ∈ [1 . . . n−p]. The period of S is the smallest p that is a period of S. The concatenation
of two strings S[1 . . . n] and T [1 . . .m] denoted as S ·T or simply as ST is the string generated
by appending T to the end of S. Namely, S · T = S[1]S[2] . . . S[n]T [1]T [2] . . . T [m].

We say that a substring of S, denoted as A = S[a . . . b] is a run with period p if its period
is p, but S[a− 1] 6= S[a− 1 + p] and S[b+ 1] 6= S[b+ 1− p]. This means that no substring
containing A has a period p.

Let A = S[i . . . j] be a substring of a text S and let 1 ≤ x ≤ n be an index in S. We
say that x is touching A if x = i− 1 or x = j + 1. We say that x is contained within A if
i ≤ x ≤ j. Let B = S[iB . . . jB ]. We say that B is contained within A if every index in B is
contained within A, equivalently, B is contained within A if i ≤ iB ≤ jb ≤ j. B is said to be
strongly contained within A if i < iB ≤ jB < j.

Given two strings S and T , the string Y that is a prefix of both is the longest common
prefix (LCP) of S and T if there is no longer prefix of T that is also a prefix of S.

Longest Common Extension Queries. Given a text T , the longest common prefix (LCP)
of two indices i and j, denoted as LCP (i, j), is the longest substring that is the prefix of
both of the suffixes T [i . . . n] and T [j . . . n]. The longest common suffix (LCS) of i and j,
denoted as LCS(i, j), is the longest common suffix of T ’s prefixes ending in i and j. LCP
and LCS queries are called longest common extension queries. Longest common extension
queries in a static string can be answered in constant time following an O(n logn) time
preprocessing [16]. In a dynamic string, the following holds:

I Lemma 1. Given a dynamic text T , there is a data structure for answering dynamic
longest common extension queries in polylogarithmic time. Maintaining this data structure
takes polylogarithmic time per substitution.

The above result has been continually improved by a list of papers [38, 41, 23], culminating
in the most efficient deterministic algorithm for longest common extension in a dynamic text,
that of Nishimoto et al. [40].

The suffix array of a string S, denoted as SA(S), is an integer array of length n + 1
storing the starting positions of all (lexicographically) sorted non-empty suffixes of S, i.e. for
all 1 < r ≤ n+ 1 we have S[SA(S)[r − 1] . . . n] < S[SA(S)[r] . . . n]. Note that we explicitly
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add the empty suffix to the array. The inverse iSA(S) of the array SA(S) is defined by
iSA(S)[SA(S)[r]] = r, for all 1 ≤ r ≤ n + 1. Let S and R be strings, we denote the
lexicographic order between them by <L or ≤L, i.e. S <L R means S is lexicographically
smaller than R.

Let S1, . . . , Sk be strings over alphabet Σ. An uncompacted trie of strings S1, . . . , Sk is
an edge-labeled tree with k leaves. Every leaf li corresponds to a string Si$ with a special
symbol $ /∈ Σ appended to its end. The edges on the path from the root to li are labeled
by the symbols of Si$. Strings with a common prefix start at the root and follow the same
path of the prefix, and the paths split where the strings differ. A compacted trie is the
uncompacted trie with every maximal chain of edges connected by degree-2 nodes contracted
to a single edge whose label is the concatenation of the symbols on the edges of the chain.

Let S = S[1], . . . , S[n] be a string over alphabet Σ. Let {S1, . . . , Sn} be the set of suffixes
of S, where Si = S[i], S[i + 1], . . . , S[n], i = 1, . . . , n. A suffix tree of S is the compacted
trie of the suffixes S1, . . . , Sn. We associate every node V is the suffix tree with the string
L(V ), the concatenation of the strings on the edges from the root to V .

3 The k-Words Tree

We start by defining a data structure that is fundamental to our algorithm.

I Definition 2. Let S[1 . . . n] be a string and let 1 ≤ k ≤ n be an integer. Let DS
k be the set

of all different k-length substrings of S. The k-Words Tree kT (S) of S is a balanced search
tree. Every node V ∈ kT (S) represents a word W (V ) ∈ DS

k . W (V ) is referred to as the
word of V . Every vertex V stores T (V ) - a balanced search tree containing the indices i such
that S[i . . . i+ k − 1] = W (V ). These are all the instances of the word of V . The indices in
T (V ) are sorted in increasing order of their numeric value. The nodes of kT (S) are sorted
by lexicographic order of the W (V )s. Additionally, every node V maintains the number of
indices in the nodes of the sub-tree rooted in V .

For an illustration, see Figure 1.
In order to define a k-length substring starting at every 1 ≤ i ≤ n, we append $k at the

end of S, where the symbol $ /∈ Σ is lexicographically greater than every σ ∈ Σ.
Given a string S[1 . . . n], the k-Words Tree of S, denoted as kT (S), can be constructed in

Õ(n) time as follows: Preprocess S for constant time LCP queries. This enables lexicographic
comparisons between suffixes of S in constant time. Given two suffixes i and j first compute
LCP (i, j) = l and then compare S[i+ l] to S[j + l] to decide the lexicographical order of the
suffixes.

Initialize an empty balanced search tree kT (S) and for every 1 ≤ i ≤ n: search S[i . . . i+
k − 1] in kT (S) using an LCP query in every node to compute the lexicographic comparison.
If a node V such that W (V ) = S[i . . . i+ k − 1] is reached, add i to T (V ). Otherwise, add a
new node V ′ to kT (S) with W (V ′) = S[i . . . i+ k − 1] with T (V ′) only containing i.

Equal k-length words can be identified by checking if LCP (i, j) ≥ k. The auxiliary
information about the number of nodes in the rooted subtrees is maintained upon changes.

Since LCP queries can be answered in Õ(1) time in dynamic settings (Lemma 1), we
obtain the following:

I Lemma 3. kT (S) can be maintained in Õ(k) time per symbol substitution update.

Proof. Denote the index where the substitution occurred as x. The only words that change
are the words starting in i ∈ [x− k+ 1 . . . x]. Before applying S[x]← σ, remove all the words
that start in i ∈ [x− k+ 1 . . . x] from kT (S). That is done in Õ(1) per word by searching for



A. Amir and I. Boneh 63:5

S = ABBABABAABBABAABBBAA

I = 6
W = ′BAABB′

T = {6, 12}

I = 2
W = ′BABAB′

T = {2}

I = 1
W = ′BBABA′

T = {1, 9}

I = 0
W = ′ABBAB′

T = {0, 8}

I = 3
W = ′ABABA′

T = {3}

I = 4
W = ′BABAA′

T = {4, 10}

I = 13
W = ′AABBB′

T = {13}

I = 7
W = ′AABBA′

T = {7}

I = 5
W = ′ABAAB′

T = {5, 11}

I = 14
W = ′ABBBA′

T = {14}

I = 15
W = ′BBBAA′

T = {15}

Figure 1 An Example for a k-Words tree with k = 5. W (V ) is not explicitly stored in V and is
only specified for clarification. W (V ) can be obtained by an arbitrary element in T (V ), denoted in
this example as I. The auxiliary information is omitted.

S[i . . . i+ k − 1] in the balanced search tree kT (S) and removing i from the respective T (V ),
where the indices appear in increasing order. If T (V ) is empty – remove V from kT (S).
Either way update the items-count in every node up the route to the root.

After removing all the modified words, we apply S[x]← σ and add all the words starting
in i ∈ [x− k + 1 . . . x] to kT (S) as in the initialization of kT (S).

Since both inserting and removing a word takes Õ(1) time, and we use exactly k removals
and k insertions, modifying kT (S) takes Õ(k) time. J

I Remark. In order to generalize Lemma 3 to support deletions and insertions, an additional
obstacle needs to be handled. Even though the number of modified words remains O(k),
the starting indices of the words following the updated index is modified. Namely, after an
insertion update in index i, every word with a starting index j > i needs to have its index
modified to j + 1. This can be handled in various ways using basic data structure techniques.

4 Dynamic Inverse Suffix Array

Our goal is to report iSA[i] upon a query index i. This is equivalent to reporting the number
of suffixes of S that are lexicographically smaller than S[i . . . n].

I Definition 4. Two suffixes S[i . . . n], S[j . . . n] are close suffixes if LCP (i, j) ≥ k . Other-
wise, i and j are far suffixes.

Note that the starting indices of far suffixes are contained within the T (V ) of different
nodes of the k-Words tree, while the starting indices of close suffixes are contained within
the T (V ) of the same node in the k-Words tree
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63:6 Update Query Time Trade-Off for Dynamic Suffix Arrays

I Lemma 5. The number of far suffixes that are lexicographically smaller than S[i . . . n] can
be obtained from the k-Words tree in time Õ(1).

Proof. Given an input index i, we traverse from the root of the k-Words tree towards the
node containing S[i . . . i + k]. This traversal requires an LCP query in every node, since
we need to determine whether S[i . . . n] is lexicographically smaller or larger than the word
represented by the current node. Every time we go to the right, all the items in nodes to the
left correspond to far suffixes that are smaller than S[i . . . n]. We cumulate the sum C of the
items contained in the nodes to the left of our route using the auxiliary data. Once the node
V containing i is met, we add the number of items within the subtree rooted in the left child
of V to C. By the end of this route, C is the amount of items to the left of V in kT (S), which
is exactly the number of suffixes that are far from S[i . . . n] and lexicographically smaller
than S[i . . . n]. J

We are left with the task of counting the close suffixes that are lexicographically smaller
than i. The starting indices of the close suffixes are exactly the indices stored in T (V ). It is
possible that there are a lot of close suffixes, but since these indices correspond to instances
of a word of length k, periodicity can be exploited in order to implicitly compare S[i . . . n] to
all of the close words in Õ(nk ) time.

4.1 Counting Smaller Close Suffixes
The starting indices suffixes close to i are listed in T (V ) with V such thatW (V ) = S[i . . . i+k].
We need to find how many of them are lexicographically smaller than S[i . . . n]. We can
not explicitly compare S[i . . . n] to all of them since there may be too many. The following
observation follows from Fact 5 in [3] and it is the key for handling all the (possibly O(n))
suffixes in Õ(nk ) time.

I Observation 6. Let i1, i2, . . . , is be the set of indices in T (V ) in increasing order. And let
ix, ix+1 be two adjacent indices. If ix+1− ix < k

2 , then ix is contained in a run R = S[a . . . b]
of length at least k with a period p = ix+1 − ix. The next consecutive indices are ip = i+ p · t
for ip ≤ b− k. The next index after this set is at least k

2 larger than its predecessor.

Observation 6 can be used to identify periodic clusters of indices. If we traverse on the
values in T (V ) in ascending order, and encounter two adjacent indices s.t. ix+1 − ix < k

2 , we
can find the run R = S[a . . . b] by querying LCP (ix, ix+1). This will yield the extension of
the run to the right from ix. We represent all the indices that are contained within the run
as an arithmetic progression and proceed to the successor of il in T (V ), il being the greatest
item in the arithmetic progression. According to Observation 6, that will result in a value
that is at least k

2 larger than il. Notice that every step in this iteration results in the next
element (either an index or an arithmetic progression) starting in an index greater than the
previous one by at least k

2 . Since the largest possible index is n− k, this iteration terminates
within at most O(nk ) steps, and yields a representation of size O(nk ) of all the indices in T (V ).
We refer to every arithmetic progression of occurrences as a periodic cluster represented as
C[a, b, p]. a is the index of the leftmost occurrence of W (V ) within the periodic run, b is the
ending index of the run, and p is the period of the run.

Note that the indices in T (V ) are stored explicitly, and not as periodic clusters. Therefore,
no further treatment is necessary to maintain them in cluster form upon an update. The
cluster representation is generated from the indices during the query execution for the relevant
node.
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By now, we have shown how to obtain a representation of all the occurrences of W (V ),
corresponding to the starting indices of all the close suffixes, in Õ(nk ) time. The representation
consists of Õ(nk ) elements, some are single indices and some are clusters.The remaining
challenge is to compare all the suffixes corresponding to the indices within a cluster to
S[i . . . n] in polylogarithmic time.

I Lemma 7. Given an index i and a periodic cluster of indices C = [a, b, p], the amount of
indices within C that correspond to suffixes that are lexicographically smaller than S[i . . . n]
can be calculated in time Õ(1).

Proof. Let ri and ra = b− a be the extensions to the right of the run with period p from
indices i and a respectively. ri can be calculated by an LCP query LCP (i, i + p) . Let
it = a+ t · p be an index within C. The result of the lexicographic comparison between the
indices of C and i can be partitioned into three classes (for better intuition, see Figure 2):
1. ri < ra − t · p: In this case, the mismatch between the two suffixes will occur between

index i+ ri in suffix S[i . . . n] and index it + ri in suffix S[it . . . n]. i+ ri is independent of
t. it+ri is within the run of period p because it+ri < it+ra− t ·p = a+ra. Additionally
it+ ri is always the same mod p. So for every ip in this case, S[it+ ri] is the same symbol.
Therefore, the result of comparing between i and every it in this case is determined by the
result of comparing between S[i+ ri] and S[it + ri]. For some arbitrary it that satisfies
the condition for this case.

2. ri > ra− t ·p: symmetrically to the first case, the mismatch is between index i+ra− t ·p
in the suffix S[i . . . n] and index a+ ra in the suffix S[ip . . . n]. Symmetric reasoning leads
to S[i + ra − t · p] being the same symbol for every t within this case. Again, all the
comparison results are determined by a single symbol comparison.

3. ri = ra − t · p: That case can occur for at most one index in C. This index can be
calculated in constant time. Since there is only a single element in this case - we can
treat it explicitly with a single LCP query.

We showed how to handle each case using a constant amount of LCP queries, so the
overall time for counting the suffixes smaller than S[i . . . n] within the cluster is Õ(1).

i

a
p

X

X

ri

ra

it
ra − t · p

Figure 2 The settings of Lemma 7. Specifically case 2. Red ’X’ represents the ending of a run.

With Lemma 7, our algorithm is completed. We start by applying Lemma 5 to count the
far suffixes that are lexicographically smaller than S[i . . . n] and, as a side effect, find the
node V in the k-Words tree that contains i. We extract the compact representation of all
the close suffixes from T (V ) in Õ(nk ) time. For every element (either a single occurrence or
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a cluster), compare the corresponding suffix (or suffixes) to S[i . . . n] by using either an LCP
query (for a single occurrence) or Lemma 7 (for a cluster). When the iteration is completed,
we have the number of lexicographically smaller close suffixes. Since comparing S[i . . . n] to
either a single occurrence or a cluster takes Õ(1) time, this iteration takes Õ(nk ) time overall.
We output the sum of close smaller suffixes and the far smaller suffixes. We conclude with
the following theorem.

I Theorem 8. For every k ∈ [1 . . . n], a dynamic text S[1 . . . n] can be maintained to support
a symbol substitution in time Õ(k) and inverted suffix array queries in Õ(nk ).

5 Dynamic Suffix Array

Finding SA[i] is equivalent to finding the suffix that is lexicographically larger than exactly
i other suffixes. The idea is similar to the idea for the inverse suffix array. First, use kT (S)
to find the node V that must contain SA[i]. The second step is identifying which one of the
indices in T (V ) is SA[i].

5.1 Finding The Containing Node
Node V in kT (S) that contains the suffix that is lexicographically greater than exactly i
other suffixes, is found by using the following recursive procedure.

LargerThan(Root, i):
1. Denote the number of items in the subtree rooted in the left child of Root as |L|. If

i < |L|: return LargerThan(LeftChild , i)
2. If |L| ≥ i and i < |L|+ |T (Root)| then return (Root, i− |L|).
3. If |L|+ |T (Root)| ≥ i return LargerThan(RightChild , i− (|L|+ |T (Root)|))

The procedure takes logarithmic time since every recursive call is for a lower child in
kT (S), which is a balanced search tree.

Notice that the algorithm returns an index as well. This is the lexicographic rank of
SA[i] among the suffixes corresponding to the indices of T (V ).

5.2 Finding SA[i] in T (V )
With the identification of V , the problem is reduced to finding the ith lexicographically
smallest element in T (V ). A standard approach would be sorting T (V ) by the lexicographic
order of its elements, but that can not be done without unpacking the compact representation
of T (V )’s elements. A single periodic cluster of indices does not necessarily form a consecutive
block in the lexicographic sorting of T (V ), so it is possible that the sorted T (V ) is not
representable in O(nk ).

Our approach is using the routine from the iSA algorithm for finding the position of an
element x in the suffix array. If we run this routine on some item x, and find that iSA[x] < i,
we can recursively proceed on all the elements that are lexicographically larger than x. If we
manage to find an element x that is sufficiently close to being the lexicographic median of
the remaining elements, this process will be similar to a binary search.

I Definition 9. Given A a set of suffixes, and let 0 < α < 1
2 be a real number. x ∈ S is an

α-good pivot for A if at least α · |A| suffixes in A are lexicographically smaller than (or equal
to) x and at least α · |A| suffixes in A are lexicographically larger than (or equal to) x.

The following observation is the key for efficiently finding a 1
4 -good pivot:
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I Observation 10. Every cluster of instances C = [a, b, p] = a, a+ p, a+ 2p . . . is either a
lexicographically decreasing or a lexicographically increasing sequence of suffixes.

Proof. Consider two consecutive suffixes i, i+ p. The mismatch between these two suffixes
is in the first index where the run halts for one of them. That is index b+ 1 for the suffix
S[i+ p . . . n] and index b+ 1− p for the suffix S[i . . . n]. These two indices are independent
from i, so the lexicographic order of every two consecutive suffixes in C is the same. J

With Observation 10, our task is essentially reduced to the well knwon problem of performing
a selection query in a set of sorted arrays, with every cluster of occurrences treated as a
compact representation of a sorted array. We provide the details for completeness. We
process the periodic cluster representation of size O(nk ) of the occurrences ofW (V ). For every
cluster C = [a, b, p] calculate mC the middle term in the arithmetic progression corresponding
to C. According to Observation 10, that is the lexicographic median of the cluster. mC can
be obtained via simple arithmetic operations on [a, b, p].

Now we have a set of all the cluster medians and all the non-cluster elements in T (v).
We sort them lexicographically using a classic comparisons sorting algorithm to obtain a
lexicographically sorted array A = i1, i2 . . . it. Initialize a counter c = 0 and start iterating A
from left to right. For every index: if it is a non-cluster median, then increase c by 1; if it is
a cluster median, increase c by d|C|/2e, where |C| is the number of elements in the cluster.
Halt in the first element ip where c > S

4 , where S is the overall number of elements.

Medians (A)

c

Current position

Figure 3 An illustration of the process for finding ip. Every square represents a suffix, and every
vertical grid represents a periodic cluster of suffixes. The blue rounded rectangle contains c squares.

B Claim 11. The suffix starting in ip is a 1
4 -good pivot.

Proof. Every element in A is the median of its respective cluster, so it is greater (or equal
to) half of the suffixes in its cluster. Since A is a lexicographically increasing array, the
suffix ik+1 is greater than at least the same number of suffixes as ik, plus half the size of
its own cluster, which is added to c when ik+1 is visited. It follows that at every point in
the iteration, the currently iterated suffix is greater than or equal to at least c other suffixes.
Therefore, ip is greater or equal to at least 1

4 |A| other suffixes.
Recall that S is the amount of suffixes represented by the clusters and individual suffixes of

A. Let Ck be the size of the k’th cluster in A (if ik is a single suffix, Ck = 1). It is easy to see
that Σtk=1

⌈
Ck

2
⌉
≥ S

2 and that when ia is contested in the iteration, c = Σak=1
⌈
Ck

2
⌉
. Since ip

is the first element to have c > |C|
4 , c was smaller than S

2 when ip−1 was contested. Namely:
Σp−1
k=1

⌈
Ck

2
⌉
< S

4 . Since the sum of all
⌈
Ck

2
⌉
is at least S

2 , it follows that Σt
k=p

⌈
Ck

2
⌉
> |S|

4 .
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Every median (or single suffix) to the right of ip, including ip, is corresponding to
⌈
Ck

2
⌉

suffixes that are lexicographically greater (or equal to) ip. These are the suffixes above the
respective median including itself. So there are at least Σt

k=p
⌈
Ck

2
⌉
> |S|

4 suffixes that are
lexicographically greater than ip. C

We find SA[i] in a binary search fashion. We start by finding ip and x = iSA[ip]. if x = i,
then, we are done (output ip). Otherwise, if x > i we reduce the range of our search to the
suffixes that are lexicographically larger than ip and vice versa if x < i. We proceed with
the remaining suffixes recursively. The suffixes for the next search iteration can be found
and efficiently represented using the same method as for finding iSA[ip]. We are guaranteed
to eliminate at least 1

4 of the remaining elements in every iteration of the search, so this
procedure will terminate within O(logn) iterations.

Time. Finding the pivot takes Õ(nk ) for extracting the medians from the clusters and
Õ(nk ) for sorting the array of medians. The recursive procedure for finding SA[i] takes
T (s) = T ( 3s

4 ) + Õ(nk ) with s ≤ n being the amount of implicitly represented suffixes in the
set. This recursive formula is dominated by Õ(nk ). We conclude with the following theorem.

I Theorem 12. For every k ∈ [1 . . . n], a dynamic text S[1 . . . n] can be maintained to support
a symbol substitution in time Õ(k) and suffix array queries in Õ(nk ).

6 Applications

In the following subsections we give examples of problems that can be solved in a dy-
namic setting by our methods. Some of these have been researched in a static setting by
Kociumaka [29].

6.1 Dynamic Substring Lyndon Root
The Lyndon root of a string S[1 . . . n] is the lexicographically smallest rotation S[i . . . n] ·
S[1 . . . i− 1] of S. Equivalently: The Lyndon root of S is the lexicographically smallest suffix
of the string S · S starting in [1 . . . n].

With a little bit of extra work we can use the dynamic suffix array to find the Lyndon
root of a given substring of S. Namely: Given i < j two indices in S, output the Lyndon
root of S[i . . . j].

I Observation 13. Let S[1 . . . n] be a dynamic string. The suffixes starting in an interval
I = [a . . . b] can be maintained in Õ(|I|ε) update time to support lexicographic select queries
among these suffixes in Õ(|I|1−ε) time for every real ε ∈ [0 . . . 1]. With |I| = b − a + 1.
Namely, the input query is an index 1 ≤ i ≤ |I| and the output is the i’th lexicographic suffix
of S among the suffixes starting within I.

Observation 13 can be obtained by maintaining the k-Words Tree of S[a . . . b + k], and
applying the dynamic suffix array query of section 5. Setting k = |I|ε yields the desired
complexity.

Note that if we apply Observation 13 to dynamically maintain the lexicographic order
of suffixes starting in I[a . . . b], only updates in indices i ∈ [a . . . b+ k] require applying an
update to our data structure.

For the purpose of reporting the Lyndon root of a substring, we dynamically maintain
the lexicographical order of the suffixes starting in the intervals S[a · 2t . . . (a+ 1) · 2t − 1] for
every 0 ≤ t ≤ logn and 0 ≤ a < n

2t by applying Observation 13.
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Given an update in index x in S, a constant number of intervals needs to be updated for
every possible interval size 2t. The complexity of updateing all the affected in intervals is
Σlogn
i=1 Õ(|2i|ε). Being a geometric sum, this expression is dominated by Õ(nε)
Given a substring S′ = S[i . . . j] we partition S′ to log(|S′|) intervals of the form S[a ·

2t . . . (a+ 1) · 2t − 1]. Next, we adjust the data structure of every interval in the partition
to compare between suffixes as if another copy of S′ is concatenated to the end of S′. This
adjustment require updating all the words in the k-tree that touch the right end of S′.
Updating all the intervals takes Σlog(|S′|)

i=1 Õ(|2i|ε) which is dominated by Õ(|S′|). LCE

queries on S′ · S′ are required both for adjusting the k-Trees and for executing the queries
on the K-trees. These can be answered by employing the fact that the LCE data structure
of [40] supports cutting and inserting substrings of S in polylogarithmic time. Namely, we
keep an extra copy of S. Upon a query on S′, we cut S′ from the copy and insert it right
after S′ in S.

After adjusting the k-Trees of the intervals and the LCE data structure, we query every
interval for the minimal suffix starting within it. This yields log(|S′|) candidates for the
Lyndon root of S′. We return the minimal suffix among them. After returning the Lyndon
root, we undo the modifications for the k-trees of the intervals and for the LCE data structure.

I Theorem 14. For every real ε ∈ [0 . . . 0.5], a dynamic string S[1 . . . n] undergoing symbol
substitution updates can be maintained so reporting the Lyndon root of S′ = S[i . . . j] can be
done in time Õ(|S′|1−ε) and updates are handled in time Õ(nε).

Proof. The bottleneck of executing the query is adjusting, querying and undoing the ad-
justments for every interval in the partition of S′. These intervals are of length at most |S′|.
Updating the k-tree for every such interval takes at most Õ(|S′|ε). Querying the intervals will
take Õ(|S′|1−ε) There are O(log(|S′|)) intervals, so the overall query time is Õ(|S′|ε+ |S′|1−ε)
which is dominated by Õ(|S′|1−ε). The time for maintaining the data structure for all the
intervals, as previously discussed, is O(nε). J

6.2 Dynamic Substring Suffix Array
In this section, we show how to use our data structure to enable lookups in the suffix array
of a given substring. Namely: Given three integers i, j, k, return SAi,j [k] with SAi,j being
the suffix array of S[i . . . j].

For this purpose, we maintain the lexicographic order of suffixes starting in exponentially-
increasing sized intervals in S as in the previous section.

Upon query, we partition the substring S′ = S[i . . . j] to O(log(|S′|)) intervals. We insert
a text update S[j+ 1]← $, where $ /∈ Σ and $ >L σ for every σ ∈ Σ. This update is required
to ensure that the order of the suffixes S starting in the intervals of the partition have the
same lexicographic order as their respective prefixes that are suffixes of S[i . . . j]. We only
apply the update on the suffix select data structures for the intervals in the partition of S′.

For every interval I in the partition, we query the lexicographical median mI of the
suffixes starting within I. We proceed to sort the medians and find a 1

4 -good pivot among
them similarly to the pivot finding procedure in the dynamic suffix array algorithm in
Section 5.

Denote the pivot as ip. We can find how many suffixes in S′ = S[i . . . j] are lexicographic-
ally smaller than ip by binary searching for S[ip . . . n] in the sorted suffixes data structure of
every interval. The index in which the binary search terminates is the amount of suffixes that
are lexicographically smaller than S[ip . . . n] starting in the corresponding interval. Summing
the indices obtained from the intervals will yield the lexicographic rank r of ip among the
suffixes of S′.
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We compare k to the index of r and continue accordingly in a binary search manner.
During the search, we maintain the lexicographic interval [aI . . . bI ] that may still contain
SAi,j [k] in the suffixes interval I. After finding the pivot ip and its lexicographic rank r
among the suffixes of S′, we update the lexicographic interval of every suffixes interval I
to either [aI . . . rI(ip)] or [rI(ip) . . . bI ], depending on the whether k < r or k > r. rI(ip)
denotes the amount of suffixes starting in I that are lexicographically smaller than ip. The
medians for the next iteration of the binary search is the median of the updated lexicographic
interval of I.

Complexity. The procedure consists of finding O(logn) medians in every iteration of the
binary search and finding the index of ip. Using our data structure, both can be done in
Õ(|I|1−ε) per interval. Which is dominated by Õ(|S′|1−ε). Multiplied by the amount of
binary search iterations, we are left with Õ(|S′|1−ε). We also execute an update operation to
the participating intervals in order to append the $ after S′ (and another update operation for
undoing this after we output the query). So the overall query complexity is Õ(|S′|ε+ |S′|1−ε).
Maintaining the data structures when S is modified can be done in O(nε) as discussed in
Section 6.1. To conclude, we get the following:

I Theorem 15. For every ε ∈ [0 . . . 0.5], A dynamic text S[1 . . . n] can be maintained in
Õ(nε) time per substitution to support Internal Suffix Array queries in time Õ(|S′|1−ε) with
S′ being the queried substring.

6.3 Dynamic Burrows-Wheeler Transform

The Burrows-Wheeler transform is a well known permutation of the symbols of a text.
Roughly speaking, if a text has a lot of repetitions, the BWT of the text has a short run
length encoding. making the BWT useful for compression.

The i’th symbol of the Burrows-Wheeler transform of a given text can be directly evaluated
using a single lookup in the suffix array. Therefore, the following directly follows from our
main result:

I Theorem 16. For every 0 ≤ ε ≤ 1, A dynamic text S[1 . . . n] can be maintained in Õ(nε)
time per substitution to report BWT [i] queries in Õ(|n|1−ε) time.

Similar complexity can be achieved for computing BWT [i] of a given substring in a
dynamic text via the result of Subsection 6.2.

I Theorem 17. For every 0 ≤ ε ≤ 1
2 , A dynamic text S[1 . . . n] can be maintained in Õ(nε)

time per substitution to report BWTS′ [i] in time Õ(|S′|1−ε) with BWTS′ being the BWT of
a substring S′ = S[i . . . j].

6.4 Dynamic LCP Array

The LCP Array is a data structure that is often used alongside the suffix array in string
algorithms. The i’th entry of the LCP Array H[1 . . . n] of a text S is the LCP of the suffixes
starting in SAS [i] and SAS [i− 1] for i ≥ 2 (H[1] is undefined).

I Theorem 18. For every ε ∈ [0 . . . 1], the LCP Array H of a dynamic string can be
maintained in Õ(nε) time per update with Õ(n1−ε) lookup time for H[i].
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Proof. Directly from our main result, by setting k = nε and using a dynamic LCP query
data structure. Computing H[i] = LCP ([SA[i], SA[i+ 1]) requires two suffix array lookups
and one LCP query. J

6.5 Dynamic Suffix Tree
The Suffix Tree is one of the most frequently used data structures in string algorithms. Given
a string S, the Suffix Tree of S denoted as STS is a compact trie containing all the suffixes
of S. Every node V in S is associated with a string L(V ) that is the concatenation of the
substrings written on the edges in the route from the root of STS to V . It is a known fact
that the leaves of the substree of STS rooted in a node V form a consecutive interval of
suffixes in SAS . Therefore, V can be represented by two indices i, j in the suffix array, such
that SA[i], SA[i+ 1] . . . , SA[j − 1], SA[j] are the leaves of the subtree rooted in V . We call
this representation the Suffix Array representation of V . Using this representation, we can
obtain the following:

I Theorem 19. For every k ∈ [1 . . . n] and a dynamic string S[1 . . . n], a data structure can
be maintained in Õ(k) time per update to support the following queries in Õ(nk ) time:
1. Input: two indices i, j representing a substring A = S[i . . . j].

Output: a Suffix Array representation of the node V with L(V ) = A

2. Input: a Suffix Array representation (i, j) of a node V in STS, and a symbol σ ∈ Σ.
Output: a Suffix Array representation of the child of V following the edge emerging from
V with a label starting with σ (if such an edge exists).

3. Input: a Suffix Array representation (i, j) of a node V in STS.
Output: a Suffix Array representation of the parent of V in STS.

Theorem 19 is obtained by applying a well known reduction from the suffix tree to the
suffix array. For completeness, we provide the details of the proof.
1. The node V in STS for which L(V ) = S[i . . . j] is the ancestor of all the suffixes starting

with S[i . . . j]. We can run a binary search on the suffix array for the indices of the
lexicographically smallest and largest suffixes having a prefix that is equal to S[i . . . j],
respectively denoted as i′ and j′. We output (i′, j′).

2. We query the suffix array for SA[i] = a and SA[j] = b. We use an LCP query to get
LCP (S[a . . . n], S[b . . . n]) = l. It can be easily verified that L(V ) = S[a . . . a+ l− 1]. We
proceed to binary search the suffix array for the indices of the lexicographically minimal
and maximal suffixes starting with S[a . . . a+ l − 1]σ respectively denoted as i′ and j′.
If there are no suffixes starting with that string, report non existing edge. Otherwise,
return (i′, j′).

3. If (i, j) = (1, n), then the input to the query is the root of STS and it has no parent.
Otherwise, assume that i 6= 1 and j 6= n. We query the suffix array for SA[i] = x

SA[i − 1] = a and SA[j + 1] = b. Note that S[x . . . n] is a descendant of V in STS ,
S[a . . . n] is the rightmost leaf in STS that is to the left of V , but is not a descendant
of V , and S[b . . . n] is the leftmost leaf in STS that is to the right of V but is not a
descendant of V . Therefore, the parent of V is either the lowest common ancestor
of the leaves corresponding to S[x . . . n] and S[a . . . n] or the lowest common ancestor
of the leaves corresponding to S[x . . . n] and S[b . . . n]. It is a well known fact the
lowest common ancestor U of two leaves corresponding to suffixes S[i1 . . . n], S[i2 . . . n]
in the suffix tree has L(U) = S[i1 . . . i1 + LCP (i1, i2)− 1]. We use LCP queries to find
la = LCP (a, x) and lb = LCP (b, x). It can be easily verified that the parent P of V
has L(P ) = S[x . . . x+max(la, lb)− 1]. We find this substring using LCP queries and
employ 1 to find the Suffix Array representation of P .
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For every query we use (at most) a logarithmic number of suffix array lookups and LCP
queries. The desired complexities are achieved by setting k = nε to the data structure of our
main result. J

Theorem 19 allows performing a traversal on the Suffix Tree of a dynamically changing
text, essentially providing a dynamic variant of the suffix tree.

7 Conclusions and Open Problems

We presented the first dynamic algorithm for maintaining the suffix array (SA) and inverse
suffix array (iSA) of a dynamic text. We use a new data structure which we call the k-words
tree. For every 1 ≤ k ≤ n, our data structure reports SA[i] in time Õ(nk ) and handles text
modification in time Õ(k).

Our data structures enables solving several types of string queries of a dynamically
changing string that could not be solved hitherto. Examples are finding the Lyndon root of a
query substring, finding the suffix array of a query substring, and evaluating the ith symbol
of the Burrows-Wheeler transform of a string or a query substring, all for a dynamically
changing string.

While our algorithm gives a tradeoff between the text modification and lookup time, if
we set them to be equal we get an Õ(

√
n) time for both modification and query. We did not

prove a lower bound but we believe that better bounds can be achieved.
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